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We employ the Eshelby–Stroh formalism to study generalized plane strain infinitesimal deformations
caused due to the indentation by a rigid circular cylinder of an elastic laminated plate with a through-
the-width rectangular void between two adjoining layers. Assuming that the void does not close during
the indentation process, we find the indentation modulus (i.e., the slope of the indentation load vs. the
indentation depth curve) as a function of the void size, the void position, elastic moduli of the layers,
and boundary conditions at the edges. The change in the indentation modulus caused by an interlayer
void parallel to the major surfaces of an anisotropic plate can potentially be used to estimate the void size
and location.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their high specific stiffness and specific strength, com-
posite are being increasingly used in numerous engineering appli-
cations. However, mechanical properties of composites may
degrade severely with repeated impact and cyclic loading. Failures
of structures, particularly aircraft structures, often have tragic con-
sequences. Applications of composites tend to be limited or inhib-
ited by the lack of long-term service experience and the difficulty
to accurately quantify damage and thus determine the remaining
useful life of the structure. Damage detection techniques such as
thermal deplying and optical microscopy require either the partial
or the total destruction of the structural component [2]. Most con-
ventional nondestructive evaluation techniques such as ultrasonic
C-scan, X-ray, thermography and eddy current have limited appli-
cations as they require a structural component to be taken out of
service for a substantial length of time for damage inspection
and assessment. Global damage detection methods [3], based on
the assumption that a change in physical properties of a structure
alters its modal characteristics, have also been developed. These
methods either depend on analytical models or prior test data for
the detection and the location of damage or on the output from
several sensors bonded to the structure. Technical issues that need
to be considered during in situ monitoring of structures include the
following: surface-bonded resistive strain gauges are susceptible
to electromagnetic and electrical interference in addition to phys-
ical damage, and the acoustic emission suffers from low signal-to-
noise ratio. Sometimes it is advisable to simultaneously use two or
ll rights reserved.

@vt.edu (R.C. Batra).
more techniques and synthesize their outputs to quantitatively
and qualitatively ascertain the damage type, its extent and
location.

Damages in fiber-reinforced composites include fiber breakage,
fiber kinking, fiber buckling, fiber/matrix debonding, matrix crack-
ing, delamination, and fiber and matrix crushing. A composite
structure under complex loading will have several narrow cracks
oriented in different directions and located at various points. Here
we focus on studying a technique to detect the separation (or the
delamination) between two adjoining layers. We study a model
problem involving the indentation by a rigid circular cylinder of
a flat elastic laminated plate with a through-the-width rectangular
void between two adjoining layers composed of anisotropic and
homogeneous materials. We assume that the indentation load is
small enough not to close the void. The indentation test has been
used to determine mechanical properties of materials. It is com-
monly believed that the indentation load vs. the indentation depth
response during unloading corresponds to elastic deformations of
the indented material. The indentation modulus, i.e., the slope of
the indentation load vs. the indentation depth curve for infinitesi-
mal deformations, is a function of elastic properties of the structure
(e.g., see [11]). Therefore, the degradation in elastic properties due
to voids will decrease the indentation modulus, and the change
will depend upon the number of voids, their locations, and their
sizes. Thus one should be able to use the indentation modulus to
estimate voids in a composite. We have reviewed the literature
on indentation problems in [1] and thus omit it here for the sake
of brevity.

We assume that a plane strain state of deformation prevails in
the laminate, the void does not close during the indentation pro-
cess, and employ the Eshelby–Stroh formalism to find infinitesimal
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deformations of the laminate. The plane strain assumption re-
quires a through-the-width void which can be detected visually.
The goal here is to use the Eshelby–Stroh formalism to analyze
the problem, and quantify changes in the indentation modulus as
a function of the location and the length of the void, and other
material and geometric parameters. For voids completely in the
interior of a structure one needs to study three-dimensional defor-
mations, and for narrow voids or cracks one should allow for clos-
ing of void surfaces which will suddenly increase the indentation
modulus. This latter problem is more challenging than the one
studied here since one needs to satisfy the non-interpenetration
of the material across the just generated closed surface, track clos-
ing of the void with an increase in the indentation load, and permit
sliding between the contacting surfaces; it will be studied in
future.

