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Abstract

We postulate that dominant damage modes in a fiber-reinforced laminated composite are fiber breakage, matrix cracking, fiber/
matrix debonding, and delamination/sliding. The first three damage modes are represented by internal variables with their development
governed by constitutive relations. The delamination/sliding failure mode is presumed to initiate at a point on an interface between two
adjoining layers when the transverse shear and the transverse normal stresses there are on a failure surface defined in the stress space.
Equations expressing the balance of mass, the balance of linear momentum, the balance of moment of momentum, material response,
and those giving the development of damage are simultaneously solved numerically under prescribed initial and boundary conditions to
find an approximate solution of a transient 3-dimensional initial-boundary-value (IBV) problem. Values of material parameters for the
AS4/PEEK composite are determined from experimental data available in the literature. The developed mathematical model has been
validated by comparing computed results, for several IBV problems different from the ones used to find values of material parameters,
with the corresponding experimental results available in the literature.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Damage in composites, which often is undetectable,
includes matrix cracks, fiber breakage, fiber/matrix deb-
onding, and delamination/sliding of two adjoining layers.
Even when the damage does not cause catastrophic failure,
it significantly reduces structural stiffness. Many research-
ers, for example VinÇon et al. [1], Vogler and Kyriakides
[2], Stout et al. [3], Gilbert et al. [4], Steeves and Fleck
[5], have experimentally studied the failure of polymeric
composites. Other investigators, e.g. Matzenmiller et al.
[6], Zhu and Cescotto [7], Voyiadjis and Deliktas [8], Zhu
and Sun [9], Espinosa et al. [10], Williams and Vaziri
[11], Tang et al. [12], Maa and Cheng [13], have employed
numerical and analytical methods to predict damage initi-
ation and propagation in composite structures. It is com-
mon to assume that damage initiates at a point when the
state of deformation and/or stress there lies on a damage
envelope defined in terms of the equivalent stress, or the
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equivalent strain, or their combination. The moduli are
assumed to degrade with the development of damage till
they become zero, and the material point then is taken to
have failed completely. Other criteria for predicting dam-
age include a fracture mechanics approach based on the
energy release rate, or a distributed damage mechanics
approach involving an evolution equation for damage that
must be integrated together with equations of motion.

Continuum Damage Mechanics (CDM), initiated by
Kachanov [14], and Rabotnov [15], assumes that a micro-
mechanical process can be treated at a macro-level by
homogenizing the damage over a Representative Volume
Element (RVE) since the damage manifests itself as a distri-
bution of voids in the material. Coleman and Noll [16]
developed a thermodynamic theory of materials with inter-
nal variables; an internal variable is non-observable, is
obtained from an evolution law, and may be associated
with a damage variable. Talreja [17] identified damage with
the gradual deterioration of a material due to the initiation
and growth of micro-cracks and micro-voids. Ladveze [18]
followed a similar approach, and used CDM to describe
the deterioration of a material’s strength. In addition, an
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elasto-plastic material behavior with no coupling between
the damage and the plastic deformations was assumed with
elastic deformations obeying Hooke’s law. Zhu and Cesc-
otto [7] developed a CDM theory for anisotropic elastovi-
scoplastic materials undergoing finite strains, and studied
their ductile fracture. Matzenmiller et al. [6] proposed,
for a lamina, a CDM based model with three damage
parameters; two associated with the in-plane principal lam-
ina directions, and the third representing the effect of dam-
age in shear. Barberis et al. [19] implemented CDM in an
existing finite element (FE) code to predict progressive
damage growth in laminated composites. The damage, rep-
resented by two scalar variables, was introduced in the con-
stitutive equation of the material to express the reduction
in stiffness. Voyiadjis and Deliktas [8] developed a coupled
incremental damage and plasticity theory for rate-indepen-
dent composites with von Mises yield criterion and the
associated flow rule to describe plastic deformations.

Zhu and Sun [9] described the rate-dependent behavior
of a polymeric composite during loading and unloading
with a three parameter overstress viscoplastic constitutive
relation. A multi-step relaxation procedure was used to
establish the equilibrium stress for both loading and
unloading. The model was used to predict the rate-depen-
dent loading, and unloading behavior of the IM7/5260
composite. A three-dimensional (3-D) finite deformation
anisotropic viscoplasticity model for fiber-reinforced com-
posites in total Lagrangian description of motion was pro-
posed by Espinosa et al. [10]. Nine coefficients in the plastic
potential, given by a quadratic function of the second
Piola–Kirchhoff stress tensor, were reduced to two by
assuming that the axially loaded fibers deform linear elasti-
cally up to failure, and fiber volume fractions in two prin-
cipal directions are equal to each other. Values of these
constants were experimentally determined through off-axis
tension, and out of plane shear tests. A power law rule was
used to account for the effect of strain rate and temperature
by defining the material strength in terms of an effective
stress that includes temperature, and strain rate terms.
They also conducted tests to determine parameters in the
viscoplastic relation, and found that it could not ade-
quately describe composite’s response after first failure.

First [20], second [21–26], and fourth-order [27–29] dam-
age tensors have been proposed to account for the anisot-
ropy of damage; even eighth order damage tensors were
proposed to account for the effect of crack shape, and orien-
tation [11]. Tang et al. [12] derived constitutive equations
for a damaged anisotropic elastic material undergoing infin-
itesimal isothermal deformations with damage functions
determined from micro-mechanics principles. An example
was given for the problem of distributed needle-shaped
micro-voids, and the solution of the micro-mechanical
problem was obtained by employing the Eshelby–Mori–
Tanaka scheme. However, effects of micro-crack closure,
and coupling of damage with plastic deformations were
not considered. Maa and Cheng [13] developed a CDM fail-
ure model for predicting the strength of notched composite
laminates. They considered damage due to fiber breakage,
matrix cracking, and fiber/matrix debonding, and adopted
associative flow rules, i.e., the damage, and the yield sur-
faces were taken to coincide with the corresponding poten-
tial surfaces. The material was assumed to be linear elastic,
and two terms were added to the free energy function to
describe the effect of accumulated matrix damage and accu-
mulated plastic shear strain. This model was used to predict
the ultimate failure load of a laminate containing a circular
hole.

The failure mechanisms, and processes on a micro-
mechanical scale vary with the type of loading, and are
intimately related to properties of its constituents, i.e.
matrix, fiber, and interface. Micro-level failure mechanisms
include fiber fracture, fiber buckling, fiber splitting, fiber
pullout, fiber/matrix debonding, and matrix cracking.
Accurate modeling of these failure mechanisms requires
too many internal variables, the identification of an inter-
nal variable with a failure mode is tedious, and the determi-
nation of material parameters from test data very arduous.
Here, a CDM approach with three scalar internal vari-
ables, /f, /m, and /d, denoting, respectively, the damage
accumulation in fiber (fiber fracture, fiber buckling, fiber
pullout), matrix cracking, and fiber/matrix debonding is
used. The scalar variables are related to the overall com-
posite constituent properties using a Mechanics of Materi-
als (MoM) appro-ach. The capacity of a material point to
support any load vanishes when all three damage variables
equal 1.0 there. Values of material parameters are deter-
mined for the AS4/PEEK composite by using test data
available in the literature. The delamination/sliding
between adjoining layers is simulated by postulating a
damage surface in terms of transverse normal, and trans-
verse shear stresses acting on an interface. When the stress
state at a point of the interface lies on this surface, delam-
ination is assumed to ensue from that point. Different case
studies are simulated to predict qualitatively, and quantita-
tively the failure modes. Computed numerical results are
found to compare well with experimental findings available
in the literature. The objective is to develop, and validate a
simple mathematical model, having few variables, for ana-
lyzing deformations of a composite that can predict rea-
sonably well different failure modes.

