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Abstract

Three-dimensional transient deformations of a laminate comprised of several unidirectional fiber reinforced layers perfectly bonded to
each other and subjected to a blast load are analyzed by the finite element method with an in-house developed, verified and fully vali-
dated code with rate-dependent damage evolution equations for anisotropic bodies. The continuum damage mechanics approach
employing three internal variables is used to characterize damage due to fiber/matrix debonding, fiber breakage, and matrix cracking.
The delamination between two adjoining layers is assumed to ensue when the stress state there satisfies a failure criterion, and may ini-
tiate simultaneously at several points. The relative sliding between adjoining layers is simulated by the nodal release technique. The inter-
action among fiber/matrix debonding, fiber breakage, matrix cracking and delamination, and the possibility of their initiating
concurrently at one or more points in the composite are considered. The effect of different material, geometric and loading parameters
on the damage development and propagation, and the energy absorbed in each one of the four failure modes have been examined. These
results give preliminary information on composite structure’s design for maximizing the energy absorption and hence increasing struc-
ture’s resistance to blast loads. The paper is a sequel to Hassan and Batra’s paper [Hassan NM, Batra RC. Modeling damage develop-
ment in polymeric composites. Composites B, doi:10.1016/j.compositesb.2007.02.001] wherein details of the damage evolution equations,
verification of the code, and the validation of the mathematical model are given.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The damage caused by severe shock loads to ship struc-
tures and marine vessels is of considerable interest to engi-
neers working in defense and civilian industries [1,2]. In an
attempt to enhance the operational efficiency and reduce
the life time cost of these structures, more emphasis is being
placed on designing as many components as possible of
composites. Shock loads are induced by the underwater
explosion of a mine or a torpedo, ignition of an explosive
device in air, weapons effects, the structure striking a par-
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tially submerged object in water, and/or the slamming pres-
sure that occurs at high sea states when the forefront of the
vessel rises above the water surface and then rapidly reen-
ters the water. These shock waves generally generate
impulses of very high pressures but short durations, result-
ing in extremely high strain rates, which may cause severe
structural damage. Loads considered here are typically
induced by the ignition in air of an explosive located at a
known distance from the composite structure.

The estimate of service life of a structural component
requires knowledge of the progressive degradation of its
strength due to growth of the internal damage that deter-
mines the energy absorbed by the structure. Factors influ-
encing damage induced in a composite include fiber type,
fabric and composite construction, thermomechanical
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properties of constituents, anisotropy, rate sensitivity, and
the interaction among its constituents. The initiation and
propagation of damage due to blast loads has been studied
experimentally, analytically and numerically. Tests are gen-
erally performed by subjecting large composite panels (up to
3 m · 3 m in size) or full scale sections of a ship to increasing
levels of shock loads and ascertaining in the laminate the
extent of fiber breakage, matrix cracking, fiber/matrix deb-
onding, and delamination. Mouritz [3] used the four-point
bend test to measure the residual flexural strength of a glass
reinforced polymer (GRP) laminate after it had been loaded
by an underwater shock wave. The examination by a scan-
ning electron microscope of the laminate after being
exposed to a shock pressure of 8 MPa revealed damage in
the form of matrix cracking and a small number of short del-
aminations; consequently, the flexural strength remained
essentially unchanged. However, shock pressures exceeding
8 MPa caused severe cracking of the polymer and breakage
of fibers on the back surface, buckling of fibers near the
impacted surface, and large delamination zones. According
to Will et al. [4], in high speed impacts a structure deforms
locally and a little energy is used to deform fibers and the
structure but a significant amount of energy is dissipated
in mechanisms such as delamination, debonding and fiber
pull-out. In [5] we have reviewed the literature and summa-
rized known results for the effect of target thickness, fiber
and matrix properties, fiber length and fiber volume frac-
tion, fiber geometry, fiber/matrix interface properties, ply
stacking sequence, stitching of layers, shock strength, and
boundary conditions. Most of the works reviewed in [5]
delineated how the change in one parameter affected the
damage induced in a composite laminate and employed
either numerical or experimental techniques. Here we use
the mathematical tool and the computational algorithm
developed, verified and validated in [6] to delineate the effect
of various material and geometric parameters, different
types of explosives, core materials for sandwich construc-
tion, composite laminates bonded to a steel plate, and
boundary conditions on the blast resistance of the AS4/
PEEK composite laminate. This composite is studied
because test data, from which values of material parameters
can be deduced, are available [10]. This parametric study
complements that reported in [5], and the two together pro-
vide a comprehensive data for the transient response of a
composite laminate to blast loads.

2. Problem formulation

We describe lamina’s deformations by using rectangular
Cartesian coordinates with the X1-axis aligned along fibers,
and X2- and X3-axes perpendicular to fibers; these are usu-
ally called material principal directions. Deformations are
governed by the balance of mass, the balance of linear
momentum, the balance of moment of momentum, and
the balance of internal energy supplemented by constitutive
relations, damage evolution equations, initial conditions,
and boundary conditions. We describe damage evolution
in rate-dependent bodies with three internal variables
denoted by n = {/m,/f,/d} and represent the correspond-
ing conjugate forces by x = {Y m,Y f,Y d}.