2. Problem formulation

Fig. 1 depicts a schematic sketch of the generalized plane strain
problem involving the indentation of a two-layer composite plate
by a smooth rigid circular cylinder. The through-the-width void
of length 2b and thickness hb is in the x1x3 – plane. It is assumed
that the length of the void, of the cylinder and of the layer in the
x2 – direction (perpendicular to the plane of the paper) is very large
as compared to the length L and the thickness h = w1 + w2 of the
plate. Here w1 and w2 are thicknesses of the layers above and be-
low the void. We denote the indentation depth by u0, and the
semi-contact width by c. Prior to the indentation, the centers of
the contact area and the void are, respectively, at (xc, h) and (xb,
w2). The words ‘‘crack” and ‘‘void” are used interchangeably.

In the absence of body forces, equations in rectangular Carte-
sian coordinates governing deformations of the layer are

rij;j ¼ 0; i; j ¼ 1;2;3; ð1Þ

rij ¼ Cijklekl; Cijkl ¼ Cjikl ¼ Cklij; ð2Þ

ekl ¼
1
2
ðuk;l þ ul;kÞ; ð3Þ

where rij = rji is the Cauchy stress tensor, rij;j ¼ @rij=@xj, a repeated
index implies summation over the range of the index, ekl the infin-
itesimal strain tensor, ui the displacement of a point in the xi-direc-
tion, and Cijkl is an elastic constant of the material of the linear
elastic layer. Symmetries indicated in Eq. (2) imply that, for a
three-dimensional problem, Cijkl can be written as a symmetric
6 � 6 matrix, and rij and ekl as 6 � 1 matrices.

Boundary conditions on the top surface of the layer are:

r13 ¼ r33 ¼ 0 on x3 ¼ h and jx1 � L=2j > c; ð4:1Þ
L 
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Fig. 1. Schematic sketch of the problem studied.
r11 sin h cos h� r31 cos 2h� r33 sin h cos h ¼ 0;

u3 ¼ R� u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðx1 � L=2Þ2

q
on x3 ¼ h and

jx1 � L=2j 6 c: ð4:2Þ

Here h = arcsin ((x1 � L/2)/R). In cylindrical coordinates, the left-
hand side of Eq. (4.2)1 equals the tangential traction rrh at a point
on the contact surface, and at points of the contact surface not con-
tacting the indenter, rrr P 0. We assume that there is no separation
between the indenter and the deformable layer; thus the contact
surface is contiguous.

The layer is either taken to be (i) fixed at the edges x1 ¼ 0; L and
traction free at the bottom surface x3 = 0; or (ii) fixed at x3 ¼ 0 and
traction free at x1 = 0, L. Boundary conditions at a fixed edge are

u1 ¼ u3 ¼ 0; ð5Þ

and those at a traction free surface are

rijnj ¼ 0 ð6Þ

where n is the unit normal vector to the free surface.
We assume that the void does not close during the indentation

process; thus void surfaces are taken to be traction free and bound-
ary conditions (6) are applied on them. This restricts the indenta-
tion load or the indentation depth considered in the problem but
does not affect the goal of the work in quantifying the change in
the indentation modulus caused by the presence of voids.

The axial load P per unit length of the cylinder, or the indenta-
tion load, is calculated from

P ¼ �
Z L=2þc

L=2�c
ðr33 � r13 tan hÞdx1: ð7Þ

If the bottom surface is fixed, the indentation depth equals the
absolute value of the vertical displacement of the point of intersec-
tion of the centroidal axis of the cylinder and the top surface of the
plate. However, when the bottom surface is traction free then the
indentation depth equals the difference in the vertical displace-
ments of points of intersection of the centroidal axis of the cylinder
and the top and the bottom surfaces of the plate.