2. Problem formulation

2.1. Balance laws

In the referential description of motion, the balance of
mass, the balance of linear momentum, the balance of
moment of momentum, and the balance of internal energy
are

qðX ; tÞJðX ; tÞ ¼ qRðXÞ; ð1Þ
qR _vi ¼ T ia;a þ qRbi; ð2Þ
TFT ¼ ðTFTÞT; ð3Þ
qR _e ¼ �eQa;a þ T ia

_F ia þ qRs; ð4Þ
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where q is the mass density of the material particle X at
time t, qR its mass density in the reference configuration,
F the deformation gradient, J ” detFia 6¼ 0 the determinant
of the deformation gradient, T the first Piola–Kirchhoff
stress tensor, Tia,b ” oTia/oXb, b the body force per unit
mass, a superimposed dot indicates the material time deriv-
ative, e is the specific internal energy, eQ the heat flux per
unit area in the reference configuration, and s the specific
supply of internal energy. Eqs. (1)–(4) are to be supple-
mented by constitutive relations, initial conditions, and
boundary conditions. We assume that the constitutive rela-
tion for T identically satisfies the balance of moment of
momentum (3).

2.2. Constitutive relations

We use the theory of internal variables to describe dam-
age evolution in rate and temperature dependent bodies.
Let

n ¼ f/m;/f ;/dg; ð5Þ
be the ordered set of internal variables, and

x ¼ fY m; Y f ; Y dg; ð6Þ
be the ordered set of corresponding conjugate forces. We
follow Coleman and Noll’s [16] approach for deriving con-
stitutive relations from the second law of thermodynamics
or an entropy inequality, and assume that constitutive rela-
tions are such that when they are substituted into balance
laws, and the resulting field equations solved for the posi-
tion x, and the absolute temperature h, x and h satisfy
the Clausius–Duhem inequality. We postulate that w, S,eQ, g and e are functions of E = (FTF � 1)/2, _E, h,
G = Gradh, and n, follow the usual procedure (e.g. see
[16]), assume that _n does not depend upon _h, €E and _G,
and get

ow
oGa
¼ 0; g ¼ � ow

oh
;

ow

o _Eab

¼ 0; ð7Þ

where w = e � hg, denotes the specific Helmholtz free en-
ergy, S the second Piola–Kirchhoff stress tensor, and g
the specific entropy.

Let

SðE; _E; h;G ; nÞ ¼ SeðE; 0; h; 0; nÞ þ SneðE; _E; h;G; nÞ;

Se
abðE; 0; h; 0; nÞ � qR

ow
oEab

;
ð8Þ

and

xðE; _E; h;G ; nÞ ¼ xeðE; 0; h; 0; nÞ þ xneðE; _E; h;G ; nÞ;

xeðE; 0; h; 0; nÞ � �qR
ow
on
;

ð9Þ
where S e (equilibrium stress) denotes the value of the stress
tensor S at zero strain rate and zero temperature gradient,
and xe the value of the thermodynamic force x at zero
strain rate and zero temperature gradient. The tensor 1 is
the identity tensor, E the Green–St. Venant tensor, and
in terms of the displacement vector u,

Eab ¼
1

2

oua

oX b
þ oub

oX a
þ oui

oX a

oui

oX b

� �
: ð10Þ

Substitution from Eqs. (7)–(9)into the Clausius–Duhem
inequality gives the following dissipation inequality:

Den � Sne
ab

_Eab þ
X

i

xe
ðiÞ

_nðiÞ �
eQaGa

h
P 0: ð11Þ

Here, Den is the rate of energy dissipated per unit volume in
the reference configuration. It is evident that Den is mini-
mum when _Eab ¼ 0, _n ¼ 0, and G = 0. Therefore,

eQje ¼ 0; Kab ¼ �
oeQa

oGb

�����
e

P 0; ð12Þ

where fje indicates the value of f when _E ¼ 0, _n ¼ 0, and
G = 0, usually called an equilibrium state. That is, the heat
flux vanishes in the absence of temperature gradient, and
the thermal conductivity tensor, K, is positive semi-definite.

Henceforth we only consider isothermal processes;
therefore, we do not consider the energy equation.

Let W = qRw and

W ¼ C0
abEab þ

1

2
CabcdEabEcd; ð13Þ

where C0
ab ¼ C0

ba, Cabcd = Ccdab = Cbacd, and C0 and C are
functions of n. Eq. (13) provides a reasonable estimate of
the strain energy density W for composites since they fail
at rather small strains. The tensor C0 equals the stress in
the reference configuration, and C’s are elastic moduli of
the damaged material. Because of the indicated symme-
tries, there are 21 independent elastic moduli C. Substitu-
tions from Eq. (13) into Eqs. (8) and (9) gives

Se
ab ¼ C0

ab þCabcdEcd;

xe
ðiÞ ¼ Y eðiÞ ¼ �

oC0
ab

o/ðiÞ
Eab�

1

2

oCabcd

o/ðiÞ
EabEcd

 !
; i¼m; f ; d:

ð14Þ
Eq. (14)1 accounts for geometric nonlinearities; a material
described by it is usually called neo-Hookean. Batra [30]
has compared the response of an isotropic neo-Hookean
material with that of three other materials described by
constitutive relations that relate linearly a stress tensor to
a finite strain tensor. Values of elastic constants for a
neo-Hookean material are the same as those for a Hookean
material. Thus when deducing them from the experimental
data we assume that the composite material can be mod-
eled as Hookean. Henceforth we assume that the body is
initially stress free; i.e., Cab

0 = 0.

2.2.1. Constitutive relations for a unidirectional lamina
We assume that a lamina reinforced with unidirectional

fibers can be modeled as transversely isotropic with the axis
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of transverse isotropy perpendicular to the plane of the
lamina. We use rectangular Cartesian coordinates to
describe lamina’s deformations, and choose X1-axis aligned
with fibers, and X2- and X3-axes perpendicular to fibers;
these are usually referred to as the material principal direc-
tions. Thus there are five independent elastic constants out
of the 81 components of Cabcd. Components of matrix [C]
in terms of the more familiar elastic constants are given in
Refs. [31–35,45].

The matrix of elastic constants, the second Piola–Kirch-
hoff stress tensor, and the Green–St. Venant strain tensor
are transformed from the material principal directions to
global coordinate axes and vice-a-versa by using tensor
transformation rules; e.g., see [34,45].
2.2.2. Dependence of material parameters upon damage

variables

We employ the MoM approach to derive the depen-
dence of material parameters upon damage variables. As
mentioned above, values of material parameters for a
neo-Hookean and a Hookean material are the same, and
a constitutive relation for the former is obtained from that
of the latter when the infinitesimal strain tensor,

eij ¼ 1
2

oua
oX b
þ oub

oX a

� �
diadjb, in Hooke’s law is replaced by the

finite strain tensor, E. Thus without any loss of generality,
for finding values of material parameters from the test
data, we consider only infinitesimal strains. For infinitesi-
mal deformations, the three stress tensors namely, the first
and the second Piola–Kirchhoff stress tensors T and S, and
the Cauchy stress tensor r are equal.

The RVE composed of a single fiber embedded in a
matrix is used to find the dependence of material parame-
ters of a lamina upon the three scalar damage variables
/f, /m, /d by using the MoM approach. The failure behav-
ior under simple loading conditions observed experimen-
tally is first reviewed, and is then used to find the
dependence of material parameters upon the damage vari-
ables. For simplicity, the rectangular Cartesian coordinate
axes are assumed to be aligned with the material principal
directions.

