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Abstract

The meshless local Petrov–Galerkin (MLPG) method with radial basis functions (RBFs), and the higher order shear and normal
deformable plate theory (HOSNDPT) are used to analyze static infinitesimal deformations of thick laminated composite elastic plates
under different boundary conditions. Two types of RBFs, namely, multiquadrics (MQ) and thin plate splines (TPS), are employed
for constructing trial functions while a fourth order spline function is used as the test function. Computed results for different lamination
schemes are found to match well with those obtained by other researchers. A benefit of using RBFs over those generated by the moving
least squares approximation is that no special treatment is needed to impose essential boundary conditions, which substantially reduces
the computational cost. Furthermore, the MLPG method does not require nodal connectivity which reduces the time required to prepare
the input data.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite structures are widely used in the aerospace,
automotive and marine industries, and a number of plate
theories have been developed to analyze deformations of
composite plates. The classical Kirchhoff thin plate theory
(CLT), which ignores transverse shear effects, provides rea-
sonable results for thin plates. However, it may not give
accurate results for moderately thick plates. An improve-
ment on the CLT is the first-order shear deformation the-
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ory (FSDT) such as the Reissner–Mindlin theory which
accounts for transverse shear effects, but needs a shear cor-
rection factor. Second- and higher-order shear deformation
plate theories [1–4] use higher-order polynomials in the
expansion of displacement components through the plate
thickness and do not require shear correction factors.
Among them, the higher-order shear and normal deform-
able plate theory (HONSDPT) [3,5] accounts for both the
transverse normal and the transverse shear deformations
and uses Legendre polynomials as basis functions. Salient
features of the theory include the satisfaction of natural
boundary conditions prescribed on the top and the bottom
surfaces of the plate, and computations of the transverse
normal and the transverse shear stresses from the plate
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Fig. 1. A schematic sketch of the problem studied.
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equations rather than by integration through the thickness
of the balance of linear momentum. The HOSNDPT can
accurately predict through-the-thickness modes of vibra-
tion, which correspond to null lateral displacements or
deflections. The plate theory is called compatible if stresses
are derived from the assumed displacement field and
Hooke’s Law, and mixed if stresses and displacements
are expanded independently through the plate thickness.
The mixed theory was originally developed for piezoelectric
plates and has been used for studying free vibrations, and
the propagation of plane waves in a thick anisotropic plate
[5,6]. The compatible theory has been used for analyzing
static and dynamic deformations of isotropic homogeneous
[7] and functionally graded (FG) thick plates [8], and tran-
sient thermomechanical deformations of a FG plate [9].
Here we extend the HONSDPT to analyze anisotropic
thick composite laminate plates.

Meshless methods have recently attracted increasing
attention in the computational community for finding
approximate solutions of initial-boundary-value and
boundary-value problems governed by partial differential
equations. These include the element-free Galerkin (EFG)
method [10], the reproducing kernel particle method
(RKPM) [11], hp-clouds [12], and the Partition of Unity
method (PUM) [13] which use a background mesh to
numerically evaluate integrals appearing in the global weak
formulation of the problem. The meshless local Petrov–
Galerkin (MLPG) method [14–16] is based on a local weak
formulation of the problem, and integrals appearing in it
are evaluated without using a background mesh. Any
non-element based interpolation scheme such as the mov-
ing least squares (MLS), the PUM, the smoothed particle
hydrodynamics [17], or the modified smoothed particle
hydrodynamics [18] can be used to generate basis functions
for the trial solution and, if desired, also for the test func-
tion. Different test functions in the MLPG method result in
schemes labeled as MLPG1 to MLPG6 in [16]. The flexibil-
ity in choosing the size and the shape of the local sub-
domain leads to convenient formulations for different
problems [14–16,19,20]. The MLS basis functions [7,8] lack
the Kronecker delta property. A special technique such as
the penalty parameter method or the method of Lagrange
multipliers or a suitable modification of the system of
simultaneous algebraic equations is required to satisfy
essential boundary conditions, which considerably
increases the computational cost. Recently radial basis
functions (RBFs) [21] have been used to solve partial differ-
ential equations [22–24] and also as basis functions in
meshless methods [25–29]. The resulting shape functions
possess the Kronecker delta property which allows the
essential boundary conditions to be imposed easily as in
the finite element method. Furthermore, when RBFs are
used in a local (compactly supported) rather than in a glo-
bal interpolation scheme, such as in the EFG [27] and the
MLPG methods [28], the dense system matrices associated
with the global interpolation scheme are avoided. The
extended multiquadrics, gðrÞ ¼ ðr2 þ c2Þb, and thin plate
splines (TPS) have been successfully employed in the
MLPG method [24] for the solution of two-dimensional
(2D) stress analysis problems where the TPS was modified
to g(r) = ra log r with a taken as a shape parameter. Here r

is the distance between two points, and c and b are con-
stants. Several developments have taken place in the anal-
ysis of composite plates using meshless methods. Among
these, Belinha and Dinis [30] and Peng et al. [31] have com-
bined the EFG method and Wang et al. [32] the RKPM
with the FSDT to analyze deformations of composite lam-
inates. Ferreira et al. have successfully used global RBFs in
the analysis of composite plates using the first- [33] and the
third- [34] order shear deformation theories as well as a
trigonometric layerwise deformation theory [35]. However,
the HOSNDPT theory with meshless methods has not been
used to analyze composite laminates. The HOSNDPT in
conjunction with the MLPG method employing the MLS
and the radial basis functions has been used to analyze var-
ious problems of thick isotropic homogeneous and FG
plates [7,8,36–41].

Here the MLPG method using RBFs is combined with
the compatible HOSNDPT to analyze static deformations
of thick composite laminates. Two types of RBFs, MQ
and TPS, are employed as trial functions while a fourth-
order spline function is used as the test function. Details
of their implementation are given. Numerical examples
are presented to demonstrate the convergence and the effi-
ciency of the developed method. Computed results for dif-
ferent orders of the HOSNDPT are compared with
published results from other plate theories, 3D analytical
solutions as well as results from the analysis of the 3D
problem with the finite element method (FEM) using the
commercial code ABAQUS, and excellent agreements are
achieved.
2. Review of the compatible higher-order shear and normal

deformable plate theory (HOSNDPT)

A rectangular Cartesian coordinate system, shown in
Fig. 1, is used to describe infinitesimal deformations of a
rectangular plate occupying the region X defined by
0 6 x 6 a, 0 6 y 6 b, and �t/2 6 z 6 t/2. The mid-surface,
z = 0, of the plate is denoted by S, and displacements of a
point along the x-, the y-, and the z-axes by u, v, and w,
respectively. Displacements are expanded in the thickness
(z) direction in terms of the orthonormal Legendre polyno-
mials satisfying
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Z t=2
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where dij is the Kronecker delta, and Li(z) is the ith Legen-
dre polynomial. Orthonormal Legendre polynomials are
equivalent to the basis 1, z, z2, . . ., and have the advantage
of reducing the algebraic work. Expressions for the first
seven orthonormal Legendre polynomials are:

L0ðzÞ ¼
1ffiffi

t
p ; L1ðzÞ ¼ 2

ffiffiffi
3

t

r
z
t
; ð2aÞ

L2ðzÞ ¼
1

2

ffiffiffi
5

t

r
12

z
t

� �2

� 1

� �
; ð2bÞ

L3ðzÞ ¼
ffiffiffi
7

t

r
�3

z
t

� �
þ 20

z
t

� �3
� �

; ð2cÞ

L4ðzÞ ¼
3ffiffi

t
p 3

8
� 15

z
t

� �2

þ 70
z
t

� �4
� �

; ð2dÞ

L5ðzÞ ¼
ffiffiffiffiffi
11

t

r
15

4

z
t

� �
� 70

z
t

� �3

þ 252
z
t

� �5
� �

; ð2eÞ

L6ðzÞ ¼
ffiffiffiffiffi
13

t

r
� 5

16
þ 105

4

z
t

� �2

� 315
z
t

� �4

þ 924
z
t

� �6
� �

; ð2fÞ

L7ðzÞ ¼
ffiffiffiffiffi
15

t

r
�35

8

z
t

� �
þ 315

2

z
t

� �3

� 1386
z
t

� �5

þ 3432
z
t

� �7
� �

:

ð2gÞ

We set

u ¼
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

8><
>:

9>=
>; ¼

XK

i¼0

uiðx; yÞ
viðx; yÞ
wiðx; yÞ

8><
>:

9>=
>;LiðzÞ; ð3Þ

where K is the order of the plate theory; for K P 2, the
plate theory is called higher order. It should be noted that
ui, vi, wi (i = 0, 1, 2, . . ., K) have units of (length)3/2 since the
dimension of an orthonormal Legendre polynomial is 1/
(length)1/2. Recalling that L0i(z) = dLi/dz is a polynomial
of degree (i � 1) in z, we write
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where dij are constants. For K = 7,
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Note that elements in the first row and the last column of
the (K + 1) · (K + 1) matrix dij are zeros. For infinitesimal
deformations, the strains tensor e is given by
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where for i = 0, 1, 2, . . ., K, gi is a 6D vector with compo-
nents

gið1Þ ¼ oui=ox; gið2Þ ¼ ovi=oy; gið3Þ ¼
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The terms involving dij couple Kth order displacements
with those of lower order. Using Hooke’s law, stresses at
a material point x = (x,y,z) are given by

r ¼ f rxx ryy rzz ryz rzx rxy gT ¼ De ð8Þ

where D is the matrix of elastic constants. Substitution
from Eqs. (6) and (7) into Eq. (8) gives stresses at a point
(x,y,z) in terms of displacements and in-plane gradients
of displacements at the point (x,y, 0).
3. Constitutive relations for a lamina

For an orthotropic material such as a unidirectional
composite lamina, stresses at a material point in local rect-
angular Cartesian coordinate axes with the x-axis along the
fiber are given by
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where subscripts 1 and 2 are the fiber and the in-plane nor-
mal to the fiber directions and 3 is the direction normal to
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the plate. In terms of the more familiar parameters of an
elastic material, the elastic constants Cij are given by
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Using an in-plane coordinate transformation, the stress–
strain relations in the global xyz-coordinate system can
be written as
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where
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in which h is the angle between the global x-axis and the
local x-axis of each lamina.
4. Compatibility conditions at an interface

Assuming that the layers of the composite are perfectly
bonded together surface tractions and displacements
should be continuous across an interface between two
adjoining layers. Our assumption of the displacement field
given by Eq. (3) ensures the continuity of displacements
across an interface. However, since the displacement field
Eq. (3) is also continuously differentiable, stresses derived
from it will not satisfy the continuity of surface tractions
because properties of the materials of the adjoining layers
are different. A possibility is to assume a displacement field
like that given by Eq. (3) in each layer and use either the
method of Lagrange multipliers or a penalty method to
enforce the continuity of displacements and surface trac-
tions. The method of Lagrange multipliers introduces
numerous additional unknowns, and the penalty method
may make the system of equations ill-conditioned. Several
researchers have either employed such techniques or have
used zig-zag plate theories, e.g. see Kapuria et al. [42–44].
However, as shown below in Fig. 7, the present approach
gives very good results for laminated plates when the mate-
rial properties of different layers are not drastically differ-
ent such as having one layer comprised of a rubber-like
material and the other of graphite/epoxy composite.

5. Weak formulation of the problem

Let ~u;~v, and ~w be three linearly independent functions
defined on the mid-surface S. Multiplying equations
expressing the balance of linear momentum in the x-, the
y- and the z-directions by ~u;~v, and ~w, respectively, adding
the resulting equations, integrating the result over X, and
using the divergence theorem, we obtain the following
weak form of the problem:Z
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Here n is the unit outward normal on the boundary oX, f is
the body force vector, ~e is the strain vector obtained from
Eq. (6) with u, v, and w replaced by ~u;~v, and ~w, respectively,
{q±} is the traction on the top and the bottom surfaces of
the plate, Cu and Cf are disjoint parts of the boundary C of
S where displacements and surface tractions are prescribed,
respectively, as �u and f . Neglecting the body force, substi-
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where
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The matrix [Dij] of elastic constants has size 6(K + 1) ·
6(K + 1) and is obtained by using the following relation
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½Dij� ¼
Z t=2
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zk

½D�LiðzÞLjðzÞdz ð15Þ

where NL is the total number of layers in the laminate,
shown in Fig. 2, and zk and zk + 1 are the z-co-ordinates
of a point in the bottom and in the top surfaces of the
kth layer. The matrix [D] is obtained using Eqs. (9–11).
For a plate made of a homogeneous material, Eq. (15) sim-
plifies to [Dij] = [D]dij.

6. Radial basis functions and implementation of the

MLPG method

6.1. Interpolation using radial basis functions

Consider a continuous function u(x) defined on the
domain S having suitably located nodes. Using polynomial
and RBFs, an interpolation Eq. (16) of u(x) in terms of
quantities evaluated at nodes surrounding a point xQ can
be written as
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where n is the number of nodes in the neighborhood of xQ,
gi(x) is a RBF, pj(x) a monomial, m� n the number of
monomial terms, and constants ai(xQ) and bj(xQ) are coef-
ficients to be determined.