We assume that the laminate is initially stress free and
adopt the following constitutive relations:

Sab ¼ CabcdEcd;

xðiÞ ¼ Y ðiÞ ¼ � 1

2

oCabcd

o/ðiÞ
EabEcd; i ¼ m; f ; d;

ð1Þ

for the second Piola–Kirchhoff stress tensor S and the conju-
gate force x. Here E denotes the Green–St. Venant strain
tensor, and the elastic constants Cabcd = Ccdab = Cbacd are
functions of n. Eq. (1)1 accounts for geometric nonlinearities
and describes a neo-Hookean material. We assume that a
lamina reinforced with unidirectional fibers can be modeled
as transversely isotropic with the axis of transverse isotropy
perpendicular to the plane of the lamina. Thus there are five
independent elastic constants Cabcd for each lamina. In terms
of the more familiar elastic constants, components of matrix
[C] are given in Refs. [7–9], and their values in terms of those
of the matrix and the fiber, and their volume fractions de-
rived by using the mechanics of materials approach are listed
in [6]. These relations imply that elastic constants of the lam-
ina degrade with the evolution of damage. Even though a
damage variable affects only one of the elastic moduli in
the material principal directions, it influences all moduli of
the lamina when global axes do not coincide with the mate-
rial principal directions. The matrix of elastic constants, the
second Piola–Kirchhoff stress tensor, and the Green–St.
Venant strain tensor are transformed to global coordinate
axes by using tensor transformation rules [7–9].

2.1. Damage evolution equations

We postulate that / f = / f (Y f), /m = /m(Ym), /d =
/d(Y d), and determine the functional dependence from
the test data by assuming that the damage at a material
point does not increase while the material there is unload-
ing as indicated by a decrease in a suitable scalar measure
of stresses and/or strains. For the AS4/PEEK with the vol-
ume fraction V f of isotropic fibers equal to 0.6, values of
material parameters of the fibers and the isotropic matrix
taken from Kyriakides et al. [10] and used in this work
are given in Table 1 of [5]. The least squares fit to the test
data of Kyriakides et al. [10] resulted in the following
expressions (see [6] for details).

/f ¼ Af ð1� eð�Bf Y f ÞÞ; ð2Þ

/m ¼ AmBm þ CmðY mÞDm

Bm þ ðY mÞDm

 !
; ð3Þ

/d ¼ AdBd þ CdðY dÞDd

Bd þ ðY dÞDd

 !
: ð4Þ

Values of constants Af, Bf, Am, Bm, Cm, Dm, Ad, Bd, Cd, and
Dd are listed in Table 2 of [5]. Constants in Eq. (2) expressing
damage due to fiber breakage have different values for fibers
loaded in tension and compression. When fibers are not
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aligned with a global coordinate axis, we analyze the prob-
lem in the global coordinate system and compute the axial
strain in the fiber by using the tensor transformation rules.
The sign of the axial strain in a fiber dictates which values
of Af, Bf and Yf to use in Eq. (2). We follow a similar proce-
dure for selecting appropriate values of Am, Bm, Cm, Dm and
Ym in Eq. (3) and of Ad, Bd, Cd, Dd and Y d in Eq. (4). Even
though /f, /m and /d depend only upon Y f, Y m and Y d

respectively, under a general loading, one damage mode
may influence the other two damage modes, and also the
delamination discussed below. It is because a change in /f,
/m and /d affects all elastic moduli of the laminate with
fibers in at least one layer not oriented along the X1-axis.
Thus interaction among the four failure modes is implicitly
considered. Also, at a given instant, different failure modes
may ensue simultaneously at one or more points in the body.

2.2. Failure criterion

It is assumed that the failure due to fiber breakage,
matrix cracking and fiber/matrix debonding occurs when
Y f, Y m and Y d reach their critical values Y f

crit, Y m
crit and

Y d
crit respectively. Values of Y f

crit, Y m
crit and Y d

crit depend upon
materials of the fiber and the matrix, sizing or functionali-
zing of fibers, and possibly on the fabrication process; these
are to be determined from the experimental data. Values
for the AS4/PEEK composite found from the test data
[10] and used herein are listed in Table 2 of [5]. We refer
the reader to [6] for details of simulating delamination
between two adjoining layers.

2.3. Strain rate effect

As discussed in [6], the experimental data for the AS4/
PEEK reported in [10] at different strain rates suggests
the following functional dependence of conjugate variables
Ym and Yd upon _E22 and _E12 respectively:

Y m ¼
Bm �Am þ /m 1� smlog10

_E22
_E0

22

� �� �� �
Cm � /m 1� smlog10

_E22
_E0

22

� �� �
0B@

1CA
1=Dm

; ð5Þ

Y d ¼
Bd �Ad þ /d 1� sd log10

_E12
_E0

12

� �� �� �
Cd � /d 1� sd log10

_E12
_E0

12

� �� �
0B@

1CA
1=Dd

: ð6Þ

Here _E0
22 and _E0

12 represent, respectively, values of the refer-
ence transverse and the reference shear strain rates. Yf is
assumed to be independent of strain rate because the experi-
mental stress–strain curve for AS4/PEEK in longitudinal
tension and compression is insensitive to the axial strain rate.

2.4. Governing equations

Substitution from Eq. (1) into the balance of linear
momentum gives the following nonlinear field equation
for the determination of the displacement u.
qR€ui ¼ ½ðdia þ ui;aÞðCabcdEcdÞ�;b þ qRbi;

ui;a ¼ oui=oX a: ð7Þ

Let X be the region occupied by the body in the reference
configuration at time t = 0. A general form of initial and
boundary conditions is

xiðX; 0Þ ¼ X adia;

_xiðX; 0Þ ¼ v0
i ðXÞ;

xiðX; tÞ ¼ �xiðX; tÞ; X 2 oX X; t 2 ð0; eT Þ;
T iaðX; tÞN aðXÞ ¼ fiðX; tÞ; X 2 of X; t 2 ð0; eT Þ:

ð8Þ

Here oXX and ofX are parts of the boundary oX of X where
final positions (or equivalently, displacements) and surface
tractions are prescribed, respectively, as X and f, and T is
the first Piola–Kirchhoff stress tensor. Note that oXX and
ofX need not be disjoint since linearly independent compo-
nents of displacements and surface tractions may be speci-
fied at the same point on oX. However, for the sake of
simplicity, they are assumed to be disjoint in Eq. (8). Initial
values of internal variables representing the fiber breakage,
fiber/matrix debonding, and matrix cracking are taken to
be zeros.