The axial strength of a unidirectional lamina with fibers
aligned along the loading direction is typically controlled
by fiber’s ultimate strain/stress. Under longitudinal tension,
the phase with lower ultimate strain will fail first [32].
Agarwal and Broutman [35] have stated that in a unidirec-
tional composite subjected to increasing longitudinal tensile
load, failure initiates by fiber breakage at the weakest cross-
section, and additional fibers break subsequently. Under
longitudinal compression, failure is usually associated with
micro-buckling or kinking of fibers within the matrix. Fail-
ure of unidirectional composites loaded in the fiber direction
may be initiated by transverse splitting/debonding because
the transverse tensile strain resulting from Poisson’s effect
can exceed the ultimate strain of the composite [32].

Under longitudinal loading, we assume that fibers carry
most of the load, failure is determined by the breakage of
fibers in tension or their micro-buckling in compression,
and fiber breakage can be represented by reduction in the
load carrying cross-sectional area of the fiber (i.e. cross-sec-
tional area perpendicular to the direction of the applied
load) at the failure point. An RVE having a broken fiber
is evinced in Fig. 1a, the effective area of fibers in the
X2X3-plane equals (1 � Abf), where the area of broken
fibers, Abf, is given by Abf = /f Af, Af is the total cross-sec-
tional area of all fibers, /f = 0 for undamaged fibers, and
/f = 1 for totally damaged fibers. We assume strain com-
patibility between the two phases; it is often referred to
as the Voigt model or the isostrain analysis. That is,
eC

11 ¼ em
11 ¼ ef

11, where superscripts c, m and f on a quantity
signify its value for the composite, the matrix, and the fiber
respectively. It is equivalent to assuming that all points on
the two end faces of the RVE move axially by the same
amount. The axial stress in the composite material is given
by a weighted sum of the axial stress in each phase, and
using Hooke’s law, we get

EC
1 ¼ Ef

1V fð1� /fÞ þ Em
1 V m; ð15Þ

where E1 is Young’s modulus in the axial (or the fiber)
direction. Following the MoM approach, see e.g. Herako-
vich [33], we conclude that the effective axial Poisson’s
ratio, mC

13, is independent of the damage induced in the fiber
and the matrix, and follows the rule of mixtures. Similarly,
mC

12 is also given by the rule of mixtures, and is independent
of the damage induced in the fiber, and the matrix.

The transverse tensile loading of a unidirectional com-
posite causes high stress and strain concentrations in the
matrix, and at the matrix/fiber interface. As for longitudi-
nal tensile loading, failure ensues as isolated interfacial
micro-cracks that increase in number, and finally coalesce
into a catastrophic micro-crack [32] with minimal fiber
breakage. Under transverse compression, a unidirectional
composite may fail due to compressive failure in the
matrix, and/or fiber crushing [32].

Matrix cracking is represented by reduction in the cross-
sectional area of the matrix perpendicular to the applied
load; e.g., see Fig. 1b. The effective area of the matrix in
the X1X2-plane/X1 X3-plane is assumed to equal (1 � Abm),
where area of the cracked matrix, Abm, is given by
Abm = /m Am, Am is the cross-sectional area of the matrix
in the X1X2-plane/X1X3-plane, /m = 0 corresponds to
undamaged matrix, and /m = 1 to the totally damaged
matrix. Assuming that the composite is under a uniform
average transverse normal stress rC

22, the balance of forces
requires that rC

22A ¼ rm
22Að1� /mÞ ¼ rf

22A. Following the
MoM approach, see e.g. [33], we get the following equation
for the transverse modulus, EC

2 :

1

EC
2

¼ V f

Ef
2

þ V m

Em
2 ð1� /mÞ : ð16Þ

Under in-plane shear, a high stress concentration devel-
ops at the fiber/matrix interface that can cause shear failure
in the matrix and/or fiber/matrix debonding [32]. We



Fig. 1. Composite RVE with (a) broken fiber, (b) cracked matrix, (c) debonded fiber/matrix.
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assume that the damage parameter corresponding to the
fiber/matrix debonding equals the length, Ldf, of the fiber
that is separated from the matrix material (e.g., see
Fig. 1c) divided by the total length of the fiber. That is,
Ldf = /dLf, where Lf is the length of the fiber, /d = 0 for
the undamaged fiber/matrix bond, and /d = 1 for the
totally damaged fiber/matrix interface. The effective shear
modulus in the X1X2-plane is obtained in a manner similar
to the transverse modulus as

1

GC
12

¼ V f

Gf
12ð1� /dÞ

þ V m

Gm
12

: ð17Þ
In order to find the effective shear modulus in the X2X3-
plane, we assume that the shear forces applied on the X1X3-
and the X1X2-planes are uniform. Since the fiber is
embedded in the matrix, and the applied force is perpendic-
ular to the debonded length of the fiber, it is postulated that
all of the applied force is transmitted to the matrix and the
fiber, and no slippage occurs; rC
23 ¼ rm

23 ¼ rf
23. Therefore,

the effective shear modulus in the X2X3-plane is independent
of the debonding damage variable.
2.2.3. Damage variables

We postulate that

/f ¼ /fðY fÞ; /m ¼ /mðY mÞ; /d ¼ /dðY dÞ ð18Þ

are materially objective functions, and the functional
dependence is determined from test data. It is reasonable
to assume that the damage at a material point does not in-
crease while the material there is unloading as indicated by
a decrease in a suitable scalar measure of stresses and/or
strains. Here we assume that in the material principal axes,
/f, /m, and /d depend, respectively, on e11, e22, and e12.
Furthermore, we presume that a material point is unload-
ing if dje11j, dje22j, and/or dje12j there is negative. Thus,
for unloading from the state of deformation with strains
emax

11 , emax
22 and emax

12 ,
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d/f ¼ 0 if either dje11j < 0 or je11j < jemax
11 j;

d/m¼ 0 if either dje22j < 0 or je22j < jemax
22 j;

d/d ¼ 0 if either dje12j < 0 or je12j < jemax
12 j:

ð19Þ

These relations imply that the evolution of a damage vari-
able is being treated in a way analogous to that of incre-
mental plastic strains for an elastoplastic material.
Furthermore, during unloading from, and reloading to
the state of deformation corresponding to strains emax

11 ,
emax

22 and emax
12 , elastic constants are kept fixed at their values

for the state of deformation represented by emax
11 , emax

22 and
emax

12 .
2.2.4. Failure criteria

It is assumed that the failure due to fiber breakage,
matrix cracking, and fiber/matrix debonding occurs when
Y f, Y m, and Y d reach their critical values Y f

crit, Y m
crit, and

Y d
crit, respectively. Values for Y f

crit, Y m
crit, and Y d

crit depend
upon materials of the fiber and the matrix, sizing of fibers,
and possibly on the fabrication process; these are to be
determined from the experimental data.