Enforcing the interpolation to pass through the n nodes
leads to the following system of simultaneous equations for
the determination of ai(xQ) and bj(xQ):
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The interpolation of the function u(x) can then be ex-
pressed as
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Here Ai;k is the (i, k) element of the matrix A�1. The deriv-
atives of /k(x) have the following expressions:
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Among the many choices for RBFs we use the following
multiquadrics (MQ) and the thin plate splines (TPS).

giðx; yÞ ¼ ðr2
i þ c2Þb; ðMQÞ ð27Þ

giðx; yÞ ¼ ðriÞa log ri; ðTPSÞ: ð28Þ

Here, constants b, c and a are shape parameters, and
ri ¼ ½ðx� xiÞ2 þ ðy � yiÞ

2�1=2.
6.2. Test function used in the MLPG1

In the MLPG1 method employed here, we use the fol-
lowing 4th order spline function as the weight function.
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Here dJ = jx � xJj, and rs equals the support of the func-
tion W. We use circular subdomains X of radius rs centered
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at the node located at xi, hereafter also called node i or xi;
thus the support of W equals the size of the subdomain.
Fig. 3. The support and the interpolation domains used in deriving
discrete equations for node i; the region enclosed by a circle of radius rs

equals the support of node i, and that enclosed by the dotted circle of
radius ri represents the interpolation domain.
6.3. Derivation of algebraic equations

Let Si � S be a smooth 2D region associated with a node
in S, Cui = oSi \ Cu, Cfi = oSi \ Cf and Ci0 = oSi � Cui �
Cfi. Let /1, /2, . . ., /N, and w1, w2, . . ., wN be linearly inde-
pendent functions defined on Si. For a Kth order plate
theory there are 3(K + 1) unknowns at a point in Si or S.
We write these as a 3(K + 1)D array and set
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where for each J, {dJ} is a 3(K + 1)D array, and [/J] a

square matrix of 3(K+ 1) rows and columns. Similarly,

f~dJg is a 3(K + 1)D array, and {wJ} a square matrix of

3(K + 1) rows and columns. The shape functions /J are ob-
tained using the RBFs described above, and functions wJ

equal the weight functions. The unknowns {dJ} are nodal
displacements (similar to those in the FEM). Substitution
from Eqs. (30) and (31) into Eq. (7) gives

fgg ¼
XN

J¼1

½BJ �fdJg; f~gg ¼
XN

J¼1

½~BJ �f~dJg; ð32Þ

where {g} is a 6(K + 1)D array, and BJ a 6(K + 1) ·
3(K + 1) matrix. The 6(K + 1) rows of BJ can be divided
into (K + 1) blocks of 6 rows each. The six rows of the
ith block of BJ are given below.

0 0 0

0 0 0

0 0 /J d0i

0 /J d0i 0

/J d0i 0 0

0 0 0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{0

o/J=ox 0 0

0 o/J=oy 0

0 0 /J dii

0 /J dii o/J=oy

/J dii 0 o/J=ox

o/J=oy o/J=ox 0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{i

0 0 0

0 0 0

0 0 /J dKi

0 /J dKi 0

/J dKi 0 0

0 0 0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{K
2
66666666664

3
77777777775

ð33Þ

Elements of matrix eBJ are obtained from those of matrix
BJ by replacing /J with wJ. Replacing the domain S of inte-
gration in Eq. (12) by Si, substituting for {u} and {ũ} from
Eqs. (30) and (31), and requiring that the resulting equa-
tion hold for all choices of f~dg, we arrive at the following
system of algebraic equations:

½KIJ �fdJg ¼ fF Ig; ð34Þ

where

½KIJ � ¼
Z

Si

ð½eBI �T½D�½BJ �ÞdX�
Z

Cui

ð½wI �
T½n�½D�½BJ �ÞdC

�
Z

Ci0

ð½wI �
T½n�½D�½BJ �ÞdC; ð35Þ
fF Ig ¼
Z

Cfi

½wI �
Tkff gdCþ Lið�t=2Þ

Z
Si

½wI �
Tfq�gdX: ð36Þ
Equations similar to Eq. (34) are derived for each circular
subdomain Si with center at the node xi. Gauss quadrature
of an appropriate order is employed to numerically evalu-
ate integrals over each subdomain. For each quadrature
point, the trial solution is interpolated. Therefore, for a
node xi there are two local domains: the support of the test
function which is a circle of radius rs centered at xi, and the
interpolation domain of size ri for each Gauss point. Fig. 3
shows the local subdomain for the node xi, and the interpo-
lation domain for the integration point xQ. These two do-
mains are independent of each other, and we set rs = asdi,
and ri = aidi, where as and ai are constants, and di is the dis-
tance from the node xi to the node nearest to it.
7. Numerical solution of problems

A number of problems have been analyzed to demon-
strate the accuracy and the convergence of the present
method. Our previous work on thick isotropic and homo-
geneous plates [36] has indicated that optimum values of
shape parameters for plate problems are the same as those
for 2D elasticity problems [28]. It was also found in [29]
that for the Multiquadric RBFs, there is a wide range of
acceptable values of the shape parameter c which yield
good results; optimum values of shape parameters are
c = 6d, b = 1.99 for MQ, and a = 4 for TPS where d is
the minimum distance between any two nodes. We have
found that these values also work for laminated plates.
In the examples discussed below the body force field is
set to zero.

In the following figures and tables, the deflection w, the
in-plane normal stresses rxx and ryy, the transverse normal
stress rzz and the transverse shear stresses sxy, sxz and syz,

are non-dimensionalized as

wðx ¼ a=2; y ¼ a=2; z ¼ 0Þ ¼ 100Emt3

qa4
w; ð37aÞ
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rxxðx ¼ a=2; y ¼ a=2Þ ¼ t2

qa2
rxx;

ryyðx ¼ a=2; y ¼ a=2Þ ¼ t2

qa2
ryy ð37bÞ

rzzðx ¼ a=2; y ¼ a=2Þ ¼ t
qa

rzz;

syzðx ¼ a=2; y ¼ 0Þ ¼ t
qa

syz ð37cÞ

sxyðx ¼ a; y ¼ aÞ ¼ t2

qa2
sxy ;

sxzðx ¼ 0; y ¼ a=2Þ ¼ 10t
qa

sxz ð37dÞ

where q is the magnitude of the normal traction applied on
the top surface of the plate. The co-ordinates of points
where deflections and stresses are calculated are shown in
Eqs. (37).

