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a b s t r a c t

Functionally graded materials (FGMs) enable one to tailor the spatial variation of material properties so
as to fully use the material everywhere. For example, in a hollow circular cylinder one can vary, in the
radial direction, the material moduli to make the hoop stress constant. Whereas the problem for a hollow
cylinder with the inner and the outer surfaces circular has been studied, that of a cylinder with a circular
outer surface and a non-circular inner surface or vice versa has not been investigated. We study here such
a plane-strain problem when the cylinder material is polar-orthotropic, material properties vary expo-
nentially in the radial direction, and deformations are independent of the axial coordinate. The problem
is challenging since the cylinder thickness varies with the angular position of a point, and the cylinder
material is inhomogeneous. Equilibrium equations are solved by expanding the radial and the circumfer-
ential displacements in Fourier series in the angular coordinate. The method of Frobenius series is used to
solve ordinary differential equations for coefficients of the Fourier series, and boundary conditions are
satisfied in the sense of Fourier series. A parametric study has been conducted that delineates effects
on stresses of the eccentricity of the ellipse, the material property gradation index and loads applied
on boundaries of the cylinder. The analytical solutions presented here will serve as benchmarks for com-
paring solutions derived by numerical methods.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are composites composed
of two or more phases with the composition and the morphology
gradually changing in or more directions resulting in continuous
variation of the material elasticities with the spatial position. An
advantage of FGMs is that one can tailor the spatial variation of
material properties to fully use the material everywhere. For exam-
ple, the radial variation of the material moduli of a FG cylinder can
be found to attain a constant hoop stress in the cylinder. However,
the spatial variation of elastic properties complicates the analysis
and the design of FG structures. From mathematics point of view,
one needs to solve partial differential equations with variable coef-
ficients; accordingly the solution of pertinent boundary-value prob-
lems (BVPs) is more challenging. There is extensive literature on the
mechanical behavior of FG structures (for example, see [1–6]).

We review below the pertinent literature on the investigation of
stresses and displacements in a FG hollow circular cylinder com-
posed of isotropic and linear elastic materials. Horgan and Chan [7]
analyzed two-dimensional plane stress/strain deformations by
assuming Young’s modulus E(r) to be a power law function of the ra-
ll rights reserved.
dius r and constant Poisson’s ratio t. Oral and Anlas [8] discussed the
stress distribution in an inhomogeneous anisotropic cylinder; Pan
and Roy [9] solved a plane-strain problem for a FG cylinder by divid-
ing it into several homogeneous cylinders. Tutuncu [10] gave the
power series solution for stresses and displacements in FG cylinders,
and Theotokoglou and Stampouloglou [11] studied axisymmetric
problems for radially inhomogeneous circular cylinders. The effect
of varying t on deformation fields in FG cylinders has been investi-
gated by Mohammadi and Dryden [12]. Li and Peng [13] have ana-
lyzed axisymmetric deformations of FG hollow cylinders and disks
with arbitrarily varying material properties. Zimmerman and Lutz
[14], Jabbari et al. [15,16], Liew et al. [17], Shao et al. [18,19], and Hos-
seini et al. [20] have analyzed thermoelastic problems for FG cylin-
ders or cylindrical panels. Ootao et al. [21,22], Afsar and Sekine
[23], and Goupee and Vel [24] have optimized material compositions
for inhomogeneous hollow circular cylinders.

We note that deformations of a hollow cylinder with a circular
outer surface and a non-circular inner surface or vice versa have
not been investigated. Design considerations may dictate a non-
circular cross-section of a cylinder; for example, several naval
and flight vessels are non-circular, and oil tanks have elliptical
outer surfaces. Dynamic and buckling characteristics of elliptic
cylinders are quite different from those of circular cylinders;
for example see [25,26]. Here we study plane-strain static
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Fig. 2. Angles c and h for a point on the elliptical inner surface.

G.J. Nie, R.C. Batra / Composites Science and Technology 70 (2010) 450–457 451
deformations of a cylinder with elliptical inner and circular outer
surfaces composed of a material that is polar-orthotropic and its
moduli vary exponentially in the radial direction. The problem is
challenging since the cylinder thickness varies with the angular po-
sition of a point and material properties vary in the radial direction.
The analytical solution of the problem is obtained by employing the
Fourier and the Frobenius series, and effects of geometric and mate-
rial parameters on the solution of the problem are delineated.

2. Problem formulation

Consider an infinitely long cylinder shown in Fig. 1 of uniform
cross-section with elliptical inner surface concentric with the outer
circular surface. The lengths of the major and the minor semi-axes
of the elliptical inner surface are ain and bin, respectively, and the
radius of outer circular surface is rou. Because the cylinder geome-
try, the material properties, and the applied loads are independent
of the axial coordinate of a point, the state of deformation in the
cylinder is assumed to be that of plane-strain. We take the origin
of the cylindrical coordinate axes at the center of ellipse, and de-
note coordinates of a point in a cross-section by (r, h).

