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Abstract

An in-house developed, verified and fully validated three-dimensional finite element code, with rate dependent damage evolution equa-
tions for anisotropic bodies, is used to numerically ascertain the damage developed in a fiber-reinforced composite due to shock loads rep-
resentative of those produced by an underwater explosion. Three internal variables characterize damage due to fiber/matrix debonding,
fiber breakage, and matrix cracking. The delamination and relative sliding of adjoining layers has been simulated by the nodal release tech-
nique. The interaction among the four failure modes, and the possibility of their initiating concurrently at one or more points in the com-
posite is considered. The effect of different parameters on the damage development and propagation, and energy absorbed in each one of the
four failure modes has been examined. These results give preliminary information on composite structure’s design for maximizing the energy
absorption and hence increasing structure’s resistance to blast loads. The paper is a sequel to Hassan and Batra’s paper [Composites B, 2007]
wherein details of the damage model, verification of the code, and the validation of the mathematical model are given.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: A. Polymer–matrix composites (PMCs); B. Impact behavior; C. Damage mechanics; C. Energy dissipated; C. Figure of merit; C. Finite
element analysis (FEA)
1. Introduction

A major threat to ship structures and marine vessels is
being exposed to severe shock loads [1,2] which could be
due to the underwater explosion of a mine or a torpedo,
the structure striking a partially submerged object in water,
and/or the slamming pressure that occurs at high sea states
when the forefront of the vessel rises above the water sur-
face and then rapidly reenters the water. These shock waves
generally generate impulses of very high pressures but short
durations, resulting in extremely high strain rates, which
may cause severe structural damage.

In order to decrease weight of the empty ship and thus
increase payload, there is significant interest in developing
lightweight structures for replacing conventional plate–
beam metallic components in selected areas of a ship.
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For such structures to provide adequate protection against
underwater blast, they must have high resistance to impul-
sive loads and good residual (post-impact) strength [3]. The
estimation of service life requires knowing the progressive
degradation of material properties as a consequence of
growth of the internal damage. The absorption of energy
in ballistic situations depends on the evolution of damage
in the target that progressively degrades its material prop-
erties. Although several models have been developed to
describe the deformation mechanisms of composites, no
one model adequately characterizes the entire process due
to numerous factors like the difference in behavior between
fiber types, fabric and composite constructions, the varia-
tion in thermomechanical properties, ductility, anisotropy,
rate sensitivity of composite materials, and the fact that
composite materials respond differently from monolithic
materials (e.g., a metal) upon which fundamentals of the
mechanics of high strain rate deformation are based [4].

The initiation and propagation of damage in composites
due to impulsive loads has been studied experimentally,
analytically and numerically. For underwater shock and
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air blast loading, tests are usually performed by subjecting
large composite panels (up to 3 m · 3 m in size) or full scale
sections of a ship to increasing levels of shock loads and
then examining the laminate for evidence of gross struc-
tural damage [1] due to fiber breakage, matrix cracking,
fiber/matrix debonding, and delamination.

Mouritz [3] used the four-point bend test to measure the
residual flexural strength of a glass reinforced polymer
(GRP) laminate after it had been impulsively loaded by
an underwater shock wave produced by an explosion.
The examination by a scanning electron microscope of
the laminate tested at a shock pressure of 8 MPa revealed
that damage was confined to some cracking of the polymer
matrix and a small number of short delaminations;
consequently, the flexural strength remained essentially
unchanged. However, when the peak pressure of the shock
wave exceeded 8 MPa, the laminate was severely damaged
by cracking of the polymer, breakage and buckling of
fibers, and large delamination zones. High compressive
stresses in the area near the impacted surface buckled glass
fibers there, and high tensile stresses near the back surface
caused cracking of the polymer and glass fibers there.
Throughout the laminate, extensive delamination occurred
at many interfaces between adjoining plies. The extent of
damage, as evidenced by the progressive deterioration of
the residual flexural strength and stiffness, increased with
an increase in the intensity of the shock pressure from 8
to 28 MPa. Will et al. [5] have pointed out that for high
velocity impacts the structure responds in a local mode, a
little energy is used to deform fibers and the structure,
and a significant amount of energy is dissipated in mecha-
nisms such as delamination, debonding and fiber pull-out.
In the remainder of this Section, we summarize literature
results regarding effects of different material, geometric
and loading parameters on structure’s response to impul-
sive loads.

1.1. Target thickness

Thick laminates respond differently to externally applied
loads than thin laminates [6]. Morais et al. [7] studied the
effect of the laminate thickness on the resistance of
12.5 cm · 12.5 cm carbon, glass and aramid fabric compos-
ites to repeated low energy drop weight impacts with the
weight dropped from a height of 0.5–1.0 m at the specimen
center. For impact energies below 3.7 J, the resistance to
repeated low energy impacts increases with laminate thick-
ness, irrespective of the type of fiber used to reinforce the
composite. However, for high impact energies, the resis-
tance of the laminate to repeated impacts depends not only
on its thickness but also on the type of fibers and their spa-
tial distribution [7]. Gellert et al. [4] studied experimentally
the effect of the target thickness on the ballistic perforation
of GRPs. For thin targets the damage was in the form of a
delamination cone opening towards the exit side; its diam-
eter and height increased with an increase in the target
thickness, until for sufficiently thick targets the delamina-
tion cone opened towards the impact side. The diameter
of the delaminated zone on the target impact side was
found to increase linearly with the target thickness from
when it first appeared there, and that on the target exit side
increase with the target thickness until it plateaued. Gellert
et al. [4] also observed a transition in energy absorption,
which they postulated as being due to a change in perfora-
tion mechanism from largely dishing in thin targets to a
combination of indentation and dishing in thick targets.
The target thickness at which this transition occurs
depends on the projectile diameter, the nose geometry
and the target material; it can be used to differentiate
between thin and thick targets. They also found that for
thick GRP targets less energy is absorbed for conical nosed
projectiles showing they are more effective as penetrators,
but the energy absorbed is essentially independent of the
projectile nose geometry for thin GRP targets. Further-
more, they pointed out that when computing the work
done to perforate a target all deformation mechanisms
should be included. In their analysis the kinetic energy
due to moving layers at the rear of the target and the
ejected debris was ignored, as they required specialized
instruments for characterization.

1.2. Constituents’ properties

Various investigators [2,8–10] have delineated the effect
of constituents’ properties on failure modes. Whereas
delamination and matrix cracking are influenced by matrix
properties, fiber breakage depends upon fiber properties
[8]. Attempts have been made to improve the delamination
resistance of laminates by using thermoplastics and tough-
ened polymer matrices. While these matrices increase the
interlaminar strength of the laminate, they do not improve
the damage resistance under extremely severe shock loads
[2]. The matrix properties govern the damage threshold
and the extent of impact damage while fiber properties gov-
ern the resistance to penetration [9]. Performance of com-
posites when subjected to impact loads can be enhanced
through improvements in the toughness of the resin sys-
tems; the toughness is a measure of material’s ability to
absorb strain energy, resist shear cracking and reduce
effects of stress concentrations [8]. When every other
parameter is kept constant, higher fiber strength provides
better impact resistance [9].

1.3. Fiber length and fiber volume fraction

Fu et al. [10] studied effects of fiber volume fraction and
fiber length on the energy absorbed during notched Charpy
impact tests on both single (glass or carbon) and hybrid
(glass and carbon) short-fiber-reinforced polypropylene
(PP) composites. They attributed the increase in the fiber
damage with an increase in the fiber volume fraction to
the greater fiber-fiber interaction. It was found that the
impact energy absorbed by the laminate increases with an
increase in the glass fiber volume fraction, and decreases
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with an increase in the carbon fiber volume fraction. This
suggests that the cheaper glass fiber is more efficient in
enhancing the fracture toughness of PP than the more
expensive carbon fiber. Also, Morais et al. [7] found that
glass fiber composites provided better resistance to com-
pressive impact loads than carbon and aramid fibers; they
attributed this to the fine structure of glass fibers and the
resulting higher fiber/matrix contact area.