We note that the elastic constants matrix C in Eq. (7)
depends upon the damage variables. Thus as the body is
deformed and damage is induced, the elastic constants
change.
3. Numerical solution

We have developed a 3-D finite element (FE) code in
Fortran using 8-node brick elements to solve numerically
the aforestated initial-boundary-value problem. The code
has been verified by using the method of fictitious body
forces described in [19], see comments following eqn. (30)
of [19]. It has been validated by showing that results com-
puted from it for different initial-boundary-value problems
match well with test findings [6]. Values of material param-
eters are found from one set of experiments, and results
computed for a totally different set of loadings and by dif-
ferent investigators are compared with experimental
results. After having found nodal displacements, values
of conjugate variables and damage parameters (or internal
variables) /f, /m and /d at each integration point are deter-
mined, and are used to account for the degradation in the
material strength by updating values of elastic constants.

When an internal variable /f, /m and/or /d equals 1.0 or
the corresponding conjugate variable Y f, Y m and/or Y d

equals its critical value at an integration point, the material
there is taken to have failed due to fiber breakage, matrix
cracking and/or fiber/matrix debonding respectively. Even
if the material at all eight integration points within an ele-
ment has failed, that element is not removed from the anal-
ysis. Once all elastic constants at each one of the eight
integration points in an element have been reduced to zero,
all stress components in that element will subsequently be



Fig. 2. Discretization of the structure into a FE mesh of 20 · 20 · 4
elements.

Fig. 3a. Variation at r = 0 of the pressure with time for 64 kg TNT ignited
at a distance of 10 m from the target.
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zero, and for all practical purposes that element will repre-
sent a hole or a void. However, the mass of the element still
contributes to the kinetic energy of the body. The relative
sliding between adjoining delaminated layers is simulated
by the nodal release technique.

In order to assess the structure’s resistance to impact
loads, the following quantities are computed by using
Eqs. (9)–(15): work W ef done by applied loads; energies
E fb, E mc, E db and E dl dissipated, respectively, due to fiber
breakage, matrix cracking, fiber/matrix debonding, and
delamination; work Wdef done to deform the body, and
the kinetic energy K t

e of the body at the terminal value of
the time t.

W ef ¼
Z t

0

X
n

F n
3

dun
3

dt
dt; ð9Þ

Efb ¼
Z t

0

Z
X

Y f d/f

dt
dV dt ¼

Z /f

0

Z
X

Y f d/f dV ; ð10Þ

Emc ¼
Z t

0

Z
X

Y m d/m

dt
dV dt ¼

Z /m

0

Z
X

Y m d/m dV ; ð11Þ

Edb ¼
Z t

0

Z
X

Y d d/d

dt
dV dt ¼

Z /d

0

Z
X

Y d d/d dV ; ð12Þ

W def ¼
Z t

0

Z
X

Sab
dEab

dt
dV dt; ð13Þ

K t
e ¼

Z
X

q
2
ðv2

x þ v2
y þ v2

z ÞdV ; ð14Þ

Edl ¼ W ef � ðW def þ K t
e þ Efb þ Emc þ EdbÞ: ð15Þ

The summation in Eq. (9) is over all nodes on the top sur-
face of the laminate where pressure is applied. Eq. (15) fol-
lows from the balance of energy.

4. Results and discussion

The mathematical model described above is applied to
the problem schematically shown in Fig. 1. A 220 mm ·
220 mm · 10 mm AS4/PEEK composite panel has the fiber
volume fraction V f equal to 0.6. These dimensions equal
those of the test specimen of Turkmen and Mecitolu [11]
who studied the dynamic response of a laminated compos-
ite subjected to air blast loads, and are of the same order of
magnitude as those employed in other tests [1,12,13]. Val-
ues of material parameters for the fiber and the matrix
P(r, t) 

X1

X3

X2

220 mm 10 mm

220 mm
Clamped on all 4 sides 

4 plies

Fig. 1. Schematic sketch of the problem studied.
and those of parameters in damage relations (2)–(4) are
given in Tables 1 and 2 of [5]. The 4-ply panel, clamped
at all four edges, is divided into 8-node brick elements with
finer elements in the central portion. A FE discretization of
the domain, exhibited in Fig. 2, has smaller elements near
the center of the panel and coarser elements elsewhere.
The load due to air blast explosion is simulated by applying
a time-dependent pressure field P(r, t) on the top surface of
the specimen; the exponential decay of the peak pressure at
r = 0 with time t, and at any instant its spatial variation are
Fig. 3b. For a fixed value of time t, pressure distribution over specimen’s
top surface.
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exhibited in Figs. 3a and b. Here r equals the distance of a
point from the center of the plate’s top surface. The peak
pressure and its decay rate depend upon the charge weight,
charge type, and the distance of the point of detonation
from the target [14,15]. The spatial variation of P derived
from the experimental work of Turkmen and Mecitolu
[11] is taken to be

P ðr; tÞ ¼ ð�0:0005r4þ 0:01r3� 0:0586r2� 0:001rþ 1ÞP ð0; tÞ;
ð16Þ

where r is the distance, in cm, from the specimen center.
The load considered here, unless otherwise specified, is
due to 64 kg of TNT detonated in air at a distance of
10 m from the target plate.