In order to simulate delamination between adjoining
layers, cracks are allowed to propagate in the interface
between them, and they are assumed to be perfectly bonded
until a damage surface, defined by

Dd ¼
r33

½r33�

� �2

þ r13

½r13�

� �2

þ r23

½r23�

� �2

¼ 1; ðr33 P 0Þ;

ð20Þ

is reached. Here [x] denotes the ultimate value of the quan-
tity x. The failure envelope (20) depends on the transverse
normal, and the transverse shear stresses at the interface
between two adjoining layers. However, when r33 < 0, the
failure envelope (20) is modified to

Dd ¼
r13

½r13�

� �2

þ r23

½r23�

� �2

¼ 1; ðr33 < 0Þ; ð21Þ

and the two layers are allowed to slide relative to each
other.
2.2.5. Values of material parameters

The composite studied here is AS4/PEEK with V f = 0.6.
Materials of the fiber, and the matrix are assumed to be
isotropic; values of their parameters taken from Kyriakides
et al. [36] are given in Table 1. The procedure for deriving
expressions for the damage variables in terms of the conju-
Table 1
Values of material parameters of the fiber and the matrixa

Matrix (PEEK) Carbon fiber (AS4)

Poisson’s ratio 0.356 0.263
Young’s modulus (GPa) 6.14 214
Shear modulus (GPa) 2.264 84.7
Mass density (g/cm3) 1.44 1.78

a The matrix and the fiber are assumed to be isotropic.
gate forces from experimental stress–strain curves, also
taken from Kyriakides et al. [36] is described below.

The experimental stress–strain curve for AS4/PEEK
deformed in simple tension is exhibited in Fig. 2a; stress–
strain curves for transverse tension, and off-axis tests were
also used to derive values of elastic constants but are not
shown here. Kyriakides et al. [36] reported that the mate-
rial failed at the last value of the strain plotted in Fig. 2.
We assume that during uniaxial loading along the fiber
direction, all stress components except r11 identically van-
ish. The longitudinal modulus of the composite, E1, can
thus be computed from the axial stress–axial strain curve.
Fig. 2. (a) Experimental uniaxial stress–strain response of APC-2/AS4
composite lamina loaded in the fiber direction, (b) longitudinal secant
modulus of the composite versus axial strain, (c) fiber damage conjugate
variable versus fiber damage variable for uniaxial compression.



Table 2
Values of constants in Eqs. (27), (29), (31), (20) and (21)

Damage properties Tension Compression

Fiber breakage Af 1.931 GPa 0.197 GPa
Bf 1.931497 558
Y f

crit 0.0075 GPa 0.007535 GPa

Matrix cracking Am 1.356 · 10�10 GPa 0.01207 GPa
Bm 0.00193 174
Cm 0.37239 GPa 241 GPa
Dm 0.43665 0.195
Y m

crit 0.0005 GPa 0.011 GPa

Fiber/matrix debonding Ad 0.1437 GPa
Bd 0.00762
Cd 1.0022 GPa
Dd 0.37714
Y d

crit 5.48 · 10�2 GPa

Interfacial strengtha [r33] 0.078 GPa
[r13] 0.157 GPa
[r23] 0.157 GPa

a Values for the ultimate interfacial strength were obtained from a
composite data base site http://composite.about.com/library/data/blc-
as4apc2-1.htm.
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The axial stress versus the axial strain curve in uniaxial ten-
sion is nearly linear but that in uniaxial compression is
nonlinear. Using values of material parameters listed in
Table 1, Eq. (15) that relates the composite longitudinal
modulus E1 to that of the fiber and the matrix, the volume
fractions of constituents, and assuming no damage (i.e.,
/f = 0) at e11 = 0, we get composite’s longitudinal modulus
E1 = 130.86 GPa. It is higher than the 120.65 GPa com-
puted from the slope of the stress–strain curve of Fig. 2a
at e11 = 0. Possible sources of this discrepancy are that
/f 6¼ 0 at e11 = 0, and one or more of the assumptions made
to derive Eq. (15) is invalid. We note that a fabrication pro-
cess usually introduces defects, voids and/or residual stres-
ses that can not be easily relieved. Here we assume that
/f = 0 initially, and upon loading the longitudinal modulus
drops from 130.86 GPa more or less instantaneously to
120.65 GPa. However, for computational purposes, the lat-
ter value of the longitudinal modulus is assigned to an axial
strain of 0.002. Fig. 2b shows the longitudinal secant mod-
ulus, E1, (=r11/e11) as a function of the axial strain e11; it is
computed from the axial stress versus the axial strain curve
of Fig. 2a. It is not clear why the composite exhibits stiffen-
ing behavior in tension beyond an axial strain of 0.007 till
an axial strain of 0.011 when it fails. At failure, the secant
modulus is assumed to drop to zero within an infinitesimal
increment in the axial strain. The decrease in the secant
modulus in compression with increasing axial compressive
strain is possibly due to the microbuckling of fibers. Mag-
nitudes of the axial strain at failure in uniaxial tension, and
in uniaxial compression are nearly the same. Similar proce-
dure is adopted to arrive at the transverse secant modulus
variation with the magnitude of the transverse axial strain,
and of composite’s transverse modulus with shear strain.

Solving Eq. (15) for /f, Eq. (16) for /m, and Eq. (17) for
/d, we get

/f ¼ 1� ððE1 � Em
1 V mÞ=Ef

1V fÞ; ð22Þ
/m ¼ 1� ðV mE2Ef

2=Em
2 ðEf

2 � E2V fÞÞ; ð23Þ
/d ¼ 1� ðV f G12Gm

12=Gf
12ðGm

12 � G12V mÞÞ: ð24Þ

In Eqs. (22)–(24), E1, E2, and G12 vary with the correspond-
ing strain component. The expression (14)2 for the conju-
gate force Y(i) simplifies to

Y ðqÞ ¼ � 1

2

orij

o/ðqÞ
eij; q ¼ m; f ; d: ð25Þ

For uniaxial loading in the fiber direction, only r11 6¼ 0,
and Eq. (25) reduces to

Y f ¼ � 1

2

or11

o/f
e11 ¼ �

1

2

oE1

o/f
e2

11 ¼
1

2
Ef

1V fe2
11;

Y m ¼ 0; Y d ¼ 0: ð26Þ

Eq. (26) states that the variable conjugate to the fiber
breakage parameter equals the strain energy density of
the fiber multiplied by its volume fraction, and the fiber/
matrix interaction affects Yf only through the normal strain
along the fiber. Note that units of Yf are the same as that of
energy density, i.e., J/m3 which can also be written as
Pascals.

For a given value of e11, we compute Yf from Eq. (26),
read E1 from the curve plotted in Fig. 2b, and then find
/f from Eq. (22). Values so obtained are depicted in
Fig. 2c as filled diamonds. The curve, obtained by the least
squares fit to these data points till Yf reaches its critical
value Y f

crit, is given by

/f ¼ Afð1� eð�Bf Y f ÞÞ; ð27Þ

where values of constants Af and Bf, that are different in
tension and compression, are listed in Table 2.

Following the procedure analogous to that adopted to
deduce Eqs. (26) and (27), we obtain the following from
uniaxial tests in the transverse direction, and the off-axis
loading in the X1X2-plane.