1.4. Fiber/matrix interface

For continuous fiber composites, the introduction of a
material interface can increase the impact resistance of
the composite [8]. Roy et al. [11] stated that a strong inter-
facial bond between the fiber and the resin matrix delayed
the fiber/matrix debonding and longitudinal matrix crack-
ing, and thus improved the overall performance of the
composite. The strength of the interfacial bond can usually
be enhanced by functionalizing fibers, i.e., coating them
with a thin layer of suitable material prior to embedding
them in the polymer matrix.

1.5. Ply stacking sequence

The ply stacking sequence in laminated composites has
been shown to play an important role in the damage toler-
ance of composites [8]. Sjogren et al. [12] experimentally
determined elastic properties of impact damaged carbon
fiber/epoxy laminates. They found that the stiffness reduc-
tion of an impact damaged composite laminate is con-
trolled mainly by the amount of fiber breakage, which
depends upon the stacking sequence. Will et al. [5] experi-
mentally studied the effect of the change in the laminate
stacking sequence on its ability to dissipate kinetic energy
of a projectile. The laminates were subjected to impacts
up to and beyond their ballistic limits; the ballistic limit
of a laminate equals the speed of a standard projectile at
which it just perforates the target. The dominant energy
dissipating mechanism was found to be delamination fol-
lowed by shear fracture, and matrix cracking accounted
for a small portion of the energy dissipated. Hull and Shi
[13] proposed that delaminations are caused by interlami-
nar cracks. Since both transverse shear stresses and delam-
inations depend upon the laminate stacking sequence [14],
therefore interlaminar cracks also depend on the stacking
sequence [5]. The laminate stacking sequence influences
the total delamination area, the delamination location,
and the shear fracture area.

1.6. Impact energy

At low impact velocities, matrix cracking and delamina-
tion are usually the dominant damage processes. As the
impact energy increases, the damaged area increases up
to the ballistic limit when the damage tends to level off
[15]. The total energy dissipated by material failure varies
linearly with the impact energy up to the ballistic limit;
however, it does not correlate well with the impact energy
for impact speeds above the ballistic limit. Thus the ballis-
tic limit is regarded as a threshold in the development of
material damage [5]. Iannucci et al. [16] have stated that
when the kinetic energy of a projectile is increased to bal-
listic levels, damage could result in through-the-thickness
penetration and generally only local delaminations. The
material at the impact site may additionally fail due to
the localized shock created by the impact which suddenly
raises the temperature of the material, and may induce a
phase change. The residual compressive strength of the
laminate was found to decrease indicating enhanced dam-
age with an increase in the impact energy [15]. Shikhmanter
et al. [17] studied the fractography of a quasi-isotropic tape
first damaged by low energy level impacts and then loaded
very slowly to failure in tension or compression. It was
found that a distinction could be made between the damage
caused by the impact, and that due to the two modes of
subsequent loading.

Parga-Landa et al. [18] studied the effect of slamming
pressure on the intralaminar behavior of composite panels
by assuming that the slamming pressure can be modeled as
a triangular pulse. When a wave crosses the boundary
between layers of sharply different acoustic impedances, it
is partially reflected and partially transmitted that may lead
to strong shock wave dispersion causing loss of spall
strength in some cases. Their analysis of the problem indi-
cates that using properties of a homogenized material is not
a good way to study dynamic loading of a heterogeneous
body. Espinosa et al. [9] have suggested that dispersion
effects may become more pronounced if voids are consid-
ered in the analysis.

1.7. Composite’s heterogeneity

Espinosa et al. [9] have examined the effect of the wavi-
ness of fibers on the interlaminar shear failure of fiber
reinforced plastics (FRPs) under impact loading. The
fabrication of composites introduces waviness in the inter-
face between adjoining laminas which may induce local
shear stresses. Dandekar and Beaulieu’s [19] experimental
observations show that local shear stresses generated due
to geometric heterogeneity of FRPs may cause delamina-
tion even under compressive loading.

1.8. Composite structures

Schonberg [20] investigated experimentally the impact
resistance of several dual wall systems. A dual wall system
is composed of an outer bumper that is subjected to impact
loads, a pressure wall which is a layer on the exit side, and
an inner layer between the two; there is empty space
between every two adjoining layers. The laminate was used
as one of the three layers in the dual wall system. Under
equal impact energies, these systems performed no better
than an aluminum dual wall system with each layer having
the same specific strength. However, the composite used as
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an inner layer or as a pressure wall provided greater protec-
tion to spacecraft occupants against damage caused by
high-speed impacts.

1.9. Stitching composites

Mouritz [1,21] compared the damage resistance of
stitched and unstitched GRP laminates loaded by an
underwater shock wave produced by an explosion. The
laminates were tested at low and high blast loads. It was
found that unstitched and stitched laminates suffered the
same types of damage that included cracking of the poly-
mer matrix and glass fibers, small debonded lengths
between the polymer and the glass fibers, and large delam-
inations between adjoining plies. However, the delami-
nated area was reduced by stitching with the greatest
reduction occurring at a higher stitch density and when
the stitches were along the fibers; it was attributed to stitch-
ing increasing the mode-I intralaminar fracture toughness.
For ballistic projectiles, stitching slightly reduced the dam-
age due to delamination of adjoining plies.

1.10. Boundary conditions

Boundary conditions at the edges of a composite lami-
nate determine the tearing mechanism encountered [22],
and noticeably affect the onset of failure and its subsequent
propagation.

1.11. Remarks

Whereas most of the works cited above have ascertained
the effect of only one parameter on the effectiveness of a
composite laminate and have employed either numerical
or experimental approaches, the present work provides
the effect of various material and geometric parameters,
and boundary conditions on the blast resistance of a com-
posite laminate using the same mathematical model. Thus
the sensitivity to different variables of the effectiveness of
the composite in resisting blast loads can be easily delin-
eated. However, because of space limitations, results for
only a few cases are given.

There is extensive literature available on the impact
response of composites, and only a few representative
works are reviewed here. Inevitably, we have missed many
relevant papers and even those containing more pertinent
information. However, the above review provides, at
least, a qualitative description of the effect of different
parameters on the failure of composites under dynamic
loads.

2. Problem formulation

We use the referential description of motion and rectan-
gular Cartesian coordinates to describe lamina’s deforma-
tions, and choose X1-axis aligned along fibers, and X2

and X3 axes perpendicular to fibers; these are usually
referred to as the material principal directions. Deforma-
tions are governed by the balance of mass, the balance of
linear momentum, the balance of moment of momentum,
and the balance of internal energy. These balance laws
are supplemented by constitutive relations, initial condi-
tions, and boundary conditions. We assume that the consti-
tutive relation for the second Piola–Kirchhoff stress tensor
S identically satisfies the balance of moment of momentum.

We use the theory of internal variables to describe
damage evolution in rate dependent bodies. Let n =
{/m,/f,/d} be the ordered set of three internal variables,
and x = {ym,yf,Yd} the ordered set of corresponding con-
jugate forces. Referring the reader to [23] for details, we
summarize here constitutive relations used in the present
work. We assume that

SðE; _E; h;G ; nÞ ¼ SeðE; 0; h; 0; nÞ þ SneðE; _E; h;G ; nÞ; ð1Þ
and

xðE; _E; h;G ; nÞ ¼ xeðE; 0; h; 0; nÞ þ xneðE; _E; h;G ; nÞ; ð2Þ

where Se (equilibrium stress) denotes the value of the sec-
ond Piola–Kirchhoff stress tensor S at zero strain rate
and zero temperature gradient, and xe denotes the value
of the conjugate force x at zero strain rate and zero tem-
perature gradient. In Eqs. (1) and (2), E, _E, h and G denote,
respectively, the Green–St. Venant strain tensor, its rate,
the temperature rise, and the temperature gradient. Hence-
forth, we consider isothermal processes; therefore, we do
not consider the energy equation, and neglect effects of
temperature rise and temperature gradient. Assuming that
Se is an affine function of the strain tensor E, it was shown
in [23] that the equilibrium value of the conjugate force is
given by Eq. (3)2. That is,

Se
ab ¼ C0

ab þ CabcdEcd;

xe
ðiÞ ¼ Y eðiÞ ¼ �

oC0
ab

o/ðiÞ
Eab �

1

2

oCabcd

o/ðiÞ
EabEcd

 !
; i ¼ m; f ; d;

ð3Þ

where C0
ab ¼ C0

ba, Cabcd = Ccdab = Cbacd, and these are func-
tions of n. Eq. (3)1 accounts for geometric nonlinearities
and describes a neo-Hookean material with initial stress
C0. We assume that a lamina reinforced with unidirectional
fibers can be modeled as transversely isotropic with the axis
of transverse isotropy perpendicular to the plane of the
lamina. Thus there are five independent elastic constants
out of the eighty-one components of Cabcd. In terms of
the more familiar elastic constants, components of matrix
[C] are given in Refs. [24–29]. Batra [30] has compared
the response, in simple deformations, of four elastic mate-
rials whose constitutive relations account for geometric
nonlinearities and the stress–strain relations are linear.