Effect of mesh size: For one loading, we used the follow-
ing four FE meshes: 20 · 20 · 4 (1600 elements, 2205
nodes), 20 · 20 · 8 (3200 elements, 3969 nodes), 40 · 40 ·
4 (6400 elements, 8405 nodes), and 40 · 40 · 8 (12,800 ele-
ments, 15,129 nodes), with each mesh being fine in the cen-
tral portion of the specimen; e.g. see Fig. 2. Results were
computed until 220 ls. The maximum tensile and compres-
sive principal stresses found with the four meshes differed
at most by 11% and 13.7% respectively. Values of Wdef cal-
culated using Eq. (13) were found to be 378.13, 408.19,
397.91 and 405.15 J and differ at most by 7%. These num-
bers give an estimate of the error in results presented and
discussed below with the 20 · 20 · 4 FE mesh. Because of
the fewer computational resources needed for analysis with
this mesh, one can quickly find variables to which the
impact damage is most sensitive. If desired, subsequent
high fidelity computations can be performed with succes-
sively finer meshes to improve the design of damage resis-
tant panels.
Fig. 4a. Energy dissipated in the four failure
In [5] we focused on delineating effects of fiber orienta-
tion on the damage induced in the laminate. Here we study
how the lay-up sequence, target thickness, elastic moduli of
the fiber and the matrix, fiber volume fraction, boundary
conditions, sandwich construction, hybrid structures, and
explosive type influence damage induced in the composite
laminate.
4.1. Lay-up sequence

We first analyze deformations of two-ply, and then four-
ply laminates. For the two-ply laminated composite, we
have studied the following eight lay-up sequences: 0�/90�,
90�/0�, 45�/�45�, �45�/45�, 0�/45�, 45�/0�, 90�/45�, and
45�/90�; these are called lay-ups 1 through 8, respectively,
in the following discussion.
4.1.1. Two-ply laminates
For the eight stacking sequences, Fig. 4a shows the

energy dissipated in the four failure modes; it is evident
that for each lay-up of the two plies most of the input
energy due to work done by applied loads is dissipated in
delaminating the two layers, and the least in breaking the
fibers. The 45�/0� sequence has the most energy dissipated
due to delamination, and the energy dissipated due to
matrix cracking is essentially the same for the 0�/90�,
90�/0�, 45�/�45� and �45�/45� laminates. However, the
energy dissipated due to matrix cracking in the 0�/45�,
45�/0�, 90�/45� and 45�/90� laminates is nearly 20% of that
in the other four laminates studied.

For the eight lay-ups of plies, we have plotted bar charts
in Fig. 4b for the W ef, W def and the K t

e at the terminal value
220 ls of the time t. The W ef in each one of the first four
modes for different stack up sequences.



Fig. 4b. Total work done, strain energy, and kinetic energy for different stack up sequences.

Fig. 4c. Evolution of energy dissipation due to delamination for [45/90] stack-up sequence.
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lay-ups is essentially the same, and is a little higher than that
in each one of the last four sequences. The Wdef for the first
two lay-up of plies is slightly higher than that for the
remaining six lay-ups, and the K t

e for the 45�/�45� and
the �45�/45� laminates is a little higher than that for the
other six lay-ups of plies. Fig. 4c depicts time history of
the Edl for the 45�/90� laminate. After the initial parabolic
rise, the energy dissipated increases essentially linearly.

4.1.2. Four-ply laminates
For the four-ply laminates, we examined the following

nine sequences: [0�/45�/90�/�45�], [�45�/0�/45�/90�], [90�/
�45�/0�/45�], [45�/90�/�45�/0�], [0�/45�/�45�/90�], [0�/
90�/45�/�45�], [0�/90�/�45�/45�], [0�/�45�/45�/90�] and
[0�/�45�/90�/45�]; fiber orientations in plies are given in
going from the top layer to the bottom layer. Time histories
of the deflection of the specimen centroid, not included
herein but given in [16], indicated that deflections for the
[0�/90�/45�/�45�] and [0�/90�/�45�/45�] laminates are
nearly the same, and they are smaller than those for the
other seven lay-ups. The centroidal deflections for the
[0�/45�/�45�/90�] and [0�/�45�/45�/90�] laminates are lar-
ger than those for the remaining seven laminates.

From plots of Fig. 5a, we deduce that the E dl is maxi-
mum for the [0�/45�/90�/�45�] laminate, and for this lam-
inate it is significantly more than E fb, E mc and E db.
However, for the [�45�/0�/45�/90�] laminate, the E dl is
negligible as compared to that in other modes of failure,
and is the least of the E dl 0s for the nine laminates. The
E mc is very high for the [�45�/0�/45�/90�] and [45�/90�/
�45�/0�] laminates; it is comparable to the E dl for several
other laminates.

For the nine laminates, we have plotted in Fig. 5b the
W ef, W def, and the K t

e at t = 220 ls. It is evident that the
W ef is maximum for the [0�/45�/90�/�45�] laminate, and
the K t

e is minimum for the [0�/90�/�45�/45�] laminate.
All four failure modes can be delayed by placing the 45�

plies at the bottom of the laminate to resist fiber fracture,



Fig. 5a. For the nine stack-up sequences of four-ply laminates, energy dissipated in different failure modes.