For a plane-strain problem, equations of equilibrium in cylindri-
cal coordinates (r, h), in the absence of body forces, are
@rrr

@r
þ 1

r
@rrh

@h
þ rrr � rhh

r
¼ 0;

@rhr

@r
þ 1

r
@rhh

@h
þ 2

r
rhr ¼ 0;

~rðhÞ < r < rou; ð1Þ
where rrr, rrh = rhr and rhh are stress components. The function ~rðhÞ
is given by

~rðhÞ ¼ bin=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 cos2 h
p

; ð2Þ

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

in=a2
in

q
is the eccentricity of the elliptical inner

surface.
The radial and the circumferential displacements, ur and uh, are

related to the strains err, ehh and erh through the following
relations:

err ¼
@ur

@r
; ehh ¼

ur

r
þ 1

r
@uh

@h
; erh ¼

1
r
@ur

@h
þ @uh

@r
� uh

r
: ð3Þ

We assume that the cylinder is made of a polar-orthotropic lin-
ear elastic material with material elasticities varying in the radial
direction. The constitutive relations are

rrr ¼ c11ðrÞerrþc12ðrÞehh; rhh¼ c12ðrÞerrþc22ðrÞehh; rrh¼ c66ðrÞerh:

ð4Þ

The elastic moduli, c11(r), c22(r), c12(r), c66(r), are assumed to be
given by

cijðrÞ ¼ c0
ije

k r
rouð Þ ðij ¼ 11;22;12;66Þ; ð5Þ
Fig. 1. Schematic sketch of the problem studied.
where k is a constant. Thus the radial variation of the four elastic
moduli is given by the same function.

Boundary conditions applied to the outer surface of the cylinder
are

either rrrðrou; hÞ ¼ �pouðhÞ; or urðrou; hÞ ¼ �uou
r ðhÞ; and ð6a;bÞ

either rrhðrou; hÞ ¼ qouðhÞ or uhðrou; hÞ ¼ �uou
h ðhÞ: ð6c;dÞ

Here pou(h) and qou(h) are the normal and the tangential tractions,
respectively, assigned on the outer surface of the cylinder, and
�uou

r ðhÞ and �uou
h ðhÞ are, respectively, the prescribed radial and the cir-

cumferential displacements there. Functions pou(h), qou(h), �uou
r ðhÞ and

�uou
h ðhÞ are such that they can be expressed as Fourier series in h. On

the elliptical inner surface of the cylinder, displacements are pre-
scribed as

urð~rðhÞ; hÞ ¼ �uin
r ðhÞ; uhð~rðhÞ; hÞ ¼ �uin

h ðhÞ; ð7a;bÞ

where �uin
r ðhÞ and �uin

h ðhÞ are known functions of h. Traction boundary
conditions on the elliptical inner surface of the cylinder are

rrrð~rðhÞ; hÞ cosðc� hÞ þ rrhð~rðhÞ; hÞ sinðc� hÞ
¼ �pinðhÞ cosðc� hÞ þ qinðhÞ sinðc� hÞ; ð8aÞ

rrhð~rðhÞ; hÞ cosðc� hÞ þ rhhð~rðhÞ; hÞ sinðc� hÞ
¼ �pinðhÞ sinðc� hÞ þ qinðhÞ cosðc� hÞ; ð8bÞ

where pin(h) and qin(h) are the normal and the tangential tractions
applied on the inner surface, and the angle c between the normal
of the inner surface and the horizontal axis, as shown in Fig. 2, is
given by [27]

tan c ¼ ain

bin
tan h: ð9Þ

For an arbitrary shape of the inner surface of the cylinder it is
difficult to exactly satisfy traction boundary conditions (8). There-
fore, we approximately satisfy them by dividing the surface into
several small straight segments, and equate the central angle h of
an arbitrary segment i to the average of central angles of two ends
of the segment. We expand prescribed functions on the boundary
in terms of Fourier series in h, multiply both sides of Eqs. (6)–(8)
by cos(mh) and sin(mh), integrate numerically by using the Gauss
quadrature rule from 0 to 2p, and solve the resulting system of
algebraic equations for coefficients of Fourier series.

When only surface tractions are prescribed on the inner and the
outer surfaces, then the assigned surface tractions must have null
resultant force and moment in order for the problem to have a
solution.

3. Problem solutions

We assume that the displacement fields can be expressed as
[9,15]
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urðr; hÞ ¼
X1
m¼0

½uc
rmðrÞuc

m þ us
rmðrÞus

m�;

uhðr; hÞ ¼
X1
m¼0

½uc
hmðrÞuc

m þ us
hmðrÞus

m�; ð10a;bÞ

where integer m equals the circumferential wave number,
uc

m ¼ cosðmhÞ;us
m ¼ sinðmhÞ, and superscripts c and s signify quan-

tities associated with the cosine and the sine terms. For non-axi-
symmetric problems, we take us

r0 ¼ us
h0 ¼ 0 since they do not

contribute to ur and uh respectively.
For m = 0, substitution for displacements ur and uh from Eqs.

