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We use the Mindlin plate theory and the finite element method to delineate the effect of fixing points on
a transverse normal to the mid-surface of the plate on the localization of buckling modes in clamped–
clamped rectangular plates made of linear elastic, homogeneous and either isotropic (monolithic) or
orthotropic (fiber-reinforced composite) materials. The in-plane loads considered on the bounding edges
are: (i) normal tractions on the length, (ii) normal tractions on the width, (iii) equal normal tractions on
the length and the width (equal biaxial loading), (iv) shear (tangential), and (v) combined same normal
and shear tractions on all sides. It is found that clamping points on a transverse normal passing through
the mid-point of a line parallel to the short side increases the critical buckling load of plates of only low
aspect ratios over that of the corresponding plates unconstrained at interior points. However, for plates of
all aspect ratios (thickness/length) fixing points on a transverse normal divides it into two regions with
negligible transverse deflections in only one of the two regions. Only for loads (i)–(iii) the dividing line is
parallel to the short side of the plate. For both thin and thick isotropic plates the slope of the dividing line
is found to monotonically increase with an increase in the aspect ratio of a plate until it reaches a satu-
ration value. A parameter based on the modal strain energy is used to quantify the degree of localization
of a buckling mode. For an isotropic plate the degree of localization is found to increase with the increase
in the aspect ratio for load cases (i)–(iii) but is found to be moderate for load cases (iv) and (v). For an
orthotropic layer the degree of localization with an increase in the aspect ratio of the plate increases more
for the 90� lamina than that for the 0� and the 45� laminae. Also, the mode localization in the (45�,�45�)
laminate is stronger than that in the (0�,90�) laminate for the five load cases. However, moderate degree
of mode localization is found in symmetric and anti-symmetric cross-ply and angle-ply laminates.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An irregularity in an ordered medium generally leads to locali-
zation of vibration modes [1,2] in linear mechanical systems, i.e.,
the vibration modes are confined in a certain region of the system.
Since a buckling problem is also an eigenvalue problem it may be
envisaged that a disturbance in the periodic order in a mechanical
system will lead to buckling mode localization [3]. Pierre and Plaut
[3] considered a beam made of two spans of identical uniform
cross-sections but of different lengths, fixed at one end while sup-
ported on rollers at the intermediate point and at the other end,
with the two spans coupled with a torsional spring. For the beam
loaded by an axial compressive force, they used perturbation anal-
ysis and found mode localization for weak coupling between the
two spans. They concluded that the loci of the first two critical
loads as a function of the slight irregular spacing between the
two supports are far separated for strong coupling and are very
close to each other for weak coupling between the spans. Similarly,
Nayfeh and Hawwa [4] studied localization of buckling modes in
three and four span simply supported beams coupled through tor-
sional springs, and Li et al. [5] extended this work to an N-span
beam. By using Kirchhoff’s plate theory Elishakoff et al. [6] found
that the buckling mode localization is sensitive to the misplace-
ment of stiffeners in uniaxially compressed rib-stiffened rectangu-
lar thin plates. These plates with different boundary conditions
were subsequently analyzed by Xie and Ibrahim [7] using the finite
strip method. Xie [8] found that a stronger inhomogeneity leads to
a larger degree of buckling mode localization in a simply-sup-
ported nonhomogeneous beam resting on an elastic foundation
and loaded by in-plane compressive loads. Brasil and Hawwa [9]
studied buckling mode localization in two-dimensional trusses
by slightly varying the length of a truss member.

Filoche and Mayboroda [10] have studied vibration mode local-
ization in a linear elastic, isotropic and homogeneous Kirchhoff
plate, and showed that fixing points on a transverse normal divides
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Fig. 1. Schematic of a clamped–clamped plate depicting geometric parameters, orientation of fibers and fiber axis for laminae/laminates, the location of the interior point P on
the plate mid-surface, different uniformly distributed loads on the edge surfaces, and regions X1 (shaded) and X2 where buckling modes get localized after fixing points on
the vertical line passing through the point P. A possible way of fixing points on the vertical line passing through P is shown using two pins supporting the plate from opposite
sides, while the other end of pins is fixed. For an isotropic plate the angle h of the dividing line mn passing through P equals p/2 for loading scenarios (i)–(iii), and it equals the
inclination of the tangent to nodal line w(x,y) = 0 through P for the loading situations (iv) and (v).