The matrix of elastic constants, the second Piola–Kirch-
hoff stress tensor, and the Green–St. Venant strain tensor
are transformed to global coordinate axes by using tensor
transformation rules [27,29].



Table 1
Values of material parameters of the fiber and the matrixa

Matrix (PEEK) Carbon fiber (AS4)

Poisson’s ratio 0.356 0.263
Young’s modulus (GPa) 6.14 214
Shear modulus (GPa) 2.264 84.7
Mass density (g/cm3) 1.44 1.78

a The fiber and the matrix are assumed to be isotropic.

Table 2
Values of constants in Eqs. (7)–(11)

Damage properties Tension Compression

Fiber breakage Af 1.931 GPa 0.197 GPa
Bf 1.931497 558
Y f

crit 0.0075 GPa 0.007535 GPa

Matrix cracking Am 1.356 · 10�10 GPa 0.01207 GPa
Bm 0.00193 174
Cm 0.37239 GPa 241 GPa
Dm 0.43665 0.195
Y m

crit 0.0005 GPa 0.011 GPa

Fiber/matrix debonding Ad 0.1437 GPa
Bd 0.00762
Cd 1.0022 GPa
Dd 0.37714
Y d

crit 5.48 · 10�2 GPa

Interfacial strengtha [r33] 0.078 GPa
[r13] 0.157 GPa
[r23] 0.157 GPa

a Values for the ultimate interfacial strength were obtained from a
composite data base site http://composite.about.com/library/data/blc-
as4apc2-1.htm.
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Using the mechanics of materials approach to derive the
dependence of material parameters upon damage variables
[23], we get

EC
1 ¼ Ef

1V fð1� /fÞ þ Em
1 V m; ð4Þ

where E1 is Young’s modulus in the axial (or the fiber)
direction; superscripts f and m signify quantities for the
fiber and the matrix respectively, and Vf equals the volume
fraction of the fiber. Furthermore, the effective axial Pois-
son’s ratio mC

13 is found to be independent of the damage in-
duced in the fiber and the matrix, and follows the rule of
mixtures. Similarly, mC

12 is also given by the rule of mixtures,
and is independent of the damage induced in the fiber and
the matrix. The transverse modulus, EC

2 , is given by

1

EC
2

¼ V f

Ef
2

þ V m

Em
2 ð1� /mÞ ; ð5Þ

and the effective shear modulus in the X1X2-plane by

1

GC
12

¼ V f

Gf
12ð1� /dÞ

þ V m

Gm
12

: ð6Þ

The effective shear modulus in the X2X3-plane is taken
to be independent of the debonding damage variable.

We note that as /f and /m approach 1.0, Young’s mod-
uli of the composite along and perpendicular to fibers
approach, respectively, the axial Young’s modulus of the
matrix multiplied by the volume fraction of the matrix
and zero. Similarly, in the limit of /d equaling 1.0, the
shear modulus of the lamina in the X1X2-plane approaches
zero. Thus at failure, material properties of the lamina have
been severely degraded. Even though a damage variable
affects only one of the elastic moduli in the material princi-
pal directions, it influences all moduli of the lamina when
either global axes do not coincide with the material princi-
pal directions and/or applied tractions are not along the
fibers.

2.1. Damage variables

We postulate that /f = /f(Yf), /m = /m(Ym), /d =
/d(Yd), where the functional dependence is determined
from the test data. It is assumed that the damage at a
material point does not increase while the material
there is unloading as indicated by a decrease in a suitable
scalar measure of stresses and/or strains. Thus, the evolu-
tion of a damage variable is treated in a way analogous
to that of incremental plastic strains for elastoplastic
materials.

The composite material used for case studies is AS4/
PEEK with Vf = 0.6. Materials of the fiber and the matrix
are assumed to be isotropic; values of their material param-
eters taken from Kyriakides et al. [31] and used in this work
are given in Table 1. The least squares fit to the test data of
Kyriakides et al. [31] gave the following expressions (see
[23] for details)
/f ¼ Afð1� eð�Bf Y f ÞÞ; ð7Þ

/m ¼ AmBm þ CmðY mÞDm

Bm þ ðY mÞDm

 !
; ð8Þ

/d ¼ AdBd þ CdðY dÞDd

Bd þ ðY dÞDd

 !
: ð9Þ
Values of constants Af, Bf, Am, Bm, Cm, Dm, Ad, Bd, Cd,
and Dd are listed in Table 2. Constants in Eq. (7) expressing
the damage variable due to fiber breakage have different
values for tensile and compressive loading along the fiber
direction. When fibers are not aligned with the loading
axis, we first analyze the problem in the global coordinate
system and then compute the normal strain along the fiber.
The sign of E11 dictates which values of Af, Bf and Y f

crit to
use in Eq. (7). We follow a similar procedure for selecting
appropriate values of Am, Bm, Cm, Dm and Y m

crit in Eq. (8)
and of Ad, Bd, Cd, Dd and Y d

crit in Eq. (9). In Table 2,
Y f

crit, Y m
crit and Y d

crit equal values of conjugate variables cor-
responding, respectively, to /f, /m and /d equaling 1.0, i.e.,
failure of the material point due to fiber breakage, matrix
cracking and fiber/matrix debonding.

http://composite.about.com/library/data/blc-as4apc2-1.htm
http://composite.about.com/library/data/blc-as4apc2-1.htm
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Even though /f, /m and /d depend only upon Yf, Ym

and Yf respectively, there is no restriction upon one dam-
age mode influencing the evolution of other damage
modes. Thus interaction among the four failure modes is
implicitly considered. Also, at a given instant, different fail-
ure modes may ensue simultaneously at one or more points
in the body.

2.2. Failure criterion

It is assumed that the failure due to fiber breakage,
matrix cracking and fiber/matrix debonding occurs when
Yf,Ym and Yd reach their critical values Y f

crit, Y m
crit and

Y d
crit respectively. Values of Y f

crit, Y m
crit and Y d

crit depend upon
materials of the fiber and the matrix, sizing of fibers, and
possibly on the fabrication process; these are to be deter-
mined from the experimental data. Values for the AS4/
PEEK composite found from the test data [31] and used
herein are listed in Table 2.

In order to simulate the delamination behavior, cracks
are allowed to propagate in an interface between adjoining
laminae. A perfect bond is assumed between the adjoining
laminae until a damage surface, defined by

Dd ¼
r33

½r33�

� �2

þ r13

½r13�

� �2

þ r23

½r23�

� �2

¼ 1 ðr33 P 0Þ;

ð10Þ
is reached. Here [x] denotes the ultimate value of the quan-
tity x, and r the Cauchy stress tensor. The failure envelope
(10) depends on the transverse normal and the transverse
shear stresses at the lamina’s interface. When stresses at a
point(s) on the interface satisfy Eq. (10), the adjoining lay-
ers are allowed to separate there. However, when r33 < 0,
the failure envelope (10) is modified to

Dd ¼
r13

½r13�

� �2

þ r23

½r23�

� �2

¼ 1 ðr33 < 0Þ: ð11Þ

In this case there is no separation of adjoining plies but
there is relative sliding between points on the two sides of
the contacting surface. We have listed in Table 2 values
of ultimate strengths [r33], [r13] and [r23]. We note that
the failure envelope corresponds to mode-II failure. For
r13 = r23 = 0, Eq. (10) represents mode-I failure. For the
mode-I failure, newly created surfaces are taken to be trac-
tion free, and points on them are checked for non-interpre-
tation during subsequent deformations.