In the local co-ordinate or the material principal axes,
values assigned to different material parameters are

E1 ¼ 250 GPa; E2 ¼ E3 ¼ 10 GPa; v12 ¼ v23 ¼ v13

¼ 0:25;G12 ¼ G13 ¼ 5 GPa; G23 ¼ 2 GPa
7.1. Simply supported laminated composite plates under

uniformly distributed load

Deformations of a simply supported square plate with
length a = 20 cm and thickness t subjected to a uniformly
Table 1
MQ and TPS MLPG1 solutions for different orders of the HOSNDPT (single

t/a Method w rxx

0.05 3D-FEM 0.7255 0.7961
FSDT-Exact [45] 0.7262 0.7828
FSDT-EFG [30] 0.7281 0.7776
MQ-MLPG1 (K = 1) 0.6988 0.7725
MQ-MLPG1 (K = 3) 0.7169 0.7875
MQ-MLPG1 (K = 5) 0.7169 0.7875
TPS-MLPG1 (K = 1) 0.6919 0.7650
TPS-MLPG1 (K = 3) 0.7094 0.7800
TPS-MLPG1 (K = 5) 0.7094 0.7800

0.1 3D-FEM 0.9478 0.8227
FSDT-Exact [45] 0.9519 0.7706
FSDT-EFG [30] 0.9537 0.7655
MQ-MLPG1 (K = 1) 0.8870 0.7640
MQ-MLPG1 (K = 3) 0.9400 0.8160
MQ-MLPG1 (K = 5) 0.9400 0.8160
TPS-MLPG1 (K = 1) 0.8820 0.7600
TPS-MLPG1 (K = 3) 0.9350 0.8120
TPS-MLPG1 (K = 5) 0.9350 0.8120

0.2 3D-FEM 1.7783 0.9234
MQ-MLPG1 (K = 1) 1.6056 0.7280
MQ-MLPG1 (K = 3) 1.7696 0.9240
MQ-MLPG1 (K = 5) 1.7696 0.9160
TPS-MLPG1 (K = 1) 1.5992 0.7240
TPS-MLPG1 (K = 3) 1.7624 0.9200
TPS-MLPG1 (K = 5) 1.7624 0.9160
distributed load q = 100 kN/m2 are analyzed. Boundary
conditions imposed at a simply supported edge are

rxx ¼ 0; w ¼ v ¼ 0 on x ¼ 0; a

ryy ¼ 0; u ¼ w ¼ 0 on y ¼ 0; a

We note that these boundary conditions were used by Pag-
ano [47] to analyze the problem analytically. For this anal-
ysis, four different symmetric lamination schemes are
considered with thickness-to-length ratios, t/a, of 0.05,
0.1 and 0.2. Except for the analysis of the convergence of
results with an increase in the number of nodes, the midsur-
face of the plate is discretized with 13 · 13 uniformly dis-
tributed nodes. The lamination schemes considered are:
(1) an orthotropic lamina of 0� orientation; (2) a 3-layer
0�/90�/0� laminate; (3) a 4-layer 0�/90�/90�/0� laminate,
and (4) a 5-layer 0�/90�/90�/90�/0� laminate. Thus the
geometry and material properties of the plate are symmet-
ric about its midsurface, but the loading is asymmetric
since only the top surface of the plate is loaded.

7.1.1. Orthotropic lamina

The MQ and the TPS MLPG solutions are presented in
Table 1 for K = 1, 3 and 5 in the HOSNDPT, and are com-
pared with results derived from the analytical solution
obtained with the FSDT theory [45], the EFG solution with
the FSDT [30], and the analysis of the 3D problem with the
FEM using the commercial code ABAQUS and 20-noded
brick elements. The number of uniform finite elements in
the x- and the y-directions was increased from 10 to 40,
orthotropic lamina and uniformly distributed load on the top surface)

ryy sxy sxz syz

0.0277 0.05040 0.7674 0.1921
0.0272 0.04870 0.6194 0.1466
0.0285 0.04670 0.6041 0.1476
0.0310 0.04625 0.5200 0.1495
0.0278 0.04825 0.7600 0.2200
0.0275 0.04825 0.7550 0.2175
0.0310 0.04600 0.4760 0.1310
0.0275 0.04775 0.710 0.1945
0.0275 0.04775 0.705 0.1930

0.0370 0.0616 0.7346 0.1914
0.0352 0.0539 0.6147 0.1529
0.0362 0.0523 0.5945 0.1463
0.0386 0.0513 0.5420 0.1530
0.0376 0.0558 0.7400 0.2030
0.0372 0.0558 0.7290 0.1950
0.0386 0.0514 0.5220 0.1430
0.0376 0.0557 0.7210 0.1910
0.0372 0.0557 0.7110 0.1880

0.0667 0.1005 0.6595 0.2060
0.0620 0.0664 0.5880 0.1956
0.0688 0.0760 0.6760 0.2120
0.0672 0.0780 0.6560 0.2060
0.0620 0.0568 0.5700 0.1848
0.0688 0.0760 0.6660 0.2060
0.0672 0.0788 0.6460 0.1994
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by the FEM).
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and in the z-direction from 5 to 24 until the solution con-
verged. Results presented herein are based on the FE mesh
with a quarter of the plate divided into 4800 elements hav-
ing 20 elements each in the x- and the y-directions, and 12
elements in the thickness (z-) direction. While discussing
these results, the solution obtained with ABAQUS is taken
as the reference. For the MLPG1 method, the convergence
with an increase in the number of uniformly placed nodes
on each side of the plate has been studied by computing
Table 2
MQ and TPS MLPG1 solutions for different orders of the plate theory (0�/90

t/a Method w rxx

0.05 3D-FEM 0.7951 0.8247
FSDT-Exact [45] 0.7572 0.7983
FSDT-EFG [30] 0.7583 0.7905
MQ-MLPG1 (K = 1) 0.7256 0.7875
MQ-MLPG1 (K = 3) 0.7688 0.8125
MQ-MLPG1 (K = 5) 0.7688 0.8125
TPS-MLPG1 (K = 1) 0.7188 0.7800
TPS-MLPG1 (K = 3) 0.7613 0.8050
TPS-MLPG1 (K = 5) 0.7694 0.8050

0.1 3D-FEM 1.1541 0.8709
FSDT-Exact [45] 1.0219 0.7719
FSDT-EFG [30] 1.0225 0.7646
MQ-MLPG1 (K = 1) 0.9465 0.7660
MQ-MLPG1 (K = 3) 1.0860 0.8530
MQ-MLPG1 (K = 5) 1.1115 0.8570
TPS-MLPG1 (K = 1) 0.9415 0.7630
TPS-MLPG1 (K = 3) 1.0800 0.8480
TPS-MLPG1 (K = 5) 1.1055 0.8520

0.2 3D-FEM 2.3218 1.0215
MQ-MLPG1 (K = 1) 1.7572 0.7000
MQ-MLPG1 (K = 3) 2.1644 0.9960
MQ-MLPG1 (K = 5) 2.2136 0.9960
TPS-MLPG1 (K = 1) 1.7504 0.6960
TPS-MLPG1 (K = 3) 2.1556 0.9960
TPS-MLPG1 (K = 5) 2.2044 0.9960
results for seven different nodal densities, namely 5 · 5,
7 · 7, 8 · 8, 9 · 9, 11 · 11, 13 · 13 and 15 · 15. Values of
other parameters were t/a = 0.1, K = 5, as = 0.75 and
ai = 4. Results are plotted in Fig. 4 where solid lines repre-
sent the solution of the 3D problem computed with the
FEM. It can be seen from Fig. 4 that both the centroidal
deflection and the axial stress at the center of the top sur-
face computed with the MLPG1 method converge with
an increase in the number of nodes both for the MQ and
the TPS basis functions. Converged results are obtained
with 169 nodes.