Y m¼�1

2

or22

o/m e22¼�
1

2

oE2

o/m ðe22Þ2¼
1

2

Ef2EmV f

ðEmV fð1�/mÞ�Ef V mÞ2
ðe22Þ2;

ð28Þ

/m¼ AmBmþCmðY mÞDm

BmþðY mÞDm

 !
; ð29Þ

Y d¼�1

2

or12

o/d
2e12¼�

oG12

o/d
ðe12Þ2¼

ðGf
12Þ

2Gm
12V f

ðGm
12V f �Gf

12ð1�/dÞV mÞ2
ðe12Þ2;

ð30Þ

/d¼ AdBdþCdðY dÞDd

BdþðY dÞDd

 !
: ð31Þ

We note that there is no simple energetic interpretation
for conjugate forces Ym and Yd. Values of constants Am,
Bm, Cm, Dm, Ad, Bd, Cd, Dd, found in a way similar to that
of ascertaining Af and Bf are listed in Table 2. For a general
loading, and/or when fibers are not aligned with the

http://composite.about.com/library/data/blc-as4apc2-1.htm
http://composite.about.com/library/data/blc-as4apc2-1.htm
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loading axis, we first analyze the problem in the global
coordinate system, and then compute the normal strain
along the fiber. The sign of e11 dictates which values of
Af, Bf and Y f

crit to use in Eq. (27). We follow a similar pro-
cedure for selecting appropriate values of Am, Bm, Cm, Dm

and Y m
crit in Eq. (29), and of Ad, Bd, Cd, Dd and Y d

crit in Eq.
(31). In Table 2, Y f

crit, Y m
crit, and Y d

crit equal values of conju-
gate variables corresponding, respectively, to /f, /m and /d

equaling 1.0, i.e., failure of the material point due to fiber
breakage, matrix cracking, and fiber/matrix debonding.
We have also listed, in Table 2, values for ultimate
strengths [r33], [r13] and [r23]; these appear in Eqs. (20)
and (21), and determine when, and where delamination
occurs.
Fig. 3. Matrix damage conjugate variable versus matrix damage param-
eter at different values of the strain rate _e22.

Fig. 4. Variation of ð1� /m=/mj_e0
22
Þ with log10ð_e22=_e0

22Þ at Ym = 0.006 for
_e0

22 ¼ 1:6� 10�5=s.
2.2.6. Strain rate effect

Eqs. (27), (29) and (31) when solved for conjugate vari-
ables in terms of damage parameters give

Y f ¼
�log Af�/f

Af

� �
Bf

; ð32Þ

Y m ¼ Bmð�Am þ /mÞ
Cm � /m

� �1=Dm

; ð33Þ

Y d ¼ Bdð�Ad þ /dÞ
Cd � /d

� �1=Dd

: ð34Þ

We now postulate the following functional dependence of
conjugate damage variables Ym and Yd upon _e22 and _c12

respectively:

Y m ¼
Bm �Am þ /m 1� smlog10

_e22

_e0
22

� �� �� �
Cm � /m 1� smlog10

_e22

_e0
22

� �� �
0B@

1CA
1=Dm

; ð35Þ

Y d ¼
Bd �Ad þ /d 1� sdlog10

_c12

_c0
12

� �� �� �
Cd � /d 1� sdlog10

_c12

_c0
12

� �� �
0B@

1CA
1=Dd

: ð36Þ

Here _e0
22 and _c0

12 represent, respectively, values of the refer-
ence transverse and the reference shear strain rates. Eq.
(32) is assumed to be independent of strain rate; it is based
on the observation that the experimental stress–strain
curve for AS4/PEEK in longitudinal tension and compres-
sion is essentially insensitive to the axial strain rate.

We now discuss the determination of material constants
sm and sd appearing in Eqs. (35) and (36) from the trans-
verse compression, and the in-plane shear experimental
stress–strain curves for AS4/PEEK at various strain rates
[2]. We note that for the transverse compression tests,
1:6� 10�5

6 _e22 6 1:6� 100=s, and for the in-plane shear
tests, 1� 10�5

6 2_e12 6 1� 10�1=s. For each strain rate,
we follow the procedure described in Section 2.2.5, and
obtain curves plotted in Fig. 3 that depict the variation
of Ym versus /m.

By comparing Eqs. (33) and (35), we conclude that Eq.
(35) is obtained from Eq. (33) when /m in Eq. (33) is
replaced by /m 1� smlog10
_e22

_e0
22

� �� �
. Similarly, Eq. (36) can

be gotten from Eq. (34) when /d in Eq. (34) is replaced

by /d 1� sdlog10
_c12

_c0
12

� �� �
. The value of the material param-

eter sm is found by plotting in Fig. 4 1� /m

/mj_e0
22

 !
versus

log10
_e22

_e0
22

� �
at Ym = 0.006, and setting _e0

22 ¼ 1:6� 10�5=s. It

is found that the least squares fit to the data points is a
straight line passing through the origin. The slope,
0.0361, of this line equals sm. A similar procedure is
adopted to find the value 0.0013 of the material constant
sd; in this case the data is plotted for Y d = 0.03, and the ref-
erence shear strain rate, _c0

12, equals 1 · 10�5/s.
Here we have taken the damage variables /m and /d to

depend upon strain rates that is inconsistent with the
assumption made to derive Eq. (7). A possibility is to
hypothesize that the Helmholtz free energy has additive
decomposition into two parts – one that is independent
of strain rates, and the other depends upon strain rates.
One can then postulate constitutive relation (14). In either
case, one needs a constitutive relation for Sne. For the work
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presented here, the constitutive relation for S is obtained
from that for Se with /m and /d replaced, respectively,

by /m 1� smlog10
_e22

_e0
22

� �� �
and /d 1� sdlog10

_c12

_c0
12

� �� �
, and

Sne = S � Se. One may interpret constitutive relations pre-
sented here as being physical relations since they are
derived from experimental data.

The material constant, Y i
crit ði ¼ f ;m; dÞ, was assumed to

be independent of the strain rate because failure strains in
Vogler and Kyriakides [2] do not exhibit any clear depen-
dency upon the strain rate. Similarly, for a lack of test data,
the interfacial strengths, [r33], [r13], and [r23], of the com-
posite are assumed to be strain rate independent.

2.3. Mathematical model

2.3.1. Governing equations

Substitutions from Eq. (14) into Eq. (2) give the follow-
ing nonlinear field equation for the determination of the
displacement u:

qR€ui ¼ ½ðdia þ ui;aÞðCabcdEcdÞ�;b þ qRbi: ð37Þ

Since the AS4/PEEK composite fails at small values of
strains, effects of geometric nonlinearities on the computed
solution will be negligible except in buckling problems
where the present formulation will enable one to compute
the post-buckled response; buckling problems have not
been studied here. Also, all stress tensors have essentially
the same values.

2.3.2. Initial and boundary conditions

In the total Lagrangian description of motion, the inde-
pendent variables are X and t, and the dependent variables
are x or u since knowing x, the present mass density can be
computed from Eq. (1). Let X be the region occupied by
the body in the reference configuration at time t = 0. A
general form of boundary and initial conditions is

xiðX; tÞ ¼ �xiðX; tÞ; X 2 oX X; t 2 ð0; eT Þ;
T iaðX; tÞN aðXÞ ¼ fiðX; tÞ; X 2 ofX; t 2 ð0; eT Þ;
xiðX; 0Þ ¼ X adia;

_xiðX; 0Þ ¼ v0
i ðXÞ:

ð38Þ

Here oXX, and ofX are parts of the boundary oX of X where
final positions (or equivalently, displacements), and surface
tractions are prescribed, respectively, as x, and f. Note that
oXX, and ofX need not be disjoint since linearly independent
components of displacements, and surface tractions may be
specified at the same point on oX. Initial values of internal
variables representing the fiber breakage, fiber/matrix
debonding, and matrix cracking are taken to be zeros.

3. Numerical solution

A weak form of Eq. (37) is derived by using the Galerkin
approximation; e.g. see Hughes [37]. It reduces nonlinear
partial differential Eq. (37) to nonlinear ordinary differen-
tial equations, which are integrated with respect to time t

by using the subroutine LSODE (Livermore Solver for
Ordinary Differential Equations) that adaptively adjusts
the time step size, and computes the solution within the
prescribed accuracy.