2.3. Strain rate effect

We postulate the following functional dependence of
conjugate damage variables Ym and Yd upon _E22 and _c12

respectively:

Y m ¼
Bm �Am þ /m 1� smlog10

_E22
_E0

22

� �� �� �
Cm � /m 1� smlog10

_E22
_E0

22

� �� �
0B@

1CA
1=Dm

; ð12Þ
Y d ¼
Bd �Ad þ /d 1� sdlog10

_E12
_E0

12

� �� �� �
Cd � /d 1� sdlog10

_E12
_E0

12

� �� �
0B@

1CA
1=Dd

: ð13Þ

Here _E0
22 and _E0

12 represent, respectively, values of the ref-
erence transverse and the reference shear strain rates. Yf

is assumed to be independent of strain rate because the
experimental stress–strain curve for AS4/PEEK in longitu-
dinal tension and compression is insensitive to the axial
strain rate.

Using Vogler and Kyriakides’s [32] test data for trans-
verse compression and in-plane shear, the value of the
material parameters sm is determined by plotting

1� smlog10
_E22
_E0

22

� �� �
versus /m at Ym = 0.006 and setting

the reference transverse strain rate, _E0
22, equal to

1.6 · 10�5/s. It is found that the least squares fit to the data
points is a straight line passing through the origin, and its
slope, 0.0361, equals sm. A similar procedure gives the
value 0.0013 of the material constant sd; in this case the
data is plotted for Yd = 0.03 and the reference shear strain
rate, _E0

12, equals 1 · 10�5/s. The material constant,
Y i

crit ði ¼ f ;m; dÞ, was assumed to be strain rate indepen-
dent because failure strains reported in Vogler and Kyriak-
ides [32] do not exhibit any clear dependency upon the
strain rate. Similarly, for a lack of test data, the interfacial
strengths [r33], [r13] and [r23] of the composite are assumed
to be strain rate independent.

3. Mathematical model

3.1. Governing equations

Substitution from Eq. (3) into the balance of linear
momentum gives the following nonlinear field equation
for the determination of the displacement u.

qR€ui ¼ ½ðdia þ ui;aÞðCabcdEcdÞ�;b þ qRbi; ð14Þ

where we have assumed that the material in the reference
configuration is stress free. In the total Lagrangian descrip-
tion of motion, the independent variables are places X and
time t, and the dependent variables are x or u since know-
ing x, the present mass density can be computed from the
balance of mass. Let X be the region occupied by the body
in the reference configuration at time t = 0. A general form
of initial and boundary conditions is

xiðX; 0Þ ¼ X adia;

_xiðX; 0Þ ¼ m0
i ðXÞ;

xiðX; tÞ ¼ �xiðX; tÞ; X 2 oXX; t 2 ð0; eT Þ;
T iaðX; tÞN aðXÞ ¼ fiðX; tÞ; X 2 of X; t 2 ð0; eT Þ:

ð15Þ

Here oXX and ofX are parts of the boundary oX of X
where final positions (or equivalently, displacements) and
surface tractions are prescribed, respectively, as x and f,
and T is the first Piola–Kirchhoff stress tensor. Note that
oXX and ofX need not be disjoint since linearly independent
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components of displacements and surface tractions may be
specified at the same point on oX. However, for the sake of
simplicity, they are assumed to be disjoint in Eq. (15). Ini-
tial values of internal variables representing the fiber break-
age, fiber/matrix debonding, and matrix cracking are taken
to be zeros.

Because of the dependence of elastic constants upon the
damage variables, material properties change as the com-
posite is deformed.

3.2. Numerical solution

A weak form of Eq. (14) is derived by using the Galerkin
approximation; e.g. see Hughes [33]. It reduces nonlinear
partial differential Eq. (14) to nonlinear ordinary differen-
tial equations (ODEs), which are integrated with respect
to time t by using the subroutine LSODE (Livermore Sol-
ver for Ordinary Differential Equations) that adaptively
adjusts the time step size in order to compute the solution
within the prescribed accuracy.

A 3-D finite element (FE) code based on the afore-stated
problem formulation has been developed in Fortran.
Degrees of freedom at each node are three components
of displacement, and three components of velocity since
LSODE integrates first order ODEs. The code employs 8-
node brick elements. Various domain integrals involving
integration on an element Xe that appear in the weak for-
mulation of the problem are evaluated by using the
2 · 2 · 2 Gauss quadrature rule. During the time integra-
tion of the coupled ODEs, absolute and relative error
tolerances in LSODE were each set equal to 1 · 10�9,
and MF was assigned the value 10. The parameter MF
determines the integration method in LSODE, and
MF = 10 implies the use of the Adam–Moulton method.
After having found nodal displacements, values of
conjugate variables and damage parameters (or internal
variables) /f, /m and /d at each integration point are
determined, and are used to update elastic constants for
computing results at the next time step.

3.3. Simulation of material failure

When an internal variable /f, /m and/or /d equals 1.0
or the corresponding conjugate variable Yf, Ym and/or
Yd equals its critical value, then the material there is taken
to have failed due to fiber breakage, matrix cracking and/
or fiber/matrix debonding respectively. Even if the material
at all eight integration points within an element has failed,
that element is not removed from the analysis. Once all
elastic constants at each one of the eight integration points
in an element have been reduced to zero, all stress compo-
nents in that element will subsequently be zero, and for all
practical purposes that element will represent a hole or a
void.

In order to simulate either sliding or crack initiation and
propagation due to delamination, we assume that when the
stress state at a node N has reaches the failure envelope
represented by Eqs. (10) and (11), an additional node N*

coincident with N but not connected to it is added there.
The nodal connectivity of elements sharing the node N is
modified in the sense that one or more of these elements
is now connected to the newly added node N* rather than
the node N. However, no new element is created in this
process. We note that delamination may ensue simulta-
neously at several nodes. If subsequent deformations of
the body move nodes N and N* apart and create new sur-
faces, then these surfaces are taken to be traction free. The
non-interpenetration of nodes N and N* into the material is
avoided by connecting these two nodes with a 1-D two-
node spring element that is weak in tension but stiff in com-
pression. The constitutive relation for the stiff spring is
taken to be

F ¼ kzn;

where

k ¼

0; zn=z0 P 0;

E3l 1þ ðgE3 � 1Þ zn

z0

� �2
" #

; �1 6 zn=z0 < 0;

gE3l; zn=z0 < �1:

8>>>><>>>>: ð16Þ

Here F is the normal force between nodes N and N*, E3

Young’s modulus of the composite in the X3-direction, zn

the relative displacement between nodes N and N* normal
to the interface, l a characteristic length, and g a constant.

3.4. Verification of the code

As described in [23] the code was verified by using the
method of fictitious body forces. Also, computed results
for simple problems such as wave propagation in a bar
were compared with their analytical solutions. It ensures
that the code gives an accurate numerical solution of the
governing equations.

3.5. Validation of the mathematical model

Referring the reader to [23] for details, we note that val-
ues of material parameters for the AS4/PEEK composite
were derived from the test data of Kyriakides et al. [31].
Subsequently, computed results were compared with exper-
imental observations of different investigators and under
totally different loading configurations. The close agree-
ment between computed results and test findings validated
the mathematical model.

4. Brief description of the analysis technique

The 3-D FE code, with strain rate dependent damage
evolution equations, is used to numerically investigate the
damage induced in fiber reinforced composite marine struc-
tures due to underwater explosive shock loads. The effect, if
any, of temperature changes on structure’s response has
been neglected, and a mechanical problem has been ana-



Fig. 1. Schematic of a ship structure subjected to an underwater explosive
load.