In general, it can be seen from Table 1 that as the order
of the plate theory is increased from 1 to 5, both the deflec-
tion and stresses at the selected points approach their
respective values for the reference solution. Except for
the transverse shear stresses, the FSDT gives good values
of the stresses and the deflection for the thin plate with
t/a = 0.05. For the moderately thick plate with t/a = 0.1
the FSDT gives reasonable values of stresses and deflec-
tions. For the thick plate with t/a = 0.2, the present 5th
order HOSNDPT gives results that are close to those
obtained from the analysis of the 3D problem with ABA-
QUS. Both the TPS and the MQ basis functions perform
equally well.
7.1.2. Laminated plates

For the 0�/90�/0�, 0�/90�/90�/0�, and the 0�/90�/90�/90�/
0� laminates, we have listed in Tables 2–4 the centroidal
deflection and the stresses at different points as computed
�/0� laminate, uniformly distributed load)

ryy sxy sxz syz

0.2391 0.0493 0.690 0.3910
0.2227 0.0453 0.770 0.2902
0.2279 0.0441 0.744 0.2264
0.2175 0.0430 0.645 0.2760
0.2300 0.0458 1.070 0.3570
0.2300 0.0458 1.070 0.3570
0.2160 0.0425 0.590 0.2315
0.2285 0.0453 1.010 0.3025
0.2318 0.0453 1.095 0.3045

0.3621 0.0661 0.630 0.4060
0.3072 0.0514 0.755 0.3107
0.3105 0.0500 0.725 0.2958
0.2900 0.0484 0.660 0.2850
0.3380 0.0561 1.030 0.3560
0.3490 0.0567 1.090 0.3550
0.2900 0.0484 0.637 0.2640
0.3370 0.0559 1.000 0.3320
0.3470 0.0565 1.070 0.3310

0.6629 0.1140 0.595 0.4690
0.5000 0.0632 0.684 0.3520
0.6120 0.0856 0.892 0.4180
0.6280 0.0884 0.930 0.4360
0.5000 0.0636 0.666 0.3360
0.6080 0.0856 0.876 0.4020
0.6280 0.0888 0.912 0.4180



Table 3
MQ and TPS MLPG1 solutions for different orders of the plate theory (0�/90�/90�/0� laminate, uniformly distributed load)

t/a Method w rxx ryy sxy sxz syz

0.05 3D-FEM 0.8029 0.8228 0.4168 0.0457 0.622 0.4738
FSDT-Exact [45] 0.7694 0.8045 0.3968 0.0420 0.831 0.3228
FSDT-EFG [30] 0.7698 0.7948 0.3970 0.0414 0.796 0.3108
MQ-MLPG1 (K = 1) 0.7369 0.7950 0.3850 0.0400 0.690 0.2845
MQ-MLPG1 (K = 3) 0.7844 0.8125 0.4075 0.0428 1.000 0.3925
MQ-MLPG1 (K = 5) 0.7881 0.8125 0.4100 0.0430 0.920 0.4425
TPS-MLPG1 (K = 1) 0.7306 0.7875 0.3825 0.0395 0.640 0.2385
TPS-MLPG1 (K = 3) 0.7775 0.8050 0.4050 0.0423 0.945 0.3390
TPS-MLPG1 (K = 5) 0.7819 0.8050 0.4075 0.0425 0.865 0.3875

0.1 3D-FEM 1.1401 0.8280 0.5617 0.0603 0.554 0.498
FSDT-Exact [45] 1.0250 0.7577 0.5006 0.047 0.798 0.350
FSDT-EFG [30] 1.0248 0.7494 0.4988 0.0458 0.763 0.332
MQ-MLPG1 (K = 1) 0.9520 0.7570 0.4750 0.0452 0.700 0.313
MQ-MLPG1 (K = 3) 1.1090 0.8280 0.5480 0.0541 0.949 0.439
MQ-MLPG1 (K = 5) 1.1180 0.8230 0.5500 0.0550 0.879 0.475
TPS-MLPG1 (K = 1) 0.9465 0.7530 0.4730 0.0448 0.675 0.279
TPS-MLPG1 (K = 3) 1.0955 0.8240 0.5410 0.0539 0.922 0.430
TPS-MLPG1 (K = 5) 1.1125 0.8200 0.5490 0.0544 0.852 0.466

0.2 3D-FEM 2.2383 0.908 0.861 0.1072 0.568 0.4487
MQ-MLPG1 (K = 1) 1.7208 0.664 0.696 0.0564 0.704 0.402
MQ-MLPG1 (K = 3) 2.1496 0.904 0.820 0.0828 0.424 0.496
MQ-MLPG1 (K = 5) 2.1828 0.896 0.828 0.0860 0.768 0.536
TPS-MLPG1 (K = 1) 1.7136 0.660 0.684 0.0560 0.682 0.338
TPS-MLPG1 (K = 3) 2.1400 0.900 0.816 0.0812 0.796 0.484
TPS-MLPG1 (K = 5) 2.1728 0.892 0.824 0.0840 0.750 0.524

Table 4
MQ and TPS MLPG1 solutions for varying orders of plate theory (0�/90�/90�/0� laminate, uniformly distributed load)

t/a Method w rxx ryy sxy sxz syz

0.05 3D-FEM 0.7794 0.8207 0.4870 0.0444 0.6040 0.4545
FSDT-Exact [45] 0.7581 0.8080 0.4844 0.0403 0.7166 0.4188
FSDT-EFG [30] 0.7584 0.7980 0.4819 0.0399 0.6856 0.3995
MQ-MLPG1 (K = 1) 0.7288 0.7975 0.4725 0.0385 0.6000 0.3610
MQ-MLPG1 (K = 3) 0.7506 0.8100 0.4775 0.0405 0.9200 0.5650
MQ-MLPG1 (K = 5) 0.7538 0.8100 0.4750 0.0408 0.8250 0.6950
TPS-MLPG1 (K = 1) 0.7219 0.7900 0.4700 0.0383 0.5450 0.3115
TPS-MLPG1 (K = 3) 0.7438 0.8025 0.4725 0.0400 0.8550 0.5000
TPS-MLPG1 (K = 5) 0.7469 0.8050 0.4700 0.0403 0.7650 0.6300