Fig. 5b. For the nine stack-up sequences of the four-ply laminates, total work done by external forces, strain energy required to deform the body, and the
change in the kinetic energy.
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and the 0� or the 90� plies at the top of the laminate to
resist delamination. The fiber/matrix debonding damage
developed the last for the [0�/90�/�45�/45�] and the
[0�/90�/45�/�45�] laminates, and the earliest for the [0�/
�45�/45�/90�] composite (Fig. 6a). The time of initiation
of the matrix cracking damage variable for the [0�/90�/
�45�/45�] and [0�/90�/45�/�45�] laminates is the maxi-
mum, and it is minimum for the [45�/90�/�45�/0�] and
the [�45�/0�/45�/90�] laminates (Fig. 6b). The fiber break-
age damage variable developed the last for the [0�/45�/
�45�/90�] and [0�/�45�/45�/90�] laminates and soonest
for the [0�/�45�/90�/45�] and [0�/45�/90�/�45�] laminates
(Fig. 6c). In each case, except for delamination, the failure
mode that initiated first caused the maximum energy
dissipation.

4.2. Target thickness

When studying the effect of target thickness in resisting a
shock load, we assumed that it is comprised of four uni-
form 0� plies, and varied the thickness of each layer. In
each case results were computed for load duration of
220 ls, and the maximum centroidal deflection occurred
at t = 220 ls. It is clear from the maximum centroidal
deflection for different target thicknesses plotted in
Fig. 7a that the centroidal deflection decays exponentially



Fig. 6. For different stack-up sequences, time histories at the specimen centroid of (a) fiber breakage, (b) matrix cracking, and (c) debonding damage
variable.
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with an increase in the target thickness. Results plotted in
Fig. 7b show that the E dl decreases exponentially and is
maximum for the thinnest target; however, the W ef is not
a monotonic function of the target thickness – it first



Fig. 7a. Vertical displacement of the specimen centroid versus the normalized target thickness.

Fig. 7b. Energy dissipated in different failure modes versus the target thickness.
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increases with an increase in the target thickness, and then
decreases as the target is made thicker. For the 25-mm and
thicker targets, the applied load is not sufficient to cause
rapid deformations of material particles; thus the total K t

e

of the target is miniscule as compared to the Wef nearly
all of which is used to deform the laminate.

4.3. Elastic moduli of the fiber and the matrix

We analyze deformations of a [0�]4 composite, and
assess the effect of changing only one of the following
material moduli at a time: (i) fiber’s Young’s modulus,
(ii) matrix’s Young’s modulus, (iii) fiber’s shear modulus,
and (iv) matrix’s shear modulus. Recall that the elastic
moduli of the composite are computed from those of its
constituents; thus one or more of five elastic constants of
a layer will alter even if one of the elastic moduli of either
the fiber or the matrix is modified. We note that values of
parameters in the damage evolution Eqs. (2)–(6) and their
critical values at failure are taken to be unaffected by a
change in fiber’s and matrix’s elastic moduli. An increase
in the elastic modulus will enhance the wave speed, help
propagate quickly the impact load, and more of the lami-
nate material will contribute to resisting the applied load.

Time histories of specimen’s centroidal deflection,
plotted in Fig. 8a, reveal that an increase in fiber’s Young’s
modulus decreases noticeably the vertical displacement
of laminate’s centroid. With an increase in fiber’s elastic



Fig. 8. For two values of fiber’s elastic modulus, time histories of evolution at the laminate centroid of (a) the deflection, (b) the debondnig damage
variable, and (c) the matrix cracking damage variable.
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modulus to five times its original value, the shape of the
centroidal deflection versus time curve changes from con-
cave downward to concave upwards. Also, for the stiffer
fibers the vertical deflection plateaus at about 180 ls as
opposed to continuing to increase with time for the regular
fibers.

Time histories of evolution at laminate’s centroid of the
damage variables corresponding to the fiber breakage,
fiber/matrix debonding (Fig. 8b), and matrix cracking
(Fig. 8c) reveal the following. The two curves for the fiber
breakage are essentially identical till �170 ls when fibers
with the lower Young’s modulus broke but those with
the higher one did not. The increase in fiber’s Young’s
modulus gives slightly different rates of evolution of the
/d, and delays the initiation of the matrix cracking damage
by about 25 ls. These results are in qualitative agreement
Fig. 9. For two values of the matrix elastic modulus, time histories of evolutio
matrix cracking damage variable.
with those of Sierakowski and Chaturvedi [17] who stated
that the /d is mainly related to fiber’s properties.

Decreasing Young’s modulus of the matrix material to
one-fifth of its value had virtually no effect on the time his-
tory of evolution of specimen’s centroidal deflection, and
evolution there of the /f and the /d (Fig. 9a). However,
it delayed the initiation of the /m (cf. Fig. 9b). These results
agree qualitatively with the experimental observations of
Mouritz [2] who found that a toughened polymer–matrix
increases the interlaminar strength of the laminate but does
not increase much its resistance to impact loads. We note
that Sierakowski and Chaturvedi [17] found that the matrix
properties influence delamination and matrix cracking.

Increasing fiber’s shear modulus by a factor of five has
virtually no effect on the centroidal deflection of the lami-
nate, and the /m. However, from results plotted in
n at the specimen’s centroid of (a) the fiber/matrix debonding, and (b) the
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Fig. 10a and b we conclude that it delays the initiation of
the /f and enhances the initiation of the /d.

Increasing the matrix shear modulus by a factor of five
reduces noticeably specimen’s centroidal deflection as
depicted in Fig. 11a, and enhances both the time of initia-
tion and the rate of growth of the /d as documented in
Fig. 11b. It has virtually no effect on the evolution of the
/m, but it delays the initiation of the damage due to fiber
breakage as exhibited in Fig. 3.64 of [16].

4.4. Fiber volume fraction

For the [0�]4 composite, Figs. 12a and b present the effect
of the fiber volume fraction V f on the W ef ;W def ;K t

e;E
fb;Emc
Fig. 10. For two values of fiber’s shear modulus, time histories of evolution at s
damage variable.
and E db. It is evident that with an increase in V f the W ef

decreases affinely, the K t
e quadratically, and the W def stays

virtually unchanged. The E mc is essentially zero except
when V f equals 0.8. Whereas the E db increases monotoni-
cally with an increase in the V f, the E dl attains a minimum
value when V f = 0.6, and then increases. The E fb has a
maximum value at V f = 0.45 and has a parabolic variation.