Fig. 3. Discretization of the panel into a FE mesh of 20 · 20 · 4 elements.

Table 3
Values of constants in Eqs. (18) and (19) for various explosives [36]

Explosive type TNT HBX-1 PETN Nuclear

K1 52.12 53.51 56.21 1.06 · 104

A1 1.18 1.144 1.194 1.13
K2 0.0895 0.092 0.086 3.627
A2 �0.185 �0.247 �0.257 �0.22
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lyzed. Fig. 1 schematically depicts a ship structure sub-
jected to a blast load due to an explosive charge W (kg)
positioned at a stand-off distance, R (m), and an angle, h,
from the ship structure. A 10 mm thick, 220 mm · 220 mm
square, AS4/PEEK composite panel with the fiber volume
fraction, Vf, of 0.6 is considered for the analysis. These
dimensions were chosen to match with those of the test
specimen used by Turkmen and Mecitolu [34] who studied
the dynamic response of a laminated composite subjected
to air blast loads, and are of the same order of magnitude
as those employed in other tests; e.g., Comtois et al. [35]
used a 216 mm diameter, 2.1 mm thick circular plate,
Langdon et al. [36] a 220 mm · 220 mm · (1.6–2.62 mm)
plate, and Mouritz [1] a 270 mm · 70 mm · 6.1 mm rectan-
gular plate. Mechanical properties of the fiber and the
matrix are given in Table 1, and values of parameters in
damage relations (7)–(11) in Table 2.

Fig. 2 is a schematic sketch of the problem analyzed.
The panel is made of four plies, and is divided into 8-noded
brick elements with finer elements in the central portion.
All four edge surfaces of the specimen are fixed; i.e.,
u1 = u2 = u3 = 0 on surfaces X1 = 0, X1 = 220 mm,
X2 = 0, and X2 = 220 mm. A FE discretization of the
domain is exhibited in Fig. 3 with smaller elements near
the center of the panel and coarser elements elsewhere.
The load due to underwater explosion is simulated by
applying a time-dependent pressure field on the top surface
of the specimen; the pressure also varies with the distance,
r, from the centroid of the top surface of the panel. The
peak pressure is assumed to occur at r = 0, and decrease
Fig. 2. Schematic sketch of the problem analyzed.
exponentially with the passage of time as given by Cole
[37].

P ðtÞ ¼ P maxe�t=k: ð17Þ

In Eq. (17), Pmax is the peak pressure in the shock front,
t the time elapsed since the arrival of the shock wave, and k
the decay time constant. The peak pressure, Pmax, and the
decay constant, k, are given by

P max ¼ K1
W 1=3

R

� �A1

; ð18Þ

k ¼ K2W 1=3 W 1=3

R

� �A2

; ð19Þ

where constants K1, K2, A1 and A2 depend upon the explo-
sive charge; their values for four explosives, taken from
Liang and Tai [38], are listed in Table 3. Fig. 4 exhibits a
typical pressure–time variation at r = 0.

Turkmen and Mecitolu [34] experimentally analyzed the
dynamic response of a stiffened laminated composite plate
subjected to air-blast loading. They also studied the effect
Fig. 4. Variation at r = 0 of pressure with time for TNT explosive with
W = 64 kg and R = 10 m.
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the distance, R, between the charge and the target has on
the pressure distribution over the specimen. For large val-
ues of R, the shock wave is planar and the pressure distri-
bution on the specimen is nearly uniform. However, we
consider here the case of the pressure being non-uniform
over the specimen with its peak value occurring at the cen-
troid of the impacted surface. The polynomial function
obtained by using a least squares fit to the pressure distri-
bution over the 220 mm · 220 mm specimen found by
Turkmen and Mecitolu [34] is

P ðr; tÞ ¼ ð�0:0005r4 þ 0:01r3 � 0:0586r2 � 0:001r þ 1ÞP ðtÞ;
ð20Þ

where r is the distance, in cm, from the specimen center.
For a fixed value of time t, Fig. 5 shows the variation of
the pressure with r. We have tacitly assumed here that
the spatial variation of the pressure exerted on a flat plate
by a shock wave traveling in water and in air is the same.

The shock factor is a measure of the severity of the
attack, and relates the charge weight to the distance
between the point of ignition and the target plate; the
shock wave pressure varies with the charge weight, the
standoff distance, and the relative attack orientation. A
higher value of the shock factor implies that a larger por-
tion of energy of the underwater explosion is imparted to
the ship. For submarines, this factor is called the Hull
Shock Factor (HSF) [39,40], and is given by

HSF ¼ W 1=2

R

� �
: ð21Þ

For a surface ship, it is necessary to correct Eq. (21) for
the angle at which the shock wave strikes the target; the
corrected value, termed the Keel Shock Factor (KSF)
[39], is given by

KSF ¼ W 1=2

R

� �
1þ cosðhÞ

2

� �
: ð22Þ

In order to assess structure’s resistance to impact loads,
the following quantities are computed: work done due to
applied loads by Eq. (23); energies dissipated due to fiber
Fig. 5. For a fixed value of time t, pressure distribution over the
specimen’s top surface.
breakage, matrix cracking, fiber/matrix debonding, and
delamination via Eqs. (24)–(26) and (29) respectively; work
done to deform the body via Eq. (27), and the kinetic
energy of the body at the terminal value of the time t via
Eq. (28).

Work done by external forces ¼
Z t

0

X
n

F n
3

dun
3

dt
dt: ð23Þ

The summation is Eq. (23) is over all nodes on the top
surface of the laminate where pressure is applied.

Energy dissipated due to fiber breakage

¼
Z t

0

Z
V

Y f d/f

dt
dV dt ¼

Z /f

0

Z
V

Y fd/f dV ; ð24Þ

Energy dissipated due to matrix cracking

¼
Z t

0

Z
V

Y m d/m

dt
dV dt ¼

Z /m

0

Z
V

Y md/m dV ; ð25Þ

Energy dissipated due to fiber=matrix debonding

¼
Z t

0

Z
V

Y d d/d

dt
dV dt ¼

Z /d

0

Z
V

Y d d/d dV ; ð26Þ

Work done to deform the body

¼
Z t

0

Z
V

Sab
dEab

dt
dV dt: ð27Þ

Kinetic energy ¼
Z

V

q
2
ðv2

x þ v2
y þ v2

z ÞdV ; ð28Þ

Energy dissipated in delamination

¼Work done by external forces

�Work done to deform the body�Kinetic energy

�Energy dissipated due to other three failure modes:

ð29Þ

Eq. (29) follows from the balance of energy.

5. Results and discussion

The AS4/PEEK composites studied here failed at an
effective strain between 1% and 2%. For such small defor-
mations, all three stress tensors, namely the first Piola–Kir-
chhoff, the second Piola–Kirchhoff and the Cauchy, are
essentially equal to each other. Results presented below
in terms of components of the second Piola–Kirchhoff
stress tensor can also be interpreted in terms of the other
two stress tensors.

5.1. Effect of the finite element mesh

For one loading, the following four meshes were consid-
ered: 20 · 20 · 4 (1600 elements, 2205 nodes), 20 · 20 · 8
(3200 elements, 3969 nodes), 40 · 40 · 4 (6400 elements,
8405 nodes), and 40 · 40 · 8 (12,800 elements, 15,129
nodes), with each mesh being fine in the central portion
of the specimen; e.g. see Fig. 3. These are identified as
meshes 1, 2, 3 and 4 in Fig. 6. For W = 64 kg of TNT



Fig. 6. For the four meshes, time histories of the vertical displacement of
the specimen centroid (X1 = 110 mm, X2 = 110 mm, and X3 = 5 mm).

Fig. 7. Time histories of vertical displacements of five different points of
the mid-surface X3 = 5 mm with fibers oriented along the X1-axis.