0.1 3D-FEM 1.0576 0.8201 0.5605 0.0577 0.5781 0.441
FSDT-Exact [45] 0.9727 0.7649 0.5525 0.0436 0.6901 0.441
FSDT-EFG [30] 0.9722 0.7565 0.5490 0.0424 0.6586 0.417
MQ-MLPG1 (K = 1) 0.9085 0.7620 0.5330 0.0419 0.6090 0.392
MQ-MLPG1 (K = 3) 0.9730 0.8020 0.5380 0.0478 0.8790 0.573
MQ-MLPG1 (K = 5) 0.9865 0.8090 0.5350 0.0487 0.7970 0.684
TPS-MLPG1 (K = 1) 0.9040 0.7590 0.5310 0.042 0.5860 0.370
TPS-MLPG1 (K = 3) 0.9675 0.7980 0.5360 0.0478 0.8550 0.549
TPS-MLPG1 (K = 5) 0.9815 0.8050 0.5300 0.0488 0.7740 0.659

0.2 3D-FEM 2.1044 0.8995 0.7386 0.0991 0.534 0.424
MQ-MLPG1 (K = 1) 1.5864 0.6840 0.6640 0.0448 0.594 0.474
MQ-MLPG1 (K = 3) 1.8100 0.8400 0.6600 0.0696 0.778 0.600
MQ-MLPG1 (K = 5) 1.8736 0.8640 0.6720 0.0740 0.732 0.686
TPS-MLPG1 (K = 1) 1.5804 0.6840 0.6520 0.0492 0.610 0.454
TPS-MLPG1 (K = 3) 1.8032 0.8360 0.6600 0.0700 0.766 0.586
TPS-MLPG1 (K = 5) 1.8664 0.8640 0.6720 0.0748 0.716 0.670
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with different plate theories and also with the 3D FEM (six
uniform elements along the thickness of each layer). For
the thin plate, the FSDT gives good results for the centroi-
dal deflection and the in-plane stresses. However, values of
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Fig. 6. Through-the-thickness distributions of the transverse normal
stresses (rzz) computed with the present method and the analysis of the 3D
problem by the finite element method (0�/90�/90�/0� laminated plate).
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Fig. 7. Through-the-thickness variations of axial stress (rxx) computed
with the present method and the analysis of the 3D problem by the finite
element method (0�/90�/90�/0� laminated plate).
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transverse shear stresses computed with the FSDT show
noticeable deviations from those computed with the
FEM. As for the single lamina, the MQ and the TPS basis
functions work equally well. For each laminate, the com-
puted centroidal deflection and the in-plane stresses
approach their analytical values as the order of the plate
theory is increased from 1 to 5. However, the transverse
shear stresses do not match well with those obtained from
the analysis of the 3D problem. It is likely that their values
computed by using the mixed HOSNDPT and/or satisfying
the continuity of surface tractions across the interface
between two adjoining layers will be considerably
improved, but this has not been tried here. In general, stres-
ses computed at plate edges are not as accurate as those at
the center of the plate; similar trends were seen for isotro-
pic homogeneous [36] and FG [37] plates. The difference in
the two sets of results can possibly be reduced by using a
dense distribution of nodes near the free edges. Note that
a higher-order plate theory employs higher-order expan-
sions of variables in the thickness coordinate and not
within the plane of the midsurface of the plate. This is also
true of the solution of the 3D elasticity equations by the
finite element method. We add that results from the 3rd
and the 5th order plate theories are quite close to each
other implying that in most cases one can use the 3rd order
shear and normal deformable plate theory.

In order to ascertain the order of the plate theory which
gives converged results, the non-dimensional deflection and
the axial stresses are plotted in Fig. 5 with the order of the
HOSNDPT varying from 1 to 7 for the 0�/90�/90�/0� lam-
inated plate and using MQ RBFs. It can be seen that K = 3
in the HOSNDPT gives reasonably accurate results. Qian
et al. [8] found that converged frequencies are obtained
with K = 5 in the HOSNDPT.

As mentioned previously, one of the advantages of the
HOSNDPT is that the transverse normal and the trans-
verse shear stresses are computed from equations of the
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Fig. 5. Non-dimensional deflection w and axial stresses rxx and ryy vs.
order of plate theory K for a 0�/90�/90�/0� laminated plate using the MQ-
MLPG1 method.
plate theory. In order to see if rzz and rxx are accurately
predicted, we plot in Figs. 6 and 7 their variations through
the plate thickness for the 0�/90�/90�/0� laminate using the
MQ RBFs and computed with values of K varying from 2
to 5. It is clear that as K increases from 2 to 5, the com-
puted distributions of the transverse normal stress and
the axial stress approach those obtained with the FEM
which implies that the HOSNDPT with K = 5 accurately
predicts through-the-thickness distribution of the trans-
verse normal stress, and jumps in the axial stress across
interfaces between adjoining layers.
7.2. Laminated composite plates under sinusoidal loading

7.2.1. Simply supported laminated plates

Results are also computed for the 0�/90�/90�/0� lami-
nate with tractions on the top surface given by q sin (px/
a) sin (py/a) and are compared in Table 5 with the



Table 5
MQ and TPS MLPG1 solutions for varying orders of plate theory (0�/90�/90�/0� laminate, sinusoidal load)

t/a Method w rxx ryy sxy sxz syz

0.25 HSDT [46] 1.8937 0.6651 0.6322 0.0440 0.2064 –
Elasticity [47] 1.9540 0.7200 0.6660 0.0467 0.2700 –
Ferreira et al. [48] 1.8864 0.6659 0.6313 0.0430 0.1352 –
MQ-MLPG1 (K = 1) 1.5016 0.4200 0.5506 0.0300 0.3175 0.1675
MQ-MLPG1 (K = 3) 1.8703 0.7250 0.6169 0.0452 0.3825 0.2440
MQ-MLPG1 (K = 5) 1.8930 0.7125 0.6313 0.0459 0.3575 0.2675
TPS-MLPG1 (K = 1) 1.4984 0.4188 0.5500 0.0301 0.3125 0.1633
TPS-MLPG1 (K = 3) 1.8672 0.7250 0.6163 0.0451 0.3775 0.2388
TPS-MLPG1 (K = 5) 1.8898 0.7125 0.6250 0.0458 0.3525 0.2625