3. Analytical solution of the problem

We assume that the displacement field u and hence stresses
and strains induced in the plate are functions of x1 and x3 only,
and write a general solution of Eqs. (1)–(3) as follows by using
Stroh’s formalism [7]:

u ¼
X3

a¼1

½aafaðzaÞ þ �aafaþ3ð�zaÞ�; ð8Þ

r1 ¼ �
X3

a¼1

½pabaf 0aðzaÞ þ �pa
�baf 0aþ3ð�zaÞ�; ð9Þ

r3 ¼ �
X3

a¼1

½baf 0aðzaÞ þ �baf 0aþ3ð�zaÞ�; ð10Þ

where

ðr1Þi ¼ ri1; ðr3Þi ¼ ri3: ð11Þ

Furthermore, fa (a = 1, 2, 3) are arbitrary analytic functions of za,
za = x1 + pa x3, za is complex conjugate of za, f 0a denotes the deriva-
tive of fa with respect to za, p is an eigenvalue, and a and b are
the corresponding eigenvectors of the following eigenvalue
problem:

Nf ¼ pf; ð12Þ
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N ¼ �T�1RT T�1

RT�1RT � Q �RT�1

" #
; f ¼

a
b

� �
; ð13Þ

Q il ¼ Ci11l; Ril ¼ Ci13l; Til ¼ Ci33l: ð14Þ

For the strain energy density to be positive definite, p must be
complex. Let (pa, aa), a = 1, 2,. . ., 6 be eigensolutions of Eq. (12)
such that

ImðpaÞ > 0; paþ3 ¼ �pa; aaþ3 ¼ �aa; a ¼ 1;2;3; ð15Þ

where �pa is the complex conjugate of pa. The general solution (8)–
(10) holds even when the six eigenvalues are not distinct but there
exist six linearly independent eigenvectors. Ting [9] has discussed
how to modify the general solution when the eigenvalue problem
defined by Eqs. (12)–(14) does not have six linearly independent
eigenvectors; e.g. for an isotropic material.

As was done to study the indentation of an undamaged medium
[1], we separate the entire domain into several regions; the num-
ber of subregions depends upon the contact zone and the void area
as depicted in Fig. 2. In order to satisfy boundary conditions and
continuity conditions at interfaces between adjoining subregions,
we assume the following series solution for the nth (n = 1, 2, 3. . .)
region.

f ðnÞa zðnÞa

� �
¼ dðnÞa exp kðnÞ0a zðnÞa

� �
þ eðnÞa exp kðnÞ0a pðnÞa h� zðnÞa

� �� �
þ v ðnÞa exp gðnÞ0a zðnÞa

� �
þwðnÞa exp gðnÞ0a lðnÞ � zðnÞa

� �� �
þ
X1
k¼1

qðnÞka exp kðnÞka zðnÞa

� �
þ rðnÞka exp kðnÞka pðnÞa h� zðnÞa

� �� �n o

þ
X1
m¼1

sðnÞma exp gðnÞmazðnÞa

� �
þ tðnÞma exp gðnÞma lðnÞ � zðnÞa

� �� �n o
;

0 6 xðnÞ1 6 lðnÞ; ð16Þ

where

zðnÞa ¼ xðnÞ1 þ pðnÞa xðnÞ3 ; kðnÞ0a ¼
pi
2l
; kðnÞka ¼

kpi

lðnÞ
;

gðnÞ0a ¼ �
pi

2pah
; gðnÞma ¼ �

mpi

pðnÞa h
; i ¼

ffiffiffiffiffiffiffi
�1
p

: ð17Þ

Following the work presented in [10], we assume that the un-

knowns dðnÞa , eðnÞa ; v ðnÞa and wðnÞa are real while qðnÞka ; rðnÞka ; sðnÞma and tðnÞma