A 3-dimensional (3-D) finite element (FE) code based on
the afore-stated problem formulation has been developed
in Fortran. Degrees of freedom at each node are three com-
ponents of displacement, and three components of velocity
since LSODE integrates first order ODEs. The code
employs 8-node brick elements, and various domain inte-
grals involving integration on an element Xe that appear
in the weak formulation of the problem are evaluated by
using the 2 · 2 · 2 Gauss quadrature rule. During the time
integration of the coupled ODEs with the subroutine
LSODE, absolute and relative error tolerances were each
set equal to 1 · 10�9, and MF was assigned the value 10.
The parameter MF determines the integration method in
LSODE, and MF = 10 implies using the Adam–Moulton
method. After having found nodal displacements, values
of conjugate variables, and damage parameters (or internal
variables) /f, /m and /d at each integration point are deter-
mined; these are used to update elastic constants for com-
puting results at the next time step.
3.1. Simulation of material failure

When, at a material (or an integration) point, an internal
variable /f, /m, and/or /d equals 1.0, or the corresponding
conjugate variable Yf, Ym, and Yd equals its critical value,
the material there is taken to have failed due to fiber break-
age, matrix cracking, and/or fiber matrix debonding, respec-
tively. Even if the material at all eight integration points
within an element has failed, that element is not removed
from the analysis. Once all elastic constants at the eight inte-
gration points in an element have been reduced to zero, all
stress components in that element will subsequently be zero,
and for all practical purposes that element will represent a
hole or a void except that it has kinetic energy.

In order to simulate either sliding or crack initiation and
propagation due to delamination, we assume that when the
stress state at a node N has reached the failure envelope
(20) or (21), an additional node N* coincident with N but
not connected to it is added there. The nodal connectivity
of elements sharing the node N is modified in the sense that
one or more of these elements is now connected to the
newly added node N* rather than the node N. However,
no new element is created in this process. We note that
delamination may ensue simultaneously at several nodes.
If subsequent deformations of the body move nodes N

and N* apart and create new surfaces, then these surfaces
are taken to be traction free. The non-interpenetration of
nodes N and N* into the material is avoided by connecting
them with a 1-D two-node spring element that is weak in
tension but stiff in compression. The constitutive relation
for the stiff spring is taken to be
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F ¼ kzn;

where

k ¼

0; zn=z0 P 0;

El
3 1þ ðgE3 � 1Þ zn

z0

� �2
� �

gEl
3; zn=z0 < �1:

0BBB@ ; �1 6 zn=z0 < 0; ð39Þ

Here F is the normal force between nodes N and N*, E3

Young’s modulus of the composite in the X3-direction, zn

the relative displacement between nodes N and N* normal
to the interface, l a characteristic length, and g a constant.
This technique of modeling material failure is similar to
that used in [38,46]. Another possibility is to employ cohe-
sive elements; e.g., see [47].
3.2. Verification of the computer code

The code was verified by analyzing a 1-D wave propaga-
tion problem, and comparing computed results with those
obtained from another code developed by Batra and Love
[38] that had been thoroughly tested. Also, for a material
with no evolving damage, the code has been verified by
using the method of ‘‘fictitious’’ body forces. That is, for
a given body, and analytical expressions for the displace-
ment field u, the field of fictitious body force b is derived
from Eq. (2). Also, initial and boundary conditions corre-
sponding to the presumed field are deduced. These side
conditions, and field b are used as input into the computer
code to find the corresponding displacement u. If the so
computed values of u match with those obtained from their
presumed analytical solutions, then the computer code has
been verified. A similar procedure was used by Batra and
Liang [39]; e.g., see the material following Eq. (30) of their
paper. The validity of the code and of the model for prob-
lems in which damage evolves is established below.
3.3. Validity of the proposed model

The proposed model is validated by comparing com-
puted results for different test configurations with the cor-
responding experimental data. The AS4/PEEK composite
has 60% volume fraction of fibers. Values of material
parameters for the 0� undamaged lamina are listed in Table
3. Twenty-six test configurations, including two involving
Table 3
Values of material parameters of the undamaged 0� AS4/PEEK lamina
with Vf = 0.6

Material parameter Value

v12 0.3
E1 (GPa) 130.86
E2 (GPa) 14.7
G12 (GPa) 5.44
G23 (GPa) 5.44
q (g/cm3) 1.64
uniaxial loading, unloading, and reloading, have been
simulated.

Unless specified otherwise, the body is taken to be ini-
tially at rest, and stress-free.
3.3.1. Uniaxial tensile/compressive or in-plane shear loads

Five test configurations employed by Kyriakides et al.
[36] and summarized in Table 4 were numerically simulated.
The specimen dimensions, the prescribed speed at the two
opposite end faces, and the number of elements employed
in the FE mesh are listed in Table 3; in each case the average
axial, transverse or shear strain rate equals 10�5/s. Also,
each one of the four plies in the composite had fibers ori-
ented along the X1-axis; thus it can be viewed as a single
lamina made of a homogeneous transversely isotropic mate-
rial with X1-axis as the axis of transverse isotropy.

Computed stress–strain curves for these five cases are
compared in Fig. 5a–c with the experimental ones [36]. In
each case, computed results agree well with the test data
as should have been expected since data from these tests
were used to deduce values of material parameters. We note
that the maximum strain at any point is about 4%; thus the
geometric nonlinearity has a negligible effect on computed
deformations. In order to economize on the CPU time,
mass densities of the fiber, and the matrix were reduced to
0.1% of their actual values. It increases the wave speed
thereby making transients propagate faster in the specimen.

Fig. 6a–c depicts the evolution of the three damage vari-
ables with the axial strain which may be interpreted as non-
dimensional time since the nominal axial strain rate is kept
constant at 10�5/s. For longitudinal and transverse load-
ing, the only active damage modes are the fiber breakage,
and the matrix cracking respectively. Under longitudinal
loading, the fiber breakage damage variable begins to
evolve at essentially a constant rate at an axial strain of
0.001 till an axial strain of 0.007 is reached. It subsequently
evolves very slowly until the axial strain equals 0.011 when
it rapidly increases to its maximum value of 1.0. The time
evolution of the matrix cracking damage variable can be
divided into three distinct parts, each with a different rate
of evolution, between transverse strains of 0 and 0.001,
0.001 and 0.00825, and between 0.00825 and the final strain
where it equals its maximum value of 1.0. Under shear
loads both fiber/matrix debonding, and matrix cracking
damage variables begin to evolve simultaneously but at
Table 4
Parameters for the five uniaxial loading tests simulated

Loading Specimen size
(mm)

�m
(mm/min)

FE mesh

Longitudinal tension 152.4 · 12.7 · 1.27 0.045 120-12-4
Longitudinal

compression
31.8 · 9.53 · 9.53 �0.01 40-12-12

Transverse tension 83.8 · 15.8 · 2.54 0.025 30-8-4
Transverse compression 76.2 · 6.73 · 6.73 �0.02 40-8-8
Shear 196 · 10.26 · 2.54 0.006 80-8-4



Fig. 5. Comparison of the computed (a) axial stress–axial strain, (b)
transverse axial stress versus transverse axial strain, and (c) shear stress–
shear strain curves at the specimen centroid with experimental data of
Kyriakides et al. [36].