0.1 HSDT [46] 0.7147 0.5456 0.3888 0.0268 0.2640 –
Elasticity [47] 0.7430 0.5590 0.4030 0.0276 0.3010 –
Ferreira et al. [48] 0.5070 0.5405 0.3648 0.0228 0.3818 –
MQ-MLPG1 (K = 1) 0.6170 0.5010 0.3460 0.0233 0.3460 0.103
MQ-MLPG1 (K = 3) 0.7155 0.5580 0.3900 0.0269 0.4930 0.154
MQ-MLPG1 (K = 5) 0.7245 0.5560 0.3940 0.0271 0.4500 0.175
TPS-MLPG1 (K = 1) 0.6155 0.5000 0.3450 0.0233 0.3370 0.093
TPS-MLPG1 (K = 3) 0.7135 0.5570 0.3890 0.0268 0.4800 0.141
TPS-MLPG1 (K = 5) 0.7225 0.5550 0.3930 0.0270 0.4380 0.162

0.05 HSDT [46] 0.5061 0.5393 0.3043 0.0233 0.2825 –
Elasticity [47] 0.5170 0.5430 0.3090 0.0230 0.3280 –
Ferreira et al. [48] 0.4365 0.5413 0.3359 0.0215 0.4106 –
MQ-MLPG1 (K = 1) 0.4724 0.5225 0.2875 0.0213 0.3500 0.0785
MQ-MLPG1 (K = 3) 0.5036 0.5400 0.3025 0.0224 0.5200 0.1115
MQ-MLPG1 (K = 5) 0.5063 0.5400 0.3050 0.0224 0.4735 0.1260
TPS-MLPG1 (K = 1) 0.4700 0.5200 0.2875 0.0212 0.3180 0.0520
TPS-MLPG1 (K = 3) 0.5009 0.5375 0.3025 0.0223 0.4825 0.0785
TPS-MLPG1 (K = 5) 0.5036 0.5375 0.3025 0.0223 0.4370 0.0915

424 J.R. Xiao et al. / Composites: Part B 39 (2008) 414–427
published results from the higher order plate theory of
Reddy [44], the 3D elasticity solution of Pagano [47], and
those computed by Ferreira et al. [48] with a meshless (col-
location) method employing RBFs. For each one of the
three laminates with t/a = 0.05, 0.1 and 0.25, the present
values of the centroidal deflection w and the axial stresses
rxx and ryy are in excellent agreement with those obtained
by other methods and in particular with Pagano’s solution
of the corresponding 3D elasticity problem. As pointed out
earlier for plates subjected to a uniformly distributed load
on the top surface, the transverse shear stresses at points on
a plate’s edge deviate somewhat from those given by the
elasticity solution.
7.2.2. Laminated plates under other boundary conditions

Vel and Batra [49–51] have studied analytically defor-
mations of thick laminated plates under general boundary
conditions, and their analysis accounts for continuity con-
ditions across interfaces and should give accurate results
even when material properties of adjoining layers vary sig-
nificantly. Eight different boundary conditions have been
examined in [49] for the 0�/90� and 0�/90�/0� laminates.
Only the 0�/90� laminate is analyzed here by using the pres-
ent meshless method, and three boundary conditions
(SSSS, SCSC and SFSF) are considered; here S = simply
supported, C = clamped and F = free edge. The clamped
and free boundary conditions are applied at the edges
x = 0 and x = a while the edges at y = 0, and y = a are held
simply supported. Boundary conditions at the clamped and
free edges are:

Clamped: u ¼ v ¼ w ¼ 0; on x ¼ 0; a;

Free: rxx ¼ rxy ¼ rxz ¼ 0; on x ¼ 0; a:

Results for the 0�/90� laminate with t/a = 0.10 and 0.20
and tractions on the top surface given by q sin (px/
a) sin (py/a) are compared in Tables 6 and 7 with the pub-
lished results from the 3D analytical solution of Vel and
Batra [49], and the higher order plate theory of Khdeir
and Reddy [52]. For each one of the three boundary condi-
tions the present values of the centroidal deflection w and
the stresses rxx, ryy , rzz and are in excellent agreement with
those obtained by other methods and in particular with Vel
and Batra’s 3D analytical solution. It should be noted that
different non-dimensionalization were used by Vel and
Batra [49], and their results have been recalculated using
Eqs. (37) for consistency. The transverse shear stress syz

at (x = a/2,y = 0) also agrees very well with that from
the higher order plate theory [52] (not provided in Ref.
[49]). The through-the-thickness distribution of the trans-
verse shear stresses syz at (x = 0.05a,y = 0) computed from
the present method is compared with the analytical solu-
tion [49] in Fig. 8. The maximum shear stress at
(x = 0.05a,y = 0)from the analytical solution is 0.254q,
and that from the present method equals 0.222q, 0.235q,



Table 6
A square (0�/90�) laminate under different boundary conditions (t/a = 0.2, sinusoidal load)

BC Method w rxx ryy szz sxy syz

SSSS 3D Analytical [49] 1.712 �0.7671 0.7894 0.0990 0.0527 –
HSDT [52] 1.667 �0.8385 0.8385 – – 0.3155
FSDT [52] 1.758 �0.7157 0.7157 – – 0.2729
MQ-MLPG1 (K = 1) 1.613 �0.7000 0.7120 0.0984 0.0476 0.2180
MQ-MLPG1 (K = 3) 1.676 �0.7480 0.7720 0.0994 0.0516 0.2820
MQ-MLPG1 (K = 5) 1.696 �0.7600 0.7840 0.1000 0.0524 0.3020
TPS-MLPG1 (K = 1) 1.608 �0.6960 0.7080 0.0982 0.0476 0.2120
TPS-MLPG1 (K = 3) 1.672 �0.7480 0.7680 0.0992 0.0516 0.2760
TPS-MLPG1 (K = 5) 1.691 �0.7600 0.7800 0.0992 0.0524 0.2940

SCSC 3D Analytical [49] 1.217 �0.4630 0.5723 0.1158 0.0313 –
HSDT [52] 1.088 �0.5679 0.5505 – – 0.2095
FSDT [52] 1.257 �0.3911 0.5153 – – 0.1958
MQ-MLPG1 (K = 1) 1.124 �0.3868 0.5000 0.1044 0.0271 0.1510
MQ-MLPG1 (K = 3) 1.180 �0.4360 0.5560 0.1142 0.0298 0.2000
MQ-MLPG1 (K = 5) 1.202 �0.4600 0.5680 0.1154 0.0311 0.2160
TPS-MLPG1 (K = 1) 1.122 �0.3860 0.5000 0.1042 0.0268 0.1462
TPS-MLPG1 (K = 3) 1.177 �0.4320 0.5520 0.1134 0.0295 0.1954
TPS-MLPG1 (K = 5) 1.199 �0.4600 0.5640 0.1154 0.0307 0.2100