are complex; these will be determined from boundary conditions,

and continuity conditions at the interfaces. In Eqs. (16) and (17), lðnÞ

(n = 1, 2, 3. . .) is the length of the nth segment, and xðnÞ1 is the x1 –
coordinate of a point in the nth segment measured from the left
edge of the segment. Note that each term in series (16) is an ana-

lytical function of zðnÞa . The function expðkðnÞka zðnÞa Þ varies sinusoidally

on the surface xðnÞ3 ¼ 0 and decays exponentially in the xðnÞa -direc-
tion. With increasing k, higher harmonics are introduced on the

surface xðnÞ3 ¼ 0 accompanied by steeper exponential decay in the

xðnÞ3 -direction. Similarly, functions multiplying rðnÞka ; s
ðnÞ
ma and tðnÞma vary
Contact Area Void

Fig. 2. Schematic sketch of the partition of a laminate into several zones.
sinusoidally on surfaces xðnÞ3 ¼ hðnÞ; xðnÞ1 ¼ 0 and xðnÞ1 ¼ L, respec-
tively. The inequality (15)1 ensures that all functions decay expo-
nentially towards the interior of the layer. The polynomial terms

in zðnÞa are introduced to play the role of the constant in the Fourier
series expansion on the four bounding surfaces. The choice

f ðnÞaþ3ð�z
ðnÞ
a Þ equal to the complex conjugate of f ðnÞa ðzðnÞa Þ ensures that

displacements and stresses are real.
Substituting for faðzaÞ from Eq. (16) into Eqs. (8)–(10), we get

the following for the displacements uðnÞ and stresses rðnÞ1 and rðnÞ3

in the nth segment:

uðnÞ ¼ A exp bðnÞ0�

� �D E
dðnÞ þ exp cðnÞ0�

� �D E
eðnÞ

n
þ
X1
k¼1

exp bðnÞk�

� �D E
qðnÞk þ exp cðnÞk�

� �D E
rðnÞk

h i
�

þ exp dðnÞ0�

� �D E
vðnÞ þ exp nðnÞ0�

� �D E
wðnÞ

þ
X1
m¼1

exp dðnÞm�

� �D E
sðnÞm þ exp nðnÞm�

� �D E
tðnÞk

h i)
þ conjugate;

ð18Þ

rðnÞ1 ¼ B � kðnÞ0� pðnÞ� exp bðnÞ0�

� �D E
dðnÞ

n
þ kðnÞ0� pðnÞ� exp cðnÞ0�

� �D E
eðnÞ � gðnÞ0� pðnÞ� exp dðnÞ0�

� �D E
vðnÞ

þ gðnÞ0� pðnÞ� exp nðnÞ0�

� �D E
wðnÞ þ

X1
k¼1

� kðnÞk� pðnÞ� exp bðnÞk�

� �D E
qðnÞk

h

þ kðnÞk� pðnÞ� exp cðnÞk�

� �D E
rðnÞk

i
þ
X1
m¼1

� gðnÞm�p
ðnÞ
� exp dðnÞm�

� �D E
sðnÞm

h

þ gðnÞm�p
ðnÞ
� exp nðnÞm�

� �D E
tðnÞk

io
þ conjugate; ð19Þ

rðnÞ3 ¼ B kðnÞ0� exp bðnÞ0�

� �D E
dðnÞ � kðnÞ0� exp cðnÞ0�

� �D E
eðnÞ

n
þ
X1
k¼1

kðnÞk� exp bðnÞk�

� �D E
qðnÞk � kðnÞk� exp cðnÞk�

� �D E
rðnÞk

h i

þ gðnÞ0� exp dðnÞ0�

� �D E
vðnÞ � gðnÞ0� exp nðnÞ0�

� �D E
wðnÞ

þ
X1
m¼1

gðnÞm� exp dðnÞm�

� �D E
sðnÞm � gðnÞm� exp nðnÞm�

� �D E
tðnÞk

h i)
þ conjugate;