Fig. 8. Time histories of the vertical displacements of the centroids of
planes X3 = 0 (bottom), X3 = 5 mm (center), and X3 = 10 mm (top) with
fibers oriented along the X1-axis.
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explosive, and R = 10 m, Pmax was calculated from Eq.
(18) and its spatial distribution over the top surface from
Eq. (20). Computations were stopped at 230 ls, since then
each one of the three damage variables had reached 1.0 at
the centroid of the laminate. For the four meshes, Fig. 6
shows time histories of the vertical displacement of the
specimen centroid located at X1 = 110 mm, X2 = 110 mm,
and X3 = 5 mm. It is clear that the maximum difference
in the centroidal displacement computed with any two
meshes is about 4.8%. At 152 ls, the maximum of the ten-
sile principal stresses at all nodes equaled 1.39331, 1.32323,
1.23361, and 1.24554 GPa, for meshes 1, 2, 3, and 4, respec-
tively, while that in compression equaled �0.885363,
�0.893707, �0.916503, �1.02709 GPa. The maximum per-
centage difference is about 11% for the tensile principal
stresses, and 13.7% for the compressive ones. The work
done to deform the body, calculated using Eq. (27) was
found to be 378.13, 408.19, 397.91 and 405.15 J, respec-
tively, for meshes 1, 2, 3, and 4. The maximum difference
in these four values is about 7%. Thus, we will use the
20 · 20 · 4 elements mesh for the remaining analyses in
order to save on computational resources. It will help iden-
tify quickly variables to which the impact damage is most
sensitive. If desired, subsequent computations can be per-
formed with a finer mesh to obtain improved results.
5.2. Fiber orientation

In order to examine the effect of the fiber orientation on
the impact resistance of the composite structure all four
plies were assumed to have the same fiber orientation,
and seven different fiber orientations, h, namely, h = 0�,
10�, 30�, 45�, 60�, 75� and 90�, were considered. We first
present results for h = 0�. Fig. 7 exhibits time histories of
the vertical displacement of five points of the mid-surface
X3 = 5 mm; locations of these points are depicted in the
Fig. inset. As expected, the maximum deflection occurs at
specimen’s centroid. Note that the applied pressure has
the highest value at the centroid of the top surface. Vertical
displacements at locations 2 and 3 are nearly the same, and
those at points 1 and 4 are essentially equal to each other,
but deflections at points 2 and 3 are higher than those at
points 1 and 4; this difference is attributed to fibers being
oriented along the X1-axis. Although the body is assumed
to be initially homogeneous, the difference in the evolution
of damage along the X1 and the X2 directions, and the
dependence of material properties upon the damage
evolved annihilates the uniformity of material properties.
It is evident from time histories of vertical displacements
at centroids of planes X3 = 0 (bottom surface), X3 =
5 mm (mid-surface), and X3 = 10 mm (top surface) exhib-
ited in Fig. 8 that the vertical displacements at these three
points are very close to each other primarily because of the
high speed of elastic waves in the transverse direction and
very small laminate thickness.

5.2.1. Fiber/matrix debonding

Fig. 9 depicts evolution of the fiber/matrix debonding at
the same five points where time histories of evolution of the
vertical displacement were plotted in Fig. 7. The two plots



Fig. 11. Time histories of evolution of the debonding damage variable at
centroids of planes X3 = 0 (bottom), X3 = 5 mm (center), and X3 = 10 mm
(top) with fibers oriented along the X1-axis.

Fig. 9. Time histories of evolution of the debonding damage variable at
the five points on specimen’s mid-surface with fibers oriented along the
X1-axis.
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are qualitatively similar in the sense that, at any time, dam-
ages evolved at points 1 and 4 are nearly the same, and
those at points 2 and 3 are close to each other. Further-
more, the damage begins to evolve sooner at points 2
and 3 than at points 1 and 4, and its rate of growth is also
higher at points 2 and 3 than that at points 2 and 4. This is
reasonable because debonding between fibers and the
matrix occurs along fibers rather than in a direction per-
pendicular to fibers. The debonding damage variable at
the specimen centroid does not equal the average of those
at points 1 through 4.

One can conclude from fringe plots of the debonding
damage variable at four different times, shown in Fig. 10,
that the debonding starts from edges perpendicular to the
fibers and propagates, along the fibers, towards the center.

Fig. 11 represents time histories of evolution of the deb-
onding damage variable at centroids of the top, the middle,
and the bottom surfaces of the laminate. It is clear that at
any time t, values of the debonding damage variable at these
three points are nearly the same implying that debonding
propagates in the thickness direction instantaneously.

At t = 160 ls, Fig. 12 exhibits fringe plots of the deb-
onding damage variable, the Fig. on the left depicts the
Fig. 10. Fringe plots of the debonding damage variable at four d
damage distribution on the top surface, and that on the
right the damage distribution on the bottom surface. It is
evident that damage distributions on the top and the bot-
tom surfaces are nearly identical to each other because of
the small thickness of the laminate. It does not take much
time for the loading wave to propagate through the lami-
nate thickness. Fringe plots of the in-plane shear stress
S12 are evinced in Fig. 13, and those of the transverse shear
stress S13 in Fig. 14. The maximum magnitude of S12

occurs at centroids of regions in the four quadrants, the
shear stress is positive at points in the first and the third
quadrants, and negative at points in the second and the
fourth quadrants. The in-plane shear stress is nearly zero
in the central portion of the specimen. We conclude from
fringe plots of Fig. 14 that the maximum magnitude of
the transverse shear stress S13 occurs at points on the edges
X1 = 0 and X1 = 220 mm where delamination initiated.
The magnitude of the shear stress is nearly symmetrical
about the mid-surface with positive values occurring at
points above it, and negative values at points below it.
The maximum magnitudes of the in-plane and the trans-
verse shear stresses are nearly equal to each other even
though they occur at different points.
ifferent times; PD stands for the debonding damage variable.



Fig. 12. Fringe plots of the debonding damage variable in the specimen at t = 160 ls; left: top surface; right: bottom surface.

Fig. 13. Fringe plots of the shear stress (GPa), S12, in the specimen at t = 160 ls; left: top surface; right: bottom surface.

Fig. 14. Fringe plots of the shear stress (GPa), S13, in the specimen at t = 160 ls; left: top surface; bottom: right surface.
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5.2.2. Matrix cracking

Fringe plots of the matrix cracking damage variable, at
four times, given in Fig. 15 show that the matrix cracking
begins at about 108 ls at the centroid of the bottom sur-
face; it propagates faster along fibers (i.e., X1-axis) than
in the transverse direction (i.e., X2-axis). This agrees qual-
itatively with Luo et al.’s [41] results who observed, in their
experiments, that matrix cracks propagated along fibers in
the bottom-most layer.

Time histories of evolution of the matrix cracking dam-
age variable at five points on specimen’s mid-surface,
exhibited in Fig. 16, reveal that the matrix cracking begins
rapidly at specimen’s centroid at about 125 ls, and the
matrix at all five points considered has cracked when
t = 170 ls. It instantaneously increases from 0.3 to 1.0 indi-
cating that the matrix cracks suddenly rather than gradu-
ally; it is a characteristic of the damage evolution Eq. (8).
Fringe plots of Fig. 15 signify that the cracked region in
the bottom surface is not circular even though the loaded
region on the top surface is circular.

Fringe plots of Fig. 17 reveal that matrix cracking on the
top surface ensues from points on clamped edges that are
also on the planes X2 = 0, 200 mm, and propagates
inwards. Furthermore, at least at time t = 160 ls, the shape
and the size of the cracked matrix region in the top surface
is quite different from that in the bottom surface; this



Fig. 15. Fringe plots of the matrix cracking damage variable at four times; PM stands for the matrix cracking damage variable.