Table 1
Nondimensional critical buckling load factor k (¼ N0b2

=p2D, where N0 = the critical
buckling load/length, b = width of the plate, and D = bending rigidity of the plate) for
CCCC rectangular isotropic plates of b/h = 100 subjected to loads (i) and (iii). Poisson’s
ratio m = 0.3.

Eccentricity Load type (i) (uniaxial
compression)

Load type (iii) (shear tractions)

Timoshenko and
Gere [14]

Present Shufrin and
Eisenberger [15]

Present

0.75 11.69 11.63 – –
1.00 10.07 10.05 14.64 14.57
1.25 9.25 9.23 – –
1.50 8.33 8.32 – –
1.75 8.11 8.09 – –
2.00 7.88 7.85 10.25 10.21
2.25 7.63 7.61 – –
2.50 7.57 7.56 – –
2.75 7.44 7.42 – –
3.00 7.37 7.34 9.53 9.50
3.25 7.35 7.32 – –
3.50 7.27 7.24 – –
3.75 7.24 7.21 – –
4.00 7.23 7.19 9.30 9.27
6.00 – – 9.12 9.09
10.00 – – 9.03 9.00
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the plate into two independently vibrating regions. Subsequently,
Sharma et al. [11] used the Mindlin plate theory to delineate effects
of the fiber angle and the stacking sequence on mode localization,
and found that placing a lumped mass at an interior point of a lam-
inate also localized modes of vibration. Verma et al. [12] used
molecular mechanics simulations with the MM3 potential and the
software TINKER to analyze vibration mode localization in a single-
and multi- layered graphene nanoribbon due to either fixing an
atom or attaching a buckyball to an atom in the interior of the nano-
ribbon. Here we use the Mindlin plate theory to study buckling
mode localization in clamped–clamped (i) linear elastic, homoge-
neous and isotropic thin rectangular plates, and (ii) orthotropic
laminae and laminates due to fixing points on a transverse normal
passing through an interior point P. The following five in-plane
loads on the plate edges are considered: (i) normal to the long side,
(ii) normal to the short side, (iii) normal to all sides (equal biaxial
loading), (iv) shear or tangential on all sides, and (v) combined biax-
ial and tangential tractions of the same magnitude. For all load
types considered, the interior point is found to divide a plate/lami-
nate into two distinct regions – one with buckling mode of finite
amplitude and the other of negligible amplitude. We define the
degree of mode localization as the ratio of the modal strain energies
of one such region to that of the entire plate/laminate. It is found
that the degree of mode localization for isotropic monolithic plates
increases with an increase in the aspect ratio of plates. For an ortho-
tropic laminae the degree of mode localization is higher for a 90�
lamina than that for 0� and 45� laminae for the same relative loca-
tion of the fixed point. However, there is no appreciable mode local-
ization in symmetric and anti-symmetric, cross-ply and angle-ply
laminates with more than two layers. These results can be used
to place internal constraints on panels of aircraft/spacecraft skins
and on superstructure/bulkhead of ships.

The rest of the paper is organized as follows. In Section 2 we
briefly describe the procedure used to analyze the problem. In Sec-
tion 3, we discuss the buckling mode localization in isotropic plates
due to the five load types, and provide the orientation of the in-
plane line passing through the interior fixed point which divides
the plate into two independent regions. Buckling mode localization
in orthotropic laminae and laminates is discussed in Section 4.
Conclusions of this work are summarized in Section 5.

2. Procedure

Static deformations of a clamped rectangular plate/laminate
with in-plane applied forces at the edges as shown in Fig. 1 are
analyzed by using the Mindlin plate theory and the finite element
method (FEM) with 8-node quadrilateral elements. The buckling
load of a linear elastic plate is given by the eigenvalue problem

½K � kKG�fdg ¼ 0: ð1Þ

Here, K and KG are the global stiffness and the global geometric
matrices, respectively. The eigenvalue k and the associated eigen-
vector {d} are the buckling load and the associated buckling mode,
respectively. Each node of the finite element on the midsurface of
the plate has three degrees-of-freedom (DOF), namely, w, the dis-
placement along the Z-axis, wX, the rotation about the X-axis of
the transverse normal to the mid-plane, and wY, the rotation about
the Y-axis of the transverse normal to the mid-plane. The plate



Table 2
Nondimensional critical buckling load factor k ð¼ N0b2

=p2DÞ for CCCC rectangular
isotropic plates with b/h = 100 and m = 0.3 and subjected to combined loads, i.e.,
Nx = Ny = N0 and Nxy = N0xy.