ð20Þ

where

A ¼ ½a1a2a3�; B ¼ ½b1b2b3�;
bðnÞka ¼ kðnÞka zðnÞa ; cðnÞka ¼ kðnÞka ðp

ðnÞ
a h� zðnÞa Þ;

dðnÞma ¼ gðnÞmazðnÞa ; nðnÞma ¼ gðnÞmaðl
ðnÞ � zðnÞa Þ;

h/�w�v�i ¼ diag½/1w1v1;/2w2v2;/3w3v3�;

dðnÞ
� �

a
¼ dðnÞa ; a ¼ 1;2;3:

ð21Þ

Substitution from Eqs. (18)–(20) into boundary conditions and
continuity conditions at the interfaces between adjoining regions
gives a system of linear algebraic equations whose solution gives
unknowns dðnÞ, vðnÞ, wðnÞ, qðnÞk ; rðnÞk , sðnÞm and tðnÞm (n = 1, 2, 3;
k = 0,1,2. . .; m = 0,1,2. . .). We note that boundary conditions are
satisfied on the average as is done in the method of Fourier series.
Furthermore, boundary condition (4.2)2 is first differentiated with
respect to x1 to eliminate u0 before it is imposed. In order to main-
tain approximately the same period of the largest harmonic on all
interfaces and boundaries, we truncate k to KðnÞ and m to MðnÞ for
the nth segment with

KðnÞ ¼ Ceil K
lðnÞ

L

 !
; MðnÞ ¼ Ceil K

hðnÞ

L

 !
ð22Þ
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Fig. 3. For a homogeneous layer, comparison of the presently computed pressure
distribution on the contact surface with that of Hwu and Fan [4].
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where Ceilð�Þ gives the smallest integer greater than or equal to �,
and K is the pre-determined number of terms.

As pointed in [10], we note from the structure of the solution
(18)–(20) that the component functions decrease exponentially
from the boundary/interfaces into the interior of the nth lamina.
By truncating the series, we have effectively ignored coefficients
with suffices greater than a particular value and approximated
the coefficients which have small suffices. Due to the rapid decay
of component functions associated with large suffices, the trunca-
tion of the series will not greatly influence the solution at the inte-
rior points. A larger value of K will give a more accurate solution at
points close to the boundary and interfaces. It should also be noted
that the coefficients qðnÞk and rðnÞk in (19), (20) are multiplied by kðnÞk

while sðnÞm and tðnÞm are multiplied by gðnÞm� , thus indicating that the
stresses will converge more slowly than the displacements.
4. Verification of the solution technique

The composite plate is divided into several small portions as
shown in Fig. 2 to satisfy boundary conditions on the void surfaces
and at the contact region. In order to compute a solution within
acceptable errors, KðnÞ and MðnÞ should be kept large even for these
small layers. Thus the total number K of equations may become
very large. We have developed a computer code in Fortran to solve
a large system of simultaneous linear algebraic equations by using
the PARDISO package in Intel� Math Kernel Library.

The Eshelby–Stroh formalism adopted here is similar to that
employed in [10,12–14] wherein infinitesimal static deformations
of elastic laminated composites were studied and it was shown
that the technique satisfies very well the continuity of tractions
and displacements across interfaces between two adjoining layers.
The methodology was applied in [1] to study the indentation of a
homogeneous material. Thus we only need to ensure that the tech-
nique captures well singularities at the corners of a rectangular
void. For completeness we first compare presently computed re-
sults with those available in the literature for an indentation prob-
lem that does not involve any stress singularities and then for a
problem that involves singularities.