SFSF 3D Analytical [49] 2.753 �0.2660 1.2877 0.0718 0.0108 –
HSDT [52] 2.624 �0.3171 1.3551 – – 0.4457
FSDT [52] 2.777 �0.2469 1.1907 – – 0.3901
MQ-MLPG1 (K = 1) 2.587 �0.2280 1.1880 0.0828 0.0104 0.3160
MQ-MLPG1 (K = 3) 2.699 �0.2544 1.2560 0.0746 0.0105 0.4000
MQ-MLPG1 (K = 5) 2.746 �0.2628 1.2880 0.0708 0.0106 0.4700
TPS-MLPG1 (K = 1) 2.590 �0.2272 1.1920 0.0828 0.0104 0.3260
TPS-MLPG1 (K = 3) 2.703 �0.2532 1.2560 0.0742 0.0105 0.4080
TPS-MLPG1 (K = 5) 2.750 �0.2616 1.2880 0.0704 0.0106 0.4780

Table 7
A square (0�/90�) laminate under different boundary conditions (t/a = 0.1, sinusoidal load)

BC Method w rxx ryy szz sxy syz

SSSS 3D Analytical [49] 1.227 �0.7304 0.7309 0.0500 0.0497 –
HSDT [52] 1.216 �0.7468 0.7468 – – 0.3190
FSDT [52] 1.237 �0.7157 0.7157 – – 0.2729
MQ-MLPG1 (K = 1) 1.177 �0.7040 0.7040 0.0498 0.0471 0.2150
MQ-MLPG1 (K = 3) 1.214 �0.7240 0.7250 0.0500 0.0491 0.2800
MQ-MLPG1 (K = 5) 1.220 �0.7260 0.7270 0.0500 0.0494 0.2980
TPS-MLPG1 (K = 1) 1.172 �0.7010 0.7010 0.0498 0.0469 0.1970
TPS-MLPG1 (K = 3) 1.208 �0.7210 0.7220 0.0500 0.0488 0.2600
TPS-MLPG1 (K = 5) 1.213 �0.7230 0.7240 0.0500 0.0491 0.2780

SCSC 3D Analytical [49] 0.649 �0.4653 0.3888 0.0640 0.0221 –
HSDT [52] 0.617 �0.4952 0.3803 – – 0.1725
FSDT [52] 0.656 �0.4450 0.3799 – – 0.1523
MQ-MLPG1 (K = 1) 0.610 �0.4430 0.3650 0.1116 0.0203 0.1170
MQ-MLPG1 (K = 3) 0.635 �0.4580 0.3820 0.0620 0.0214 0.1560
MQ-MLPG1 (K = 5) 0.643 �0.4620 0.3850 0.0631 0.0219 0.1610
TPS-MLPG1 (K = 1) 0.608 �0.4400 0.3640 0.0559 0.0200 0.1060
TPS-MLPG1 (K = 3) 0.632 �0.4560 0.3800 0.0620 0.0211 0.1430
TPS-MLPG1 (K = 5) 0.640 �0.4600 0.3840 0.0642 0.0215 0.1480

SFSF 3D Analytical [49] 2.026 �0.2503 1.2100 0.0360 0.0119 –
HSDT [52] 2.624 �0.3171 1.3551 – – 0.4489
FSDT [52] 2.777 �0.2469 1.1907 – – 0.3882
MQ-MLPG1 (K = 1) 1.957 �0.2360 1.1700 0.0321 0.0110 0.3110
MQ-MLPG1 (K = 3) 2.015 �0.2470 1.2000 0.0340 0.0118 0.4100
MQ-MLPG1 (K = 5) 2.028 �0.2490 1.2100 0.0338 0.0118 0.4880
TPS-MLPG1 (K = 1) 1.958 �0.2360 1.1800 0.0337 0.0111 0.3370
TPS-MLPG1 (K = 3) 2.016 �0.2470 1.2000 0.0345 0.0119 0.4370
TPS-MLPG1 (K = 5) 2.028 �0.2490 1.2100 0.3370 0.0119 0.4990
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Fig. 8. Through-the-thickness variations of shear stress (syz) in the 0�/90�
laminated plate computed with the present method and the analytical
solution [49].
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and 0.246q with K = 3, 5 and 7, respectively. The presently
computed through-the-thickness distribution of syz agrees
well with that obtained from the analytical solution except
at the interface, where the stress from the analytical solu-
tion is continuous across the interface but that from the
present solution is discontinuous. This suggests that one
should either use the method of Lagrange multipliers, or
the penalty method, or adopt another technique to ensure
the continuity of tractions across an interface; this is left
for a future study.

8. Conclusions

The higher order shear and normal deformable plate
theory (HOSNDPT) has been combined with the meshless
local Petrov–Galerkin (MLPG) method using radial basis
functions (RBFs) to analyze static infinitesimal deforma-
tions of laminated elastic plates. Two types of RBFs, mul-
tiquadrics (MQ) and the thin plate splines (TPS), have been
employed to approximate the trial solution and the 4th
order spline function is used as the test function. The fully
converged numerical solution is computed with 13 · 13
uniformly spaced nodes on the mid-surface of the laminate.
An advantage of using RBFs is that the corresponding
shape functions possess the Kronecker delta property;
therefore it is easy to impose the essential boundary condi-
tions and the computational cost is substantially reduced.

Computed results for different laminates with either uni-
formly distributed or sinusoidally varying load on the top
surface are found to match well with those obtained from
the analysis of the corresponding 3D problems. All compo-
nents of the stress tensor, including the transverse stresses,
are computed from equations of the plate theory. It is found
that deflections and stresses computed at interior points of
the plate are in good agreement with those obtained from
the analysis of the 3D problem which is regarded as the ref-
erence solution. However, transverse shear stresses com-
puted at points on the plate edges differ somewhat from
those in the reference solution. The present study suggests
that at least a third-order shear and normal deformable
plate theory is required to compute accurate values of
deflection, in-plane axial stresses and transverse stresses.
It should be noted that other plate theories neglect the effect
of transverse normal deformation, and good values of
transverse stresses are obtained by integrating through-
the-thickness the balance of linear momentum. In addition,
the numerical solution obtained with the MLPG1 method
using RBFs and 13 · 13 uniformly spaced nodes on the
midsurface and K = 5 is as accurate as the solution of the
3D elasticity problem computed with the finite element
method employing 4800 elements. The total number of
degrees of freedom in the MLPG1 and the finite element
methods equals 169 · 6 · 3 = 3042 and 21 · 21 · 13 · 3 =
18759, respectively. Thus the present method is computa-
tionally more efficient than the finite element method. Fur-
thermore, there is no element connectivity required which
reduces the effort required to prepare the input file.
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