N0/N0xy Timoshenko and Gere [14] Present

0.0 14.71 14.57
0.5 7.09 7.38
1.0 4.50 4.63
1.5 3.24 3.30
2.0 2.51 2.54
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length equals the inverse of its width, the aspect ratio (length/width)
following [10] is termed the eccentricity, and the shear correction
factor is assigned the value 5/6. Boundary conditions at the clamped
edges and at a clamped interior point are: w = wX = wY = 0. For plates
of various eccentricities, the FE mesh was refined until the succes-
sive refinement yielded the difference between the loads for the first
100 buckled modes of less than 1%. For the plate/laminate with
eccentricity of 20 the FE mesh of 18 uniform elements along the
width b and 200 uniform elements along the length a gave the con-
verged solution. The bending and the shear parts of an element stiff-
Fig. 2. Normalized buckling modes of the clamped rectangular plate of eccentricity = 20 f
and those in panels (d)–(f) are for the clamped plate when points on the transverse nor
ness matrix for a thin plate are computed by using the 3 � 3 and the
2 � 2 Gauss quadrature rule, respectively. The FE code written in
MATLAB [13] has been verified by comparing (e.g., see Tables 1
and 2) computed values of the buckling load factor for different
loads applied on edges of an unconstrained monolithic plate with
those available in the literature. It is found that the computed values
of the buckling load factor agree well with those reported by other
researchers. Similarly, the computed non-dimensional buckling load
factor (k = Nxb

2/D0) of 62.045 for clamped–clamped [30�/�30�/30�]
laminated square plate with E1/E2 = 2.45, G12/E2 = 0.48, m12 = 0.23,
b/h = 100, D0 = E1h3/12(1 � m12m21), subjected to load type (i) was
found to be close to 61.893 reported by Shrufin et al. [16]. Here var-
ious symbols have the usual meaning, and h equals the thickness of
the plate. Buckling loads found using this code for other boundary
conditions at the plate edges and various loads applied on the edge
surfaces were also found to agree well with those reported in the lit-
erature. These results are omitted for the sake of brevity. This code is
used to study buckling mode localization in rectangular plates/lam-
inates of b/h = 100 (50) for isotropic (orthotropic) plates when points
on the transverse normal through the interior point P, shown in
Fig. 1, are fixed. The location of the interior point P is found not to
affect the mode localization phenomenon.
or different edge loads. Modes in panels (a)–(c) are for the plate with clamped edges,
mal through the point P, shown in Fig. 1, are also clamped.
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3. Buckling mode localization in isotropic plates

3.1. Loads (i) through (iii)

For an isotropic material we set Young’s modulus E = 10,920
units and Poisson’s ratio m = 0.3. In Fig. 2 we have exhibited buck-
Fig. 4. (a) Distribution of the mode localization parameter b1 for load case (i) when no i
with points on the transverse normal through point P clamped.
ling mode localization in the plate of eccentricity e = 20 for loading
scenarios (i) through (iii). It is clearly seen that fixing points on the
transverse normal through the interior point P (hereafter referred
to as fixing point P) localizes buckling modes on either side of it
(cf. Fig. 2d–f). The plate is divided into two regions X1 and X2 by
point P (cf. Fig. 1). As shown in Fig. 3, the critical buckling load fac-
tor increases after clamping an interior point for each of the three
loading cases for plates of aspect ratio < 4. However, with increas-
ing aspect ratio the effect of clamping point P on the critical buck-
ing load diminishes. The critical buckling load is the least for the
combined loading.

We quantify buckling mode localization using the energy based
non-dimensional parameter b1, defined by

b1 ¼
Pn

i¼1fdg
T
i ½k�elfdgiPN

j¼1fdg
T
j ½k�elfdgj

: ð2Þ

That is, b1 equals the ratio of the modal strain energy of region X1

composed of n elements to that of the modal strain energy of region
X that is divided into N elements. It should be noted that
X = X1 [X2. For an element partially in X1 and X2, the strain
energy of deformation of an element attributed to X1 is taken to
be proportional to the area of the element in X1. In Eq. (2) [k]el is
the stiffness matrix for element el that includes the shear correction
factor. Value of b1 � 0 implies negligible deformations in O1 (cf.
Fig. 2d and f) whereas b1 � 1 implies that deformations are predom-
inantly in O1 (cf. Fig. 2e). The distribution of b1 for a plate without
clamped interior point and subjected to load (i) is shown in Fig. 4a.
nterior point is clamped, (b)–(d) distribution of b1 for the load cases (i), (ii) and (iii)