The first problem analyzed here is the same as that studied ana-
lytically in [4] and involves the indentation of a homogeneous
orthotropic half-space by the smooth rigid parabolic indenter,
x3 ¼ ðx1�L=2Þ2

2R , where R is the radius of curvature of the indenter at
the point (L/2, 0). Values assigned to various material and geomet-
ric parameters are listed below.
E1 ¼ 25:0 GPa; E2 ¼ E3 ¼ 1:0 GPa; G23 ¼ 0:2 GPa;
G12 ¼ G31 ¼ 0:5 GPa; m12 ¼ m23 ¼ m13 ¼ 0:25;
L ¼ 1:0 m; h ¼ 0:4 m; R ¼ 1:0 m; 2c ¼ 0:04 m: ð23Þ

Relations Ei=mij ¼ Ej=mji (no sum on i and j) and values of param-
eters listed in Eq. (23) give m21 ¼ m31 ¼ 0:01 and m32 ¼ 0:25. Note
that E2 = E3 does not imply that the material must be transversely
isotropic with the axis of transverse isotropy along the x1-axis.
These values of elastic parameters are such that the 6 � 6 matrix
of elastic constants is positive definite, i.e., the six eigenvalues of
this matrix are positive. Thus a boundary-value problem with dis-
placements prescribed on a part of the boundary will have a un-
ique solution. We should also add that values of elastic constants
listed in Eq. (23) are for a typical composite rather than for a spe-
cific fiber-reinforced material. We have compared in Fig. 3 the
pressure distribution on the contact surface obtained from the ana-
lytical solution of [4] with that computed by using the present
method in which the entire laminate is divided into 15 layers
and K is set equal to 1000 in the series solution represented by
Eqs. (18)–(20). It is clear that the two pressure distributions agree
well with each other, and the maximum error in the pressure com-
puted over the region ðx1 � L=2Þ < 0:9c is 5.2%.

In order to ensure accuracy of the computed stresses near the
void corners we analyze deformations of an infinite plate made
of an isotropic material with a rectangular hole at its center and
in-plane surface tractions applied at infinity, and compare our re-
sults with those of [5] who used both the conformal mapping tech-
nique to solve the problem analytically and the finite element
method to analyze it numerically. As mentioned above, Ting [8]
has discussed techniques to modify the Eshelby–Stroh formalism
for solving boundary-value problems for isotropic materials. Here,
however, we alter values of elastic constants by ±1% to get unequal
eigenvalues of the problem defined by Eq. (12). We used 1000
terms, the same as for the contact problem described above, to
get a converged solution. Results for an infinite plate truncated
to 30 � 30 m with (2b � hb) = (l � w) = (3 � 1 m) rectangular hole
at its centroid and subjected to uniform surface tractions q on
the horizontal faces are compared with those of Lei et al. [5] in
Fig. 4. It is evident that the two sets of results agree well with each
other, and stress singularities at the void corners are well captured.
Contour plots of stresses in Fig. 4c and d evince the stress concen-
tration at the hole corners.
5. Parametric study

We investigate the effect on the indentation modulus of the
void size, the void position, material properties and boundary con-
ditions. Unless otherwise noted, we have taken the center of the in-
denter at the point (L/2, R + h), the center of the void at the point
(xb; w2), values of material parameters listed in Eq. (23),
2b ¼ 0:2 m, hb ¼ 2 mm, and the composite plate is fixed at the bot-
tom surface and traction free at the left and the right edges. The
void length, 2b, is specified for each case studied. We note that
2b/L = 0.2 and hb/h = 0.05. For every problem studied below, we
checked our solution to ensure that the void did not close during
the indentation process. Also, ‘‘no damage” in Figs. stands for ‘‘no
interlayer void”.
5.1. Void size

With, w1 = w2 the center of the void at the point (L/2, h/2) and
for void lengths varying from 0 (no damage) to 0.2 m, we have
plotted in Fig. 5 the indentation load vs. the indentation depth
curves. It is clear that the indentation modulus decreases notice-
ably with an increase in the void length. For indentation depth of
2 mm, and void lengths of 0.1 m, 0.15 m, and 0.2 m, the indenta-
tion load drops, respectively, to 75%, 60%, and 50% of the indenta-
tion load for the undamaged layer. The 25% reduction in the
indentation load for void length of 0.1 m is very large, and the