Fig. 16. Time history of evolution of the matrix cracking damage variable
at five points on specimen’s mid-surface with fibers oriented along the
X1-axis.
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region is centered about the X2-axis on the top surface but
around the centroid in the bottom surface. Fig. 18 exhibits
at time t = 100 ls fringe plots of the normal stress S22; the
stress distributions around the centroids of the top and the
bottom surfaces are nearly identical except that it is com-
pressive at points on the top surface, and tensile at points
on the bottom surface. The magnitudes of the normal stress
at corresponding points on the top and the bottom surfaces
Fig. 17. Fringe plots of the matrix cracking damage variable in the
are nearly the same. On the top surface, large positive val-
ues of S22 also occur at points near the edges that are close
to the X2-axis. Time histories of evolution of the matrix
cracking damage variable at centroids of the top, the mid-
dle, and the bottom surfaces, plotted in Fig. 19, imply that
the matrix cracks simultaneously and instantaneously at
the centroids of the bottom and the middle surfaces but
much later at the centroid of the top surface because of
S22 being tensile at points on the bottom surface and com-
pressive at points on the top surface. Our results agree
qualitatively with Mouritz’s [3] experimental observations
of cracking of the polymer matrix on the back surface of
the laminate; Mouritz [3] attributed it to high tensile bend-
ing stresses developed there. One reason for matrix crack-
ing to initiate first at the bottom surface is that a
compressive wave is reflected from there as a tensile wave
which can induce more damage. Also, the spalling failure
mode could ensue at points on the bottom surface, but it
is not considered here.
5.2.3. Fiber breakage
Figs. 20 and 21 depict, respectively, fringe plots of the

fiber breakage damage variable at four times, and time his-
tories of evolution of the fiber breakage damage variable at
five points on specimen’s mid-surface. They reveal that the
specimen at t = 160 ls; left: top surface; right: bottom surface.



Fig. 18. Fringe plots of the normal stress (GPa), S22, in the specimen at t = 100 ls; left: top surface; right: bottom surface.

Fig. 19. Time histories of the matrix cracking damage variable at
centroids of planes X3 = 0 (bottom), X3 = 5 mm (middle), and X3 =
10 mm (top) with fibers oriented along the X1-axis.

Fig. 21. Time histories, at five points on the middle surface, of evolution
of the fiber breakage damage variable with fibers oriented along the
X1-axis.
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fiber breakage is concentrated at points near the specimen’s
center that are along the X2-axis. Furthermore, the fiber
breakage variable, like the matrix cracking variable, also
increases suddenly from essentially 0.0 to 1.0. Time histo-
ries of evolution of the fiber breakage damage variable at
centroids of the top, the middle, and the bottom surfaces
are given in Fig. 24; these suggest that the fiber breakage
damage variable at the centroid of the top surface first
Fig. 20. Fringe plots of the fiber breakage damage variable, on the bottom
variable.
develops gradually, and after it has reached the value 0.2
it grows very rapidly to 1.0. We emphasize that the quick
growth of damage variables describing the fiber breakage
and the matrix cracking depends upon the damage evolu-
tion Eqs. (7)–(9) and values of parameters determined from
the experimental data. Other damage evolution equations
will give results quantitatively different from but most
likely qualitatively similar to those presented here. Fringe
surface, at four different times; PF stands for the fiber breakage damage



Fig. 22. Fringe plots of the fiber breakage damage variable at time = 160 ls; left: top surface; right: bottom surface.

Fig. 23. Fringe plots of the longitudinal stress (GPa), S11, at t = 100 ls; left: top surface; right: bottom surface.
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plots, exhibited in Fig. 22, imply that the fiber breakage
damage variable has high values at points of the top sur-
face that are near the center, and at points near the edges
that are also on the X1-axis; however, the maximum value
at any of these points at t = 160 ls is only about 0.15.

We conclude from fringe plots of the longitudinal (or
the axial) stress, S11, exhibited in Fig. 23, that equal and
opposite values of S11 occur at corresponding points of
the top and the bottom surfaces. The maximum magnitude
of the longitudinal stress occurs at points near centroids of
these surfaces, and also at points on the edge surfaces that
are close to the X1-axis. Whereas the axial stress is com-
pressive at points near the centroid of the top surface, it
is tensile at points close to the edge surfaces.
Fig. 24. Time histories of the fiber breakage damage variable at centroids
of planes X3 = 0 (bottom), X3 = 5 mm (middle), and X3 = 10 mm (top)
with fibers oriented along the X1-axis.
5.2.4. Delamination between adjoining layers

For the 0� plies and time t = 220 ls, Figs. 25–27 show,
respectively, fringe plots of the fiber/matrix debonding,
fiber breakage, and the matrix cracking damage variables
on planes X1 = 110 mm, and X2 = 110 mm; delaminations
between adjoining layers are depicted as solid lines. Since
lines indicating the delamination do not pass continuously
through the entire laminate, the delamination initiates from
more than one point, not necessarily instantaneously, on
an interface between two adjoining layers. At t = 220 ls,
one or more of the three damage variables equal nearly 1
at every point of these two cross-sections.
Fig. 28 shows the delaminated areas in all layers as seen
from the top as if the composite were transparent. The area
was approximated as rectangles, and its magnitude was cal-
culated to be 6977 mm2 and 4550 mm2 for fiber orienta-
tions of 0� and 45� respectively. This method of
calculating the delaminated area excludes overlapping del-
aminated areas, and underestimates the total delaminated
area. Whereas one can ascertain in the numerical work
delamination among adjoining layers, it is not clear how
to do so experimentally.



Fig. 25. Delamination/sliding between adjoining plies, and fringe plots of the fiber/matrix debonding damage variable on cross-sections X2 = 110 mm (left
figure), and X1 = 110 mm (right figure) at t = 220 ls.

Fig. 26. Delamination/sliding between adjoining plies, and fringe plots of the fiber breakage damage variable on cross-sections X2 = 110 mm (left figure),
and X1 = 110 mm (right figure) at t = 220 ls.

Fig. 27. Delamination/sliding between adjoining plies, and fringe plots of the matrix cracking damage variable on cross-sections X2 = 110 mm (left figure),
and X1 = 110 mm (right figure) at t = 220 ls.
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5.2.5. Energy dissipation

For each one of the four failure modes, Fig. 29 displays
the total energy dissipated as a function of the fiber orien-
tation angle. For all fiber orientation angles, the energy dis-
sipated due to matrix cracking is miniscule as compared to
that in any of the other three damage mechanisms; this is
mainly due to low values of the elastic moduli of the
matrix. With an increase in the fiber orientation angle from
0� to 45�, the energy dissipated due to delamination
increases but those due to fiber/matrix debonding and
matrix cracking decrease. An examination of the delamina-
tion initiation time revealed that it ensued earliest at 128 ls
for fiber orientation of 0� or 90�, and latest at 140 ls for
fiber orientation of 45�.

5.2.6. Effect of fiber orientation angle
Fig. 30 exhibits, for different fiber orientations, at time

t = 220 ls, the total work done by external forces, the



Fig. 28. Delaminated area as seen from the top surface of the composite; Left figure has fibers oriented at 0�, and the right figure has fibers oriented at 45�.

Fig. 29. Energy dissipated in different failure modes versus the fiber
orientation angle.

Fig. 30. Total work done, strain energy, and kinetic energy versus the
fiber orientation angle.

Fig. 31. For different fiber orientation angles, percentage of the work
done by external forces dissipated in all failure modes.
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strain energy of the deformed body, and the kinetic energy
of the body calculated from Eqs. (23), (27) and (28) respec-
tively. The balance of energy requires that the total work
done by external forces equals the sum of the energy
required to deform the body, strain energy of the body,
kinetic energy of the body, and the energy dissipated in
all failure mechanisms. For different fiber orientations,
the percentage of work done by external forces dissipated
in all failure modes is shown in the bar chart of Fig. 31;
a high value of this ratio signifies that more of the total
work done by external forces is dissipated in all of the fail-
ure modes, and the composite is more effective in resisting
explosive loads. This ratio can be used to define the Figure

of Merit of the composite. Thus clamped uni-directional
AS4/PEEK composites with fiber orientations between
30� and 60� are equally effective in resisting explosive loads.