Fig. 5. (a)–(c) Variation of the connection coefficient for load cases (i), (ii) and (iii) respectively, with and without points on the transverse normal through point P clamped.
The value of the connection coefficient without clamping any interior point saturates to nearly 0.2 for all loading scenarios. With increasing eccentricity clamping points on
the transverse normal through point P divides the region of the plate into two increasingly separated regions in the sense that more modes have negligible amplitude either in
region X1 or in region X2.
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unaffected by clamping of points on the transverse normal through point P. Panels (c) and (d) show variation of the angle h with the eccentricity for biaxial and combined loads.
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Fig. 7. Normalized 1st buckling mode of a clamped rectangular plate of eccentricity = 20 for different loads on the edges. Modes in figures (a) and (b) are for the cases when
only edges of the plate are clamped and those in figures (c) and (d) are for the case when points on the transverse normal through an interior point P are also clamped.

Fig. 8. (a) and (b) distribution of the mode localization parameter b1 for the loads (iv) and (v). For both types of loads, there is a moderate localization of modes. (c) and (d)
variation of the connection coefficient for the load (iv) and (v) with and without clamping points on the transverse normal through point P.
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Fig. 10. Variation of the connection coefficient with the eccentricity for the five types of loads for 0�, 45� and 90� laminae. For all these cases the location of point P is shown in
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Fig. 11. Variation of the connection coefficient with the eccentricity for the five loading scenarios for antisymmetric 0�/90� and 45�/�45�, and symmetric 0�/90�/0� and 90�/
0�/90� laminates. For all these cases the location of point P is shown in Fig. 1.
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Fig. 12. Variation of the connection coefficient with the eccentricity for the five
types of loads for antisymmetric 45�/�45�/45�/�45�, and symmetric 90�/0�/90�/0�/
90� laminates. For all these cases the location of point P is shown in Fig. 1.
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It is found that for most modes b1 = 0.2 which is proportional to the
surface area of region X1. However, when the interior point is
clamped then the modes get localized as evident from results plot-
ted in Fig. 4b–d. We find that for load (iii) the maximum number of
modes get localized in region X2. Furthermore, a low value of b1

indicates moderate mode localization. Thus, for loads (i) and (ii)
there is moderate mode localization.

To quantify dependency of mode localization upon the eccen-
tricity e, we introduce connection coefficient, C, defined [10,11] by

C ¼ 1
S

XS

j¼1

min ðb1; ð1� b1ÞÞj; ð3Þ

where S equals the number of buckling modes of interest. A small
value of C implies localization of several buckling modes in either
O1 or O2. In Fig. 5 we show variation of C with e for loads (i), (ii)
and (iii), and have plotted it for a plate with and without a fixed
interior point. For each of the three load types, we find that when
the interior point P is not fixed the value of C with an increase in
the value of e saturates at 0.2 which is proportional to the surface
area of region X1. However, when point P is fixed the value of C
decreases with an increase in the value of e. For load (ii) the value
of C decreases more rapidly than that for the other two loads.

3.2. Loads (iv) and (v)

The FE simulations reveal that rectangular plates subjected to
in-plane either pure shear or combined shear and normal compres-
sive loads with or without an interior clamped point have eigen-
functions with nodal lines inclined at the some angle h (cf. Fig. 1)
to the X-axis, e.g., see Fig. 6a and b for a plate with e = 20. Accord-
ingly, the regions of mode localization are trapezoidal rather than
rectangular for the plate subjected to in-plane compressive loads
only.

In Fig. 7 we have exhibited buckling modes for a plate with the
eccentricity e = 20 and subjected to loads (iv) and (v) both with and
without clamping an interior point. It is found that, for both load
types, the clamping of an interior point does not affect the buckling
load factor. The buckling load factor is smaller for combined load-
ing as compared to that for the plate subjected to only tangential
tractions on the edges. The distribution of mode localization
parameter over 100 modes plotted in Fig. 8a and b suggests that
the mode localization is weaker than that in the same plate sub-
jected to in-plane compressive loads. However, there are several
modes with 0 < b1 < 0.2 which indicates moderate mode localiza-
tion. Accordingly, values of the connection coefficient for these
loads do not sharply decrease to zero with an increase in the value
of e. However, the mode localization increases as evidenced by
results exhibited in Fig. 8c and d. Furthermore, with no interior
point clamped the connection coefficient stabilizes at 0.2 as for
other load types.