4.5. Boundary conditions

In an attempt to assess the effect of boundary conditions
on deformations of a composite laminate, we have ana-
lyzed the response of [0�]4 and [45�]4 laminates that are
either clamped at the edge surfaces or have null deflections
pecimen’s centroid of (a) the fiber breakage damage, and (b) the debonding



Fig. 11. For two values of the matrix shear modulus, time histories at specimen’s centroid of evolution of (a) the centroidal deflection, and (b) the
fiber/matrix debonding damage variable.
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at the boundaries of the bottom surface (i.e., u3 = 0 for
points on the plane X3 = 0 that are on the lines X1 = 0,
X1 = 220 mm, X2 = 0, and X2 = 220 mm); the latter are
called below simply supported (SS) edges. For clamped
edges the delamination begins at the edges and subse-
quently occurs at the laminate centroid. However, for a
SS laminate, delamination starts at the specimen centroid.
Furthermore, delamination initiates earlier for the clamped
edges as compared to that for the SS edges. For each one of
the two laminates and the two boundary conditions, the
W ef, W def and the K t

e at the terminal time of 220 ls are
depicted in Fig. 13a as bar charts. These reveal that the
W ef and the final K t

e are lower while the W def is higher
for a SS composite than those for a clamped one. The
energy dissipated in each one of the four failure modes
for a SS laminate is lower than that for a clamped laminate;
e.g. see Fig. 13b. Also, in each case, the E del is considerably
higher than E fb, E mc and E db. Only about 0.12W ef is dis-
sipated in the four failure modes.

4.6. Sandwich structures

We now delineate benefits, if any, of sandwich construc-
tion for resisting impact loads by studying the response of
four isotropic core materials embedded between 0� fiber
reinforced face sheets; the four core materials are low car-
bon, aluminum, high carbon and a hypothetical one. For
comparison purposes, we also study the response of a [0�]4



Fig. 12a. Total work done, strain energy and kinetic energy for different fiber volume fractions.

Fig. 12b. Energy dissipated due to different failure modes versus the fiber volume fraction.
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laminate, and a hypothetical foam with negative Poisson’s
ratio. All edge surfaces of the specimen are clamped. Proper-
ties of materials of the core, taken from the literature, are
obtained from test data derived from either split Hopkinson
pressure bar tests or uniaxial compression tests conducted at
different strain rates. Axial stress versus axial strain curves
for the three foams deformed in uniaxial compression are
exhibited in Fig. 14a. Due to lack of information about the
behavior of the foams in tension and under other loading
conditions that is needed to find values of material parame-
ters of anisotropic foams, we assume that the foam is homo-
geneous and isotropic. Poisson’s ratio for each foam is taken
to be 0.22, and Young’s modulus of the foam to be given by
E = E1 = E2 = E3 = Em(1�/m) where values of E m and /m

at different values of the axial strain are determined from the
slope of the axial stress–axial strain curve depicted in
Fig. 14a. The variation of E with the axial strain is evinced
in Fig. 14b. For numerical simulations, the core structure
is modeled as a composite material with V f = 0, and the deg-
radation in its modulus is due to the evolution of the (ficti-
tious) matrix cracking variable. Note that the axial strain
at failure for two of the three foams is greater than 0.6. How-
ever, we have modeled structure’s response till an axial strain
of 0.6 and assumed that the foam then fails. The strain
energy density till failure of the high-strength carbon foam
is much higher than that of the other two foams. We also



Fig. 13. For two types of boundary conditions and for the two laminates, (a) total work done, strain energy and kinetic energy, (b) energy dissipated in
different failure modes.

Fig. 14a. Axial stress–axial strain curves of three foams for compressive axial loading.

R.C. Batra, N.M. Hassan / Composites: Part B 39 (2008) 513–536 527



Fig. 14b. Variation of Young’s modulus with axial strain for three foams.

Fig. 14c. For the five structures, time histories of evolution of the matrix cracking damage variable at structure’s centroid.
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consider a hypothetical isotropic foam having E = 0.1 GPa,
and m = �0.6. We assume that the delamination between a
face sheet and the core occurs at a point on their interface
when the state of stress there satisfies the same failure enve-
lope as that for the laminated composite. Furthermore, val-
ues of strength parameters in the failure envelope are taken
to be the same as those between two adjoining layers of a
laminate. Thus, computed results are approximate and pro-
vide preliminary information regarding the performance of
different cores.

Time histories of specimen’s centroidal deflection till
t = 220 ls showed that the final deflection is the same for
the four sandwich structures, and it is lower than that for
the [0�]4 laminate. However, as can be seen from time his-
tories of evolution of the /m at the specimen centroid plot-
ted in Fig. 14c, the core material noticeably influences the
growth rate of the matrix cracking and also when it initi-
ates. Whereas the /m suddenly increases to 1.0 at
t = 130 ls for the [0�]4 laminate, it grows gradually in the
sandwich structures. It was found (e.g. see [16]) that the
W ef, W def and the K t

e are the same for all five structures.
The balance of energy implies that the total energy dissi-
pated in the four failure modes is also the same for the five
structures. However, as documented in Fig. 14d, energies
dissipated in different failure modes vary widely for them.
For the structure without a core, and for structures with



Fig. 14d. Energy dissipated in different failure modes for five sandwich structures.