We note that the total work done (cf. Fig. 30) by exter-
nal forces is virtually independent of the fiber orientation
angle. With an increase in the fiber orientation angle from
0� to 45�, the energy required to deform the body decreases
and the kinetic energy increases monotonically. The frac-
tion of the total work done by external forces dissipated
due to various failure mechanisms has the maximum value
of nearly 22% for fiber orientations of 30� and 60�; thus
plies with clamped edges and fiber orientations of 30� to
60� are good choices for optimizing the energy dissipation
due to all failure modes. For these fiber orientations in the
AS4/PEEK laminated composite clamped at all edges sub-
jected to a pressure load on the top surface, the energy dis-



Fig. 34. Time histories of evolution of the matrix cracking damage
variable at specimen’s centroid for different fiber orientation angles.
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sipated due to delamination exceeds that in each of the
other three failure modes considered.

Another quantity of interest for dynamically loaded
structural composites is the maximum lateral deflection.
For seven fiber orientations considered in this work,
Fig. 32 shows time histories of the vertical displacement
of the specimen centroid. At t = 220 ls, the centroidal
deflection is maximum for the 30� plies, and minimum
for the 0� or the 90� laminates.

The preceding discussion of the damage evolution indi-
cates that critical points to examine are centroids of the top
and the bottom surfaces, and centers of the edges of the top
and the bottom surfaces. In order to examine which failure
mode initiates first in plies of different fiber orientations, we
have plotted in Figs. 33–35 time histories of evolution, at
specimen’s centroid, of the three damage variables for dif-
ferent fiber orientation angles mentioned above. It is clear
that the time of initiation of the fiber/matrix debonding is
affected most by the fiber orientation, and that of fiber
breakage least by the fiber orientation angle. The time of
initiation and complete failure due to fiber breakage at
Fig. 32. For five fiber orientations, time histories of the deflection of the
specimen centroid.

Fig. 33. Time histories of evolution of the fiber breakage damage variable
at specimen’s centroid for different fiber orientation angles.

Fig. 35. Time histories of evolution of the fiber/matrix debonding damage
variable at specimen’s centroid for different fiber orientation angles.
specimen’s centroid is virtually independent of the fiber ori-
entation angle.

At time = 188 ls, Fig. 36 illustrates distributions of fiber
breakage, matrix cracking and debonding variables in lam-
inates with fiber orientation angles of 30�, 45� and 75�. The
fiber breakage damage variable is spread perpendicular to
the fibers, while the matrix cracking and debonding dam-
age variables along the fibers. Thus the direction of propa-
gation of the damage variables depends upon the fiber
orientation angle.
5.2.7. Remarks
From a thorough examination of results computed for

the present problem, one can draw the following conclu-
sions regarding the order and the location of initiation of
different failure modes in a clamped AS4/PEEK laminated
composite subjected to blast loads on the top surface: (i)
fiber/matrix debonding at edges of the bottom and the
top surfaces that are perpendicular to fibers, (ii) matrix
cracking at the centroid of the bottom surface, and at edges
of the top surface that are perpendicular to fibers, (iii) fiber
breakage at edges of the top surface that are parallel to



Fig. 36. At t = 188 ls, distribution of fiber breakage, matrix cracking and debonding variables in 30�, 45� and 75� laminates.
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fibers, and then at the centroid of the bottom surface, (iv)
debonding at centroids of the bottom and the top surfaces,
(v) fiber breakage at the centroid of the top surface, (vi)
fiber breakage at sides of the bottom surface, and (vii)
matrix cracking at the centroid of the top surface. This
information can be exploited in the design of laminates
for attaining a designated functional objective. Results
for other parameter variations are given in [42].

6. Limitations of the model

The three internal variables used here to model matrix
cracking, fiber breakage, and fiber/matrix debonding do
not account for fiber pull out, fiber kinking, fiber buckling,,
and matrix crushing. Furthermore, they homogenize the
effect of damage induced locally, enable one to compute
energies dissipated in different failure modes, and allow
for interaction among various failure modes. However,
one can not compute the length of cracks, and lengths of
fiber/matrix debonded zones.

In the analyses of various problems, the loading wave is
taken to be plane which is the case for a large value of the
stand-off distance. Also, the spatial variation of the pres-
sure may not match well with what has been assumed here.
Values of material parameters given in Table 2 are for
the AS4/PEEK composite, and all of the results have been
computed for it. One should follow the procedure outlined
in [23] to derive material parameters for other unidirec-
tional fiber reinforced composites and then study their bal-
listic response. The mathematical model and results
presented herein are not valid for woven and/or stitched
composites, and for composites reinforced with randomly
distributed short fibers.

7. Conclusions

We have developed a mathematical model for analyzing
transient deformations of a composite subjected to shock
loads produced by an underwater explosion, and a modu-
lar computer code, in Fortran, to find numerically an
approximate solution of the pertinent initial-boundary-
value problem. The problem formulation includes evolu-
tion of damage due to fiber breakage, fiber/matrix debond-
ing, matrix cracking, and delamination. Energies dissipated
in these failure modes are computed, and the effect on them
of various parameters examined. The summary of results
given below includes results presented in Ref. [42] but not
included here.



R.C. Batra, N.M. Hassan / Composites: Part B 38 (2007) 448–468 467
It is found that approximately 20% of the total work
done by external forces is dissipated in the four failure
modes. Both for the clamped 0� and the 45� laminated
composites, the energy dissipated due to delamination for
clamped edges is nearly twice of that for simply supported
edges. About 43% of the energy input into the structure is
used to deform it, and the remaining 42% is converted into
the kinetic energy. For simply supported laminates, these
proportions strongly depend upon the fiber orientation
angle.

The fiber orientation influences when and where each
failure mode initiates and its direction of propagation.
Debonding between fibers and the matrix occurs along
the fibers rather than in a direction perpendicular to the
fibers. For clamped edges, the debonding damage variable
starts from the edges perpendicular to the fibers and prop-
agates, along the fibers, towards the center; it propagates in
the thickness direction instantaneously most likely due to
thin laminates studied here in. Matrix cracking damage
variable initiates first at the center of the back surface,
where there are high tensile stresses developed, and propa-
gates faster along the fibers than in the transverse direction.
Fiber breakage is concentrated at points near the speci-
men’s centroid that are along the X2-axis. For all fiber ori-
entations, the energy dissipated due to matrix cracking is
miniscule as compared to that in any of the other three
damage modes. The fraction of the total work done by
external forces dissipated due to various failure mecha-
nisms has the maximum value of nearly 22% for fiber
orientations of 30� and 60�, of which �10% is due to
delamination. The stacking sequence also strongly influ-
ences energies dissipated in different failure modes.

The target thickness plays a role in determining which
failure mode is dominant. The fraction of energy dissipated
due to delamination failure mode decreases exponentially
with an increase in the target thickness, and has the maxi-
mum value for the thinnest target.

Varying constituents’ properties affects the initiation
time of the damage modes. Increasing fiber’s Young’s mod-
ulus results in slightly different rates of evolution of the
fiber/matrix debonding damage variable, and delays the
initiation of the matrix cracking damage. Decreasing
Young’s modulus delays the initiation of the matrix crack-
ing damage variable. Increasing fiber’s shear modulus
delays the initiation of the fiber breakage variable and
enhances the initiation of the fiber/matrix debonding dam-
age variable. Increasing the matrix shear modulus reduces
noticeably specimen’s centroidal deflection, enhances both
the time of initiation and the rate of growth of the fiber/
matrix debonding damage variable, and delays the initia-
tion of the damage due to fiber breakage.

An increase in the fiber volume fraction decreases affi-
nely the total work done by external forces, decreases par-
abolically the kinetic energy, and has virtually no effect on
the energy required to deform the body.

For deformations caused by the explosion of a nuclear
device, the composite fails very quickly due to complete
delamination coupled with early initiation and rapid
growth of the fiber/matrix debonding and matrix cracking,
and very little centroidal deflection and fiber breakage.

Laminate’s deformations for small values of the stand
off distance are similar to those induced by a nuclear
explosion.
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