Fig. 6. Evolution with the axial strain of (a) fiber breakage, (b) matrix
cracking, and (c) fiber/matrix debonding damage and matrix cracking
variables for longitudinal tensile, transverse tensile, and shear loading,
respectively, of AS4/PEEK composite.
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quite different rates. The rate of evolution of the matrix
cracking damage variable increases with an increase in
the axial strain till the axial strain equals 0.006; subse-
quently its rate of evolution slows down. Whereas at low
values of the axial strain, the matrix cracking damage var-
iable is less than the fiber/matrix debonding variable, the
reverse occurs for axial strains exceeding 0.0035. The com-
puted failure modes agree qualitatively with those observed
experimentally by Diao et al. [40] who tested [0]16 laminate
in longitudinal, and transverse tension. They found that the
fiber breakage failure mode was dominant in laminates
loaded longitudinally, and the matrix cracking mode in
laminates pulled in the transverse direction. For all the three
loading cases, computed deformations are nearly homoge-
neous. The material fails at an axial strain of 1.09% for
the longitudinal tensile loading, at a transverse strain of
0.825% for the transverse tensile loading, and at an axial
strain of about 4% for the shear loading.

In Fig. 7a and b we have compared computed axial
stress versus axial strain curves with the corresponding



Fig. 7. Comparison of computed (a) transverse compressive stress versus
transverse compressive strain, and (b) shear stress versus shear strain for
AS4/PEEK composite deformed at a strain rate of 0.1/s with the
experimental data of Vogler and Kyriakides [2].

Fig. 8. Comparison of the computed axial stress versus axial strain curve
of AS4/PEEK with experimental data of Weeks and Sun [41] for three
fiber orientations.
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experimental ones [36] for specimens deformed either in
transverse compression or in simple shear at a strain rate
of 0.1/s which is four orders of magnitude higher than that
for test results reported in Fig. 6a–c. The 76.2 mm ·
6.73 mm · 6.73 mm specimen deformed in transverse com-
pression was divided into a uniform 40 · 8 · 8 FE mesh,
and the other 196 mm · 10.26 mm · 2.54 mm specimen
into 80 · 8 · 4 FE mesh. In each case, computed and exper-
imental stress versus strain curves are very close to each
other.
3.3.2. Off-axis loads

Four-ply composites of over-all dimensions 216 mm ·
15.9 mm · 2.54 mm, divided into a uniform 84 · 6 · 4 FE
mesh, were loaded along the global X1-axis by pulling the
opposite end faces at an equal and opposite axial speed
of 0.065 mm/min or equivalently at an average axial strain
rate of �10�5/s. For five configurations simulated, identi-
cally oriented fibers in each ply made an angle of 15�,
30�, 45�, 60� or 75� counterclockwise with the X1-axis.
Weeks and Sun [41], and Jen and Lee [42] have experimen-
tally tested these specimens. Note that results of these
experiments are not used to find values of material param-
eters for the AS4/PEEK composite. Thus the comparison
of computed results with experimental observations of
Refs. [41,42] provides a good test for the proposed model.

Computed axial stress–axial strain curves for fiber orien-
tation angles of 15�, 30� and 45� are compared with the
corresponding experimental ones in Fig. 8; it is evident that
the two sets of curves match very well. The dependence of
the ultimate axial tensile stress, and the axial failure strain
upon the fiber orientation angle is shown in Fig. 9a and b
respectively. Whereas the ultimate tensile strength has the
maximum value for the 0� fiber orientation, the axial fail-
ure strain has the maximum value for a fiber orientation
of 45�. The ultimate tensile strength drops off very rapidly
as the fiber orientation angle is increased from 0� to 15�;
however, the further decreases in the tensile strength with
subsequent increases in the fiber orientation angle by 15�
are quite small.

We did not conduct numerical experiments for fiber
orientations between 0� and 15�, and therefore cannot deci-
pher whether the drop in the tensile strength is asymptotic
or linear.

For the uniaxial loading, stresses at a point for the 15�,
and the 75� fiber orientations are quite different. Thus plots
of the ultimate axial tensile stress versus the fiber orienta-
tion angle, h, need not be symmetric about h = 45�; the
same holds for the plot of the axial strain at failure versus
the fiber orientation angle. Jen and Lee [42] did not plot the
axial stress versus the axial strain curve; thus our computed
curves for h = 60� and 75� laminate cannot be compared
with the corresponding experimental ones. However, their
tabulated values 115 MPa and 96 MPa, respectively, for
the ultimate strength of 60� and 75� laminate agree well
with our computed values of 103 MPa and 83 MPa. They
found the ultimate tensile strength of a [45]16 composite
to be 151.0 MPa; our results plotted in Fig. 9a give a value
of 129 MPa. They stated that the failure surface was
parallel to the fibers, and was roughed by matrix cracks,



Fig. 9. Dependence upon the fiber orientation angle of (a) the ultimate axial tensile strength, and (b) the axial strain at failure, for unidirectional
quasistatic loading of a composite.
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implying thereby that the fiber/matrix debonding failure
mode was dominant.
3.3.3. Balanced plies

For the sixth configuration, fiber orientation in plies 1
(the bottom-most), 2, 3, and 4 (the top-most) equaled
30�, �30�, �30� and 30� respectively; this lay-up is referred
Fig. 10. Comparison of the computed axial stress versus axial strain curve
of AS4/PEEKwith experimental data of Weeks and Sun [41] for 2
balanced [+30�/�30�]2s plies at strain rate of 0.01/s.
to as balanced plies, [+30/�30]2s. A 216 mm · 15.9 mm ·
2.54 mm specimen, divided into a uniform 84 · 6 · 4 FE
mesh, was loaded along the global X1-axis by pulling the
opposite end faces at an equal and opposite axial speed
of 65 mm/min, or equivalently at an average axial strain
rate of �10�2/s. A seventh configuration with same dimen-
sions but fiber orientation of [+60/�60]2s was loaded along
the global X1-axis by pulling the opposite end faces at an
equal and opposite axial speed of 65 mm/min, or equiva-
lently at an average axial strain rate of �10�2/s. Results
of those two configurations are compared in Fig. 10 with
the experimental data from Weeks and Sun [41]. It is evi-
dent that computed results are close to those obtained
experimentally with a maximum difference of 4% in the
ultimate stress, and of 20% in the failure strain.

3.3.4. Strain-rate effects

Weeks and Sun [41] tested 8 mm · 8 mm · 8 mm 32-ply
[30�/�30�]16s, and [60�/�60�]16s composites in a split Hop-
kinson pressure bar at nominal strain rates of 300/s, and
1000/s respectively. We simulate these tests by assuming
that deformations are symmetrical about the midsurface,
and pressure loads on the left and the right faces of the
specimen can be replaced by the prescribed axial velocity
that increases from 0 to 4_e in 0.1 ls where _e equals the nom-
inal axial strain rate. The specimen was discretized with a



Fig. 11. Comparison of the computed axial stress versus axial strain curve
of AS4/PEEKwith experimental data of Weeks and Sun [41] for [+30�/
�30�]16s laminate at strain rate of 300/s, and [+60�/�60�]16s laminate at
strain rate of 1000/s.

Fig. 12b. Comparison of the dependence upon the laminate thickness of
the numerically computed and the experimentally observed [43] normal-
ized damage threshold load.

Fig. 12a. Time histories of evolution of the three damage variables, /f, /m

and /d, at the centroid of 1.27 mm thick specimen.
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uniform 16 · 16 · 16 FE mesh. Computed axial stress ver-
sus axial strain curves for the two strain rates are compared
with the corresponding experimental ones [41] in Fig. 11. It
is clear that the fiber orientation angle affects significantly
the axial stress induced in the specimen for a given value
of the axial strain. For specimens with identical layout of
fibers the axial stress at a given value of the axial strain will
be higher in the specimen deformed at an axial strain rate
of 103/s than that in the specimen deformed at an axial
strain rate of 300/s. However, here the reverse occurs
because of differences in the fiber layout. Whereas the
[30�/�30�]16s laminate deformed at an axial strain rate of
300/s failed at t = 19.7 ls, the [60�/�60�]16s laminate
deformed at an axial strain rate of 1000/s failed at
t = 21.8 ls. The axial strain at failure for each specimen
matches well that observed experimentally.