Fig. 4. Stress distribution around a 3 m � 1 m rectangular hole at the centroid of the 30 m � 30 m plate made of an isotropic linear elastic material and subjected to an
uniaxial traction q at the two horizontal boundary surfaces: (a) stresses along the horizontal line passing through the corner, (b) stresses along the vertical line passing
through the corner, (c) and (d) contour plots of the stresses (right figs. from [5] and left figs. present results) normalized by the applied traction q. Insets in (a) and (b) denote
results (indicated by SAP2000) reported in [5] by using the finite element method.
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reduction will decrease with a decrease in the void size. The sensi-
tivity of the instrument will determine how accurately one can
measure the indentation load and the indentation depth. Thus, in
principle, results of the indentation test can be used to detect
and possibly quantify the presence of a through-the-width void
in a laminated composite.
5.2. Void position

For a void of length 2b ¼ 0:15 m, Fig. 6 exhibits the indentation
load vs. the indentation depth curves for four locations of the void
below the indenter which is accomplished by changing the thick-
nesses, w1 and w2, of the upper and the lower layers but keeping



Fig. 5. Effect of the void length, 2b, on the indentation load vs. the indentation
depth curves for a composite layer with points on the bottom surface held fixed.
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Fig. 6. For different vertical distances of the void below the indenter, the
indentation load vs. the indentation depth curves for a laminated composite with
points on the bottom surface of composite restrained from moving.

Fig. 8. For three values of Young’s modulus in the transverse direction, the
indentation load vs. the indentation depth curves of a laminated composite with
points on the bottom surface rigidly clamped.
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the total thickness h constant. As the void location moves towards
the indenter, the indentation load for the same indentation depth
drops rapidly.

For the void center located at xb ¼ 0:5 m, 0.4 m and 0.3 m, re-
sults plotted in Fig. 7 show that for the two latter locations of
the void center, the indentation load vs. the indentation depth
curves are essentially the same as that for an undamaged layer,
i.e., there were no void. For these two values of xb the entire void
lies to the left of the indenter center. From plots of Figs. 6 and 7
one can conclude that the indentation test is only effective in
detecting voids located close to the indenter.
x
x
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xb/L
xb/L
xb/L

L=0
L=0
L=0

0.3
0.4
0.5

Fig. 7. For different locations of the void on the interface between the two layers,
the indentation load vs. the indentation depth curves for a composite layer with
points on the bottom surface having null displacements.
5.3. Material properties

It is shown in [1] that the two material parameters of the com-
posite layer significantly influencing the indentation modulus are
Young’s modulus E3 in the direction of indentation and the shear
modulus G13 in the plane of deformation. For the void length
2b = 0.1 m, the center of the void located at (L/2, h/2), and different
values of E3 and G13 we have plotted in Figs. 8 and 9 the indenta-
tion load vs. the indentation depth. These results evince that the
difference in the indentation load for a given indentation depth in-
creases rapidly with an increase in the value of E3 and a decrease in
the value of G13. Thus the indentation test can be readily used to
find an inter-laminar void in a composite whose Young’s modulus
in the indentation direction is very large and the shear modulus G13

is very small.
5.4. Arrangement of layers

In Fig. 10 we have exhibited the indentation load vs. the inden-
tation depth curves for five two-layer fiber-reinforced composite
laminates. In each case, values of material parameters listed in
Eq. (23) are with respect to the material principal axes, i.e., the
rectangular Cartesian coordinate axes are aligned such that the
x1-axis is the fiber direction, and the x3-axis is perpendicular to
the lamina. Values of material parameters with respect to the glo-
bal axes are obtained by using the tensor transformation rules. It is
evident that the indentation modulus strongly depends upon the
fiber orientation angle in the two layers. The presence of a rectan-
gular void has virtually no effect on the indentation modulus for
the 90�/90� laminas. However, for the 45�/90� composite the
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Fig. 9. For three values of the in-plane shear modulus, the indentation load vs. the
indentation depth curves of a laminated composite with points on the bottom
surface rigidly clamped.