Fig. 15a. Work done, strain energy, and the final kinetic energy for laminates bonded to a steel plate.
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low and high-strength carbon cores, most of the energy is
dissipated in delamination, while for the structure with
the aluminum foam core, E del and E mc are nearly the
same.

4.7. Composite laminates bonded to a steel plate

In an attempt to see how deformations of the laminate
and energy dissipated in it are affected in applications
where it is likely to be bonded to a metallic plate, we have
investigated response of a hybrid structure comprised of
either the [0�/90�/45�/�45�] or the [�45�/0�/45�/90�] lami-
nate bonded to a homogeneous and isotropic steel plate
having E = 200 GPa, and m = 0.3. The afore-given results
show that the [0�/90�/45�/�45�] laminate had the maxi-
mum and the [�45�/0�/45�/90�] the minimum energy dissi-
pated in all failure mechanisms. The total thickness of the
hybrid structure was taken to be either 10 mm or 30 mm
with the ratio of the thickness of the steel plate to that of
the composite laminate equal to 2. It was assumed that
the delamination strength between the composite and the
steel equaled that between two plies of the laminate. There
is no damage evolution in the steel plate. Fig. 15a shows
that for the same applied pressure load, adding a steel plate
to the bottom layer of the laminate decreases the W ef, the
W def, and the K t

e, and increasing the target thickness fur-
ther reduces them. The energy dissipated in different failure
modes, plotted in Fig. 15b, also decreases with the addition



Fig. 15b. Energy dissipated in different failure modes for laminates bonded to a steel plate.
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of the steel plate. This is because the steel plate drastically
reduces deflections of the hybrid structure, and energy
required to deform the steel plate consumes most of the
W ef which is also substantially decreased because of very
little displacements of points of application of loads.

4.8. Explosive type

We now investigate transient deformations of the
clamped [0�]4 laminate exposed to blast loads induced by
three other explosives, HBX, PETN and nuclear, each
having a mass of 64 kg, and detonated at the same stand-
off distance R = 10 m and angular position h = 0�. Refer-
ring the reader to [5,14–16] for details, we have used Eqs.
Fig. 16a. The decay with time of the pressure acting at the centroid of the
W = 64 kg and R = 10 m.
(18) and (19) of [5] and values of parameters in Table 3 of
[5] to plot in Fig. 16a the decay with time of the pressure act-
ing at the centroid of the top surface of the laminate for the
TNT, the HBX and the PETN explosives. For the nuclear
explosive the pressure rises to 3.8 GPa in about 5 ls and
essentially stays unchanged for the duration of the compu-
tation. The peak pressure induced by the nuclear explosive
is nearly 200 times that for the other three explosives.

Computed time histories of specimen’s centroidal deflec-
tion and of the evolution of the three damage variables
there (e.g. see Fig. 16b and c) show that the response of
the laminate to loads produced by the HBX and the PETN
are the same but are quite distinct from that produced by
the nuclear explosion. For loads produced by the HBX,
top surface of the laminate for TNT, HBX, and PETN explosives with



Fig. 16b. Time histories of evolution of the debonding damage variable at laminate’s centroid for three explosives.

Fig. 16c. Time histories of evolution of the matrix cracking damage variable at laminate’s centroid for three explosives.
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the PETN and the TNT, Fig. 16d compares the W ef, W def

and the K t
e. Whereas the W ef is the same for the three

explosives, the other two energies are different. The K t
e

and the W df are equal to each other for the TNT explosive.
However, for the HBX and the PETN explosives, the final
K t

e equals about 75% of the W def. For deformations caused
by the explosion of the nuclear device, the composite fails
very quickly due to complete delamination coupled with
early initiation and rapid growth of the fiber/matrix deb-
onding and matrix cracking, and very little centroidal
deflection and fiber breakage. For the laminate subjected
to loads produced by the nuclear explosion, Fig. 16e
depicts at two times the delaminated area and fringe plots
of the matrix cracking damage variable.

4.9. Stand off distance

The standoff distance, R, represents how far the
explosive is from the target, and for a given weight of an
explosive, affects the peak pressure exerted on the target
and the decay rate of the pressure. Even though the shock
wave profile also varies with the distance R, we have pre-
sumed that it is planar for R = 1, 10, 100 and 1000 m.
For R = 1 and 100 m, the centroidal deflection equals



Fig. 16d. Total work done by external forces, strain energy, and the final kinetic energy for three explosives.

Fig. 16e. Delaminated area, and fringe plots of the matrix cracking damage variable in the laminate subjected to loads caused by the nuclear explosion.
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10 mm and 0.05 mm respectively. Except for R = 10 m, the
damage due to fiber breakage was negligible either because
other three failure modes were dominant or the load was
not high enough (e.g. for R = 1 km) to cause any damage.
Time histories of /d and the /m plotted in Figs. 17a and b
show that the value of R significantly affects when and how
fast the damage variables evolve. For R = 1 and 10 m, the
damage due to the TNT explosive is similar to that pro-
duced by the nuclear explosive discussed above.
4.10. Explosive mass

For R = 10 m, peak pressures produced by 2.5, 64, 550,
3000 and 17500 kg of TNT equal 5, 40, 80 and 160 MPa
respectively. Deformations of a clamped laminate due to
these loads have been studied. With an increase in the mass
of the explosive, damages due to fiber/matrix debonding
and matrix cracking overtake that due to fiber breakage;
e.g. see Fig. 18. For a large mass of the TNT explosive that



Fig. 17. For four values of the stand-off distance R time histories of the (a) fiber/matrix debonding, and (b) matrix cracking damage variable at laminate’s
centroid.
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generates peak pressures greater than 0.04 GPa, the failure
modes are similar to those induced by nuclear loading for
which the structure failed primarily due to delamination.
This agrees qualitatively with Iannucci et al.’s [18] observa-
tion that as the impact energy increases to ballistic levels,
generally only local delamination occurs.