This simulation and that reported below in Section 3.3.5
provide a severe test of the proposed model since material
constants were found from tests of Kyriakides et al. [36] on
a single lamina deformed at strain rates of 10�5/s to 10�1/s,
and here computed results have been compared for a 16-ply
laminate deformed at axial strain rates of 3 · 102/s and
1 · 103/s. Furthermore, plies in the two laminates have dif-
ferent fiber orientations.
Fig. 12c. Fringe plots of the dama
3.3.5. Low velocity impact loads

Schoeppner and Abrate [43] have experimentally deter-
mined damage induced in a laminated composite impacted
by a 2.54 cm diameter hemispherical hardened steel ball
dropped from a known height. The load applied by the
steel ball is numerically simulated by applying a pressure
field distributed over a circular cross-section of radius R;
ge variables at time = 1.48 ls.
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the value of R depends upon the applied load, and elastic
constants of the laminate and of the steel. The value of R

is found from the following Hertz’s [44] relations:

R3 ¼ 3

4
paP ð1steel sphere þ 1compositeÞ;

P 0 ¼ 3P

2pR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

R2
� y2

R2

r
; 1 ¼ ðkþ 2lÞ=4plðkþ lÞ;

ð40Þ

where k and l are Lame’ constants, P 0 is the pressure acting
at a point, a is the radius of the sphere, and P equals the
total applied load. Values of k and l for the composite
were calculated using material properties at each integra-
tion point on the contact surface, and the following
relations:

k ¼ 0:3E3

ð1þ 0:3Þð1� 2ð0:3ÞÞ ; l ¼ E3

2ð1þ 0:3Þ ; ð41Þ

where E3 is the modulus of the composite in the X3-direc-
tion, and Poisson’s ratio is taken to be 0.3. P is assumed
to increase linearly with time at the rate of 0.75 kN/ls.
Fiber orientations in the 9 layers starting from the top layer
equaled 45, �45, 0, 0, 90, �45, 45�. The thickness of the
laminate in the five simulations equaled 1.27 mm, 4 mm,
7 mm, 11 mm, and 13 mm. For each thickness, the lami-
nate was divided into 20 · 20 · 9 8-node brick elements
with a finer mesh in the impacted area.

For a 1.27 mm thick laminate, time histories of evolution
of the three damage variables, /f, /m and /d, at the lami-
nate centroid are depicted in Fig. 12a. The Damage Thresh-
old Load (DTL) is the load at which damage increases
quickly, and the load drops rapidly. We took it to be the
load when the three damage variables reach 1 at the speci-
men centroid (Fig. 12b). As can be seen from results plotted
in Fig. 12a, for the 1.27 mm thick laminate, this occurred at
time = 1.48 ls, giving DTL = 1.11 kN. The DTL for lami-
nates of different thicknesses has been normalized by the
DTL for the 7-mm thick laminate since for it the experimen-
tal and numerical values equaled 12.5 kN. As shown in
Fig. 14b, the numerically computed DTL matches well with
that found experimentally. Fringe plots of /f, /m and /d at
t = 1.48 ls are exhibited in Fig. 12c.
Fig. 13. (a) Schematic sketch of the problem studied, and time history of
the axial velocity prescribed at the opposite edges; (b) axial stress–axial
strain at the point X1 = 0, X2= 0.05 mm, and X3 = 0.05 mm; (c) time
histories of evolution of the three damage variables, /f, /m and /d, at the
centroid of 1.27 mm thick specimen.
3.3.6. Loading, unloading and reloading

Instead of applying a constant velocity on the opposite
edges of the 75� 1 mm · 0.1 mm · 0.1 mm laminate, we
prescribed either an alternating velocity, or an oscillating
tensile-compressive surface traction to opposite edges to
simulate loading, unloading and reloading; schematics of
these problems are shown in Figs. 13a and 14a, respec-
tively. For axial velocity prescribed at opposite faces,
Fig. 13b and c depict, respectively, the axial stress–axial
strain, and time histories of evolution of the three damage
variables at the center of the left edge (i.e., the point X1 =
0, X2 = 0.05, X3 = 0.05) of the specimen. The stress–strain
curve during unloading of the specimen differs from that
during initial loading due to the difference in the elastic
moduli caused by the damage developed during loading.
As can be seen from the plots of Fig. 13c, there is virtually
no fiber breakage, and for t > 0.5 ls, the debonding dam-
age variable has a considerably higher value than the
matrix cracking damage variable. Furthermore, for
t > 2 ls, these damage variables have constant values since



Fig. 14. (a) Schematic sketch of the problem studied, and time history of
the axial surface traction (GPa) prescribed at the opposite edges; (b) axial
stress–axial strain at the point X1 = 0, X2 = 0.05 mm and X3 = 0.05 mm;
(c) time histories of evolution of the three damage variables at X1 = 0,
X2 = 0.05 mm and X3 = 0.05 mm.
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then either the material is unloading or strains induced in
the material are below their previously reached limiting val-
ues for the additional damage to develop. Thus during
repeated loading and unloading under prescribed axial
velocity of constant amplitude, there will be no additional
damage developed, and the proposed model predicts a
rather unrealistic infinite life of the laminate.
Fig. 14b and c depict, respectively, the axial stress–axial
strain, and time histories of evolution of the three damage
variables at the center of the left edge (i.e. X1 = 0,
X2 = 0.05 and X3 = 0.05) of the laminate when equal and
opposite axial tractions are applied on its opposite edges.
There is essentially no fiber breakage induced, and the
dominant damage modes are debonding and matrix crack-
ing. The damage variables remain unchanged during
unloading of the material point but evolve during reloading
because of the higher strains induced in the damaged mate-
rial. Thus, the proposed model can be used to predict fati-
gue life of the specimen for cyclic traction loading.

4. Conclusions

We have developed a model for a laminated composite
that can predict well damage induced in it under different
loading conditions. Experimental stress strain curves during
axial, transverse, and off-axis loading are used to find values
of material parameters. These parameters are then used to
compute results for configurations and loadings totally dif-
ferent from the ones employed to calibrate the model. It is
found that the proposed mathematical model can satisfac-
torily predict failure strains, damage evolved, and other
deformation variables under a variety of loadings. The close
agreement between computed and experimental results for
widely different loadings and geometries suggests that the
proposed model is robust.

In particular, equations governing finite deformations of
an anisotropic composite, the evolution of damage, and
those describing the degradation of material parameters
with damage are given. The present value of a damage var-
iable representing fiber breakage, fiber/matrix debondng,
or matrix cracking at a material point is assumed to depend
upon the state of deformation at that material point. The
delamination failure is considered by allowing the two
adjoining laminas to either locally separate from or slide
over each other whenever the failure criterion at a point
on the interface has been satisfied. The elastic response of
the material is modeled by assuming it to be neo-Hookean,
and the strain-rate response by assuming that the evolution
of damage variables also depends upon the strain rate. A
finite element code for analyzing three-dimensional tran-
sient deformations employing 8-node brick elements has
been developed, and used to analyze various initial-bound-
ary-value problems for the AS4/PEEK laminated compos-
ite. Computed results have been found to compare well
with corresponding experimental results available in the
literature. The framework developed herein has been
employed by Batra and Hassan [48,49] to analyze the blast
response of composite structures under different loading
scenarios.
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