Fig. 10. For different two-layer composites with void locations on the interface
between the two layers, the indentation load vs. the indentation depth curves for a
composite layer with points on the bottom surface having null displacements
(w1 = 0.1 m, w2 = 0.1 m). The first number in 45/90 gives the fiber orientation angle
for the layer contacting the indenter.

Fig. 11. For a two-layer laminated composite with clamped edges and bottom
surface traction free, the indentation load vs. the indentation depth curves for three
widths of the void.
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indentation modulus drops noticeably because of the rectangular
void at the interface between the two layers.

5.5. Boundary conditions

For a layer with the bottom surface perfectly bonded to a rigid
surface, edges traction free, and three locations of the void, we
have plotted in Fig. 11 the indentation load vs. the indentation
depth curves. These results are qualitatively similar to those for a
layer with edges clamped. For b/L = 0.1 and the indentation depth
of 2 mm, the indentation load equals 1.1 MN/m when the edges
are traction free and the bottom surface is fixed as opposed to
0.8 MN/m for the case of fixed edges and the bottom surface trac-
tion free. Results for different void positions, void sizes and mate-
rial properties are not exhibited since they are also similar to those
for a layer with clamped edges.

6. Discussion

We note that the indentation test is a well developed technique
for determining mechanical properties of a material. By periodi-
cally finding the indentation modulus, the initiation and the
growth of a void between two adjoining layers can be quantified.
With sensitive instruments capable of measuring loads as small
as a nano-Newton and indentations of about 1 nm, the accuracy
and the reliability of the method can be enhanced. Furthermore,
elastic deformations used to find the indentation modulus do not
introduce any additional damage to the structure. Results pre-
sented herein are based on the assumption that the void does
not close during the indentation process which tacitly applies to
rather wide voids. For narrow voids (i.e., hb/h� 1) either the
indentation load will need to be very small for this assumption
to be valid or the analysis will need to be modified to allow for
the void to collapse. The closing of the void will be indicated by
a sudden increase in the indentation modulus.

The goal of our work is to delineate the effect of various mate-
rial and geometric parameters on the indentation modulus. Even
though we have solved an idealized problem, results presented
in the paper shed light on what parameters to focus on while using
the indentation modulus for identifying damage in the structure.

As stated in [6] the damage identification involves determining
the existence of damage, its geometric location, its severity or mag-
nitude, and prediction of the remaining service life of the structure.
The present work partially addresses the first three issues but
sheds no light on the durability of structures. By conducting sev-
eral numerical simulations, one can establish a functional relation-
ship between the change in the indentation modulus and other
variables such as the void length, the void location, and values of
material and geometric parameters.

We note that results presented herein are not applicable to the
indentation of laminated metallic plates where significant plastic
deformations are likely to ensue in the indented regions.

7. Conclusions

We have employed the Eshelby–Stroh formalism to study a
generalized plane strain problem involving the indentation by a
smooth rigid circular cylinder of a two-layer elastic composite with
a through-the-width rectangular void between them. It is assumed
that the void does not close during the indentation process. For a
range of values of material and geometric parameters we have
compared the indentation load vs. the indentation depth curves
with the corresponding ones for the perfectly bonded layers. Since
the slope of the indentation load vs. the indentation depth curve
for a layer with a void deviates noticeably from that of the perfectly
bonded one, the traditional indentation test can be used to detect
voids between layers. The change in the indentation modulus in-
creases with an increase in the void length, a decrease in the ver-
tical distance between the void and the indenter, and an increase
in Young’s modulus of the layer material in the indentation direc-
tion. The change in the indentation modulus decreases as either
the void moves away from the indenter or the in-plane shear mod-
ulus increases.
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