5. Limitations of the model

We have used three internal variables to simulate matrix
cracking, fiber breakage, and fiber/matrix debonding, and
a failure envelope to model the initiation of delamination
between two adjoining layers. Thus failures due to fiber
pull out, fiber kinking, fiber buckling, and matrix crushing
have not been considered. Furthermore, composites with
unidirectional fiber reinforcements have been studied. Thus
results are not applicable to stitched composites, woven
composites, and to composites reinforced with either
curved and/or randomly distributed short fibers.
The theory of internal variables employed here homog-
enizes the damage, enables one to compute easily energies
dissipated in different failure modes, and allows for interac-
tions among various failure modes. However, it does not
simulate cracked surfaces and fiber/matrix debonded areas
as traction free surfaces; cracked surfaces are modeled as
traction free in [20,21]. Effects of friction between two slid-
ing surfaces subsequent to delamination have also not been
considered.

6. Generalization of the work

The work presented here can be easily extended to
include thermal effects and thus consider coupling among
thermal and mechanical deformations. The consideration
of microstructural effects in foams used as reinforcements
in sandwich structures is more challenging and will require
multiscale analysis. The evolution of porosity in the matrix
can be simulated by using damage relations given in [22].



Fig. 18. For five values of the charge mass, time histories of the (a) centroidal deflection, (b) matrix cracking, and (c) debonding damage variable at
laminate’s centroid.
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For thick composites having numerous plies, the fiber
orientation angle can be varied slowly from one ply to
the next resulting in a functionally graded (FG) laminate;
e.g. see [23] where natural frequencies of such a laminate
have been computed. It still remains to be investigated
whether or not a FG laminate will have higher energy dis-
sipation than an equally thick one but with discontinuous
variation of the fiber orientation angle.

The analysis of transient deformations of thick lami-
nates by the FEM can be computationally expensive both
because of the effort required to generate the FE mesh
and pre- and post-process the data. It may be more econ-
omical to use a theory of thick plates, e.g. see [24], and
use a meshless method like that employed in [25,26] to ana-
lyze transient thermomechanical deformations of a plate.
The challenging tasks here are to incorporate effects of
the failure modes in the plate theory.
7. Conclusions

The mathematical model developed previously for ana-
lyzing transient deformations of a composite subjected to
shock loads, and a modular computer code, in Fortran,
to find numerically an approximate solution of the perti-
nent initial-boundary-value problem have been used to
analyze transient deformations of a laminated composite.
The problem formulation includes evolution of damage
due to fiber breakage, fiber/matrix debonding, matrix
cracking, and delamination. Values of material parameters
for the AS4/PEEK composite were determined from the
test data available in the literature. Energies dissipated in
these failure modes are computed, and the effect on them
of various geometric, material, and loading parameters
has been examined. Following conclusions can be drawn
from this work.

� Approximately 15% of the total work done by external
forces is dissipated in the four failure modes.
� Both for the [0�]4 and the [45�]4 laminated composites,

the energy dissipated due to delamination for clamped
edges is nearly twice of that for simply supported edges.
About 43% of the energy input into the structure is used
to deform it, and the remaining 42% is converted into
the kinetic energy. For clamped laminates, these propor-
tions strongly depend upon the fiber orientation angle.
� The fiber orientation influences when and where each

failure mode initiates and its direction of propagation.
� Debonding between fibers and the matrix occurs along

the fibers rather than in a direction perpendicular to
the fibers. For clamped edges, the debonding damage
variable starts from the edges perpendicular to the fibers
and propagates, along the fibers, towards the center; it
propagates in the thickness direction instantaneously
most likely due to thin laminates studied herein.
� Matrix cracking damage variable initiates first at the

center of the back surface, where there are high tensile
stresses developed, and propagates faster along the
fibers than in the transverse direction.
� Fiber breakage is concentrated at points near the speci-

men’s centroid that are along the X2-axis.
� The energy dissipated due to matrix cracking is minis-

cule as compared to that in any of the other three dam-
age modes. The fraction of the total work done by
external forces dissipated due to various failure mecha-
nisms has the maximum value of nearly 22% for fiber
orientations of 30� and 60�, of which �10% is due to
delamination.
� The stacking sequence strongly influences energies dissi-

pated in different failure modes.
� The target thickness determines the dominant failure

mode. The fraction of energy dissipated due to delami-
nation failure mode decreases exponentially with an
increase in the target thickness, and has the maximum
value for the thinnest target.
� Increasing fiber’s Young’s modulus results in slightly

different rates of evolution of the fiber/matrix debonding
damage variable, and delays the initiation of the matrix
cracking damage. Increasing fiber’s shear modulus
delays the initiation of the fiber breakage variable and
enhances the initiation of the fiber/matrix debonding
damage variable. Increasing the matrix shear modulus
reduces noticeably specimen’s centroidal deflection,
enhances both the time of initiation and the rate of
growth of the fiber/matrix debonding damage variable,
and delays the initiation of the damage due to fiber
breakage.
� An increase in the fiber volume fraction decreases affi-

nely the total work done by external forces, decreases
parabolically the kinetic energy, and has virtually no
effect on the energy required to deform the body.
� For deformations caused by the explosion of a nuclear

device, the composite fails very quickly due to complete
delamination coupled with early initiation and rapid
growth of the fiber/matrix debonding and matrix crack-
ing, and very little centroidal deflection and fiber
breakage.
� Laminate’s deformations for non-nuclear explosives det-

onated close to it are similar to those induced by a
nuclear explosion.
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