3.2.1. Inclination of nodal lines
All nodes with w(x,y) � 0 are identified and projected on the

plane of the plate. Parallel straight lines are fitted through the pro-
jected points using the least squares method. The slope of these
lines equals the inclination h of the nodal lines. For b/h = 100, val-
ues of h with increasing eccentricity plotted in Fig. 6c and d suggest
that h saturates at 50.89� and 63.55� for loads (iv) and (v), respec-
tively. For thick plates with b/h = 10, the saturation values of h
equal 50.06� and 60.61�, respectively. Thus there is no pronounced
effect of the plate thickness on the value of h, however, the nondi-
mensional buckling load is significantly reduced from 8.96 and
3.15 to 6.98 and 2.62 for loads (iv) and (v), respectively. The critical
buckling load is higher for a thicker plate since it is calculated by
multiplying the non-dimensional buckling load by the bending
rigidity D.

We note that the inclination angle h of the line is the same
whether or not an interior point P is fixed.
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4. Buckling mode localization in orthotropic laminae and
laminates

We first investigate mode localization in 0�, 90� and 45� lami-
nae and then in laminates composed of these laminae of uniform
thickness, b/h = 50, and with material parameters having the fol-
lowing values: E1/E2 = 25, G12/E2 = 0.5, G23/E2 = 0.2, and m12 = 0.25.
The buckling of laminates is analyzed using an equivalent single
layer theory.

In Fig. 9 we show the distribution of parameter b1 over first 100
out-of-plane bending modes for the 0�, 45� and 90� laminae under
all five types of loads with a fixed interior point. For each one of the
five load types, compared to the 45� and the 90� laminae, the 0�
lamina has most modes centered at b1 = 0.2 indicating very little
mode localization. For the 90� lamina mode localization for load
case (ii) is very strong since nearly 40% of the modes are localized
in the region X2. In Fig. 10 the degree of mode localization is plot-
ted against the plate eccentricity for the 0�, 45� and 90� laminae. As
before for the 0� lamina, the degree of mode localization does not
increase with an increase in the plate eccentricity. The degree of
mode localization for the 45� and the 90� lamina is found to
increase significantly with the increase in the plate eccentricity
for load types (v) and (ii), respectively. In general, for the 45� and
the 90� laminae the degree of mode localization increases with
an increase in the eccentricity.

The variation in the degree of mode localization with the plate
eccentricity in two-layered anti-symmetric cross-ply (0�/90�) and
angle-ply (45�/�45�) laminates, and in three-layered symmetric
cross-ply 0�/90�/0� and 90�/0�/90� laminates for all five load cases
is shown in Fig. 11. These results evince that for cross-ply lami-
nates, symmetric or anti-symmetric either there is no appreciable
mode localization with increasing aspect ratio or there is no clear
trend. For the 45�/�45� laminates subjected to the loads (i), (ii)
and (iii) the degree of mode localization is found to increase with
an increase in the aspect ratio of laminates. However, the 4-layer
angle-ply and the 5-layer cross-ply laminates show only a moder-
ate degree of mode localization as shown in Fig. 12. These results
are consistent with those found for the localization of modes of
free vibrations in laminates [11] in the sense that localization of
modes of vibration in laminates depends upon the localization of
modes in individual lamina.

5. Conclusions

By using the Mindlin plate theory and the finite element
method with 8-node quadrilateral uniform elements, we have ana-
lyzed buckling of clamped–clamped rectangular isotropic plates,
orthotropic laminae, and orthotropic laminates with and without
fixing points on the transverse normal passing through an interior
point for five different in-plane loading conditions. It is found that
fixing an interior point divides the plate into two independent
regions such that in one of these regions plate’s deformations are
negligible. For in-plane compressive normal loads on the edges,
the two regions are rectangular. However, for in-plane shear or
in-plane shear with in-plane normal compressive loads, the two
regions are trapezoidal. The inclination of the line passing through
the fixed interior point that divides the plate into two regions
depends upon the ratio of the plate thickness to the plate width,
and the load type. It is found that the localization is pronounced
when plates are subjected to in-plane normal compressive loads
than that when they are subjected to in-plane shear or in-plane
shear and in-plane normal compressive loads. The degree of local-
ization increases with an increase in the aspect ratio of a plate. It is
envisaged that fixing an interior point can be used to control buck-
ling failure of plates/laminates.
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