(10a,b) into Eq. (3), and then for strains into Eq. (4), and stresses
into Eq. (1) gives the following 2nd order ordinary differential
equation for uc

r0 and uc
h0:

c0
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11
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r0 ¼ 0; ð11aÞ
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dr2 þ
1
r
þ k
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� �
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h0

dr
� k
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þ 1

r2

� �
uc

h0 ¼ 0: ð11bÞ

Thus for k = 0 (i.e., a homogeneous cylinder), solutions of Eqs.
(11a,b) are

uc
r0 ¼ C10rh þ C20r�h; uc

h0 ¼ C01r þ C02r�1 ð12a;bÞ

and for k – 0, Eqs. (11a,b) have the solutions

uc
r0 ¼ expð�hr þ h ln rÞðC30Uð�h1;1þ 2h;hrÞ þ C40L2h

h1
ðhrÞÞ; ð13aÞ
uc
h0 ¼ C03r þ C04rðexpð�hrÞðkrou=r � r2

ou=r2Þ þ k2Eið�hrÞÞ; ð13bÞ

where h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0

22=c0
11

q
;hr ¼ kr=rou;h1 ¼ h2 � h� 1; constants of inte-

gration C10, C20, C30, C40, C01, C02, C03 and C04 are determined by

boundary conditions, L2h
h1
ðzÞ is the generalized Laguerre polynomial,

Uðg1; g2; zÞ ¼ 1=Cðg1Þ
R1

0 e�zttg1�1ð1þ tÞg2�g1�1dt is the confluent
hypergeometric function, and Ei(z) is the exponential integral func-
tion. We note that only those values of the gradation index k are
admissible for which the hypergeometric function has a finite value.

For m P 1, following the same procedure as above we obtain
the following 2nd order differential equations for uc

rm;u
s
rm and

uc
hm;u

s
hm:

X1
m¼1
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m

� �
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� �
¼ 0:

ð14a;bÞ

Here
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and

g1ðrÞ ¼
1
r
þ k

rou
; g2ðrÞ ¼

kc0
12

rour
� c0

22 þm2c0
66

r2 ;

g3ðrÞ ¼
mðc0
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66Þ

r
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rour
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þmðc0

22 þ c0
66Þ

r2 :
Equating to zero coefficients of cos(mh) and sin(mh) on both
sides of Eq. (14) gives

f1mðrÞ ¼ 0; f 2mðrÞ ¼ 0; f 3mðrÞ ¼ 0; f 4mðrÞ ¼ 0: ð16a;b; c;dÞ

We note that uc
rm and us

hm are obtained by simultaneously solv-
ing Eqs. (16a,d), and us

rm and uc
hm by simultaneously solving Eqs.

(16b,c). These equations are solved by the method of Frobenius
series. First, we non-dimensionalize displacements uc

rm;u
s
hm;u

s
rm;

uc
hm and the radial coordinate r by rou, and elastic constants c11,

c22, c12, c66 by c11. Henceforth we use non-dimensional variables
and denote them by the same symbols as before.

We assume that the Fourier components of displacements have
the following power series expansion.

uc
rmðrÞ ¼

X1
k¼0

akrkþt1 ; us
hmðrÞ ¼

X1
k¼0

bkrkþt1 ;

us
rmðrÞ ¼

X1
k¼0

ckrkþt2 ; uc
hmðrÞ ¼

X1
k¼0

dkrkþt2 ; ð17a;b; c;dÞ

where constants ak, bk, ck, dk (k = 0, 1, 2, . . .) are given by the recur-
rence formulae, a0, b0, c0, d0 – 0, and exponents t1 and t2 are deter-
mined as a part of the solution of the problem.

Substituting for uc
rm and us

hm from Eq. (17a,b) into Eq. (16a,d) and
equating to zero coefficients of the same power of r, we get the fol-
lowing recurrence formulae for ak and bk:

f 0
11a0 þ f 0

12b0 ¼ 0; f 0
21a0 þ f 0

22b0 ¼ 0; ð18a;bÞ

F1ak þ F2bk ¼ F3ak�1 þ F4bk�1;

F5ak þ F6bk ¼ F7ak�1 þ F8bk�1; k ¼ 1;2;3 . . . ; ð18c;dÞ

where

f 0
11 ¼ �c0

22 � c0
66m2 þ c0

11t2
1;

f 0
12 ¼ �mðc0

22 � c0
12t1 þ c0

66 � c0
66t1Þ;

f 0
21 ¼ �mðc0

22 þ c0
12t1 þ c0

66 þ c0
66t1Þ;

f 0
22 ¼ �c0

22m2 � c0
66 þ c0

66t2
1;

F1 ¼ �c0
22 � c0

66m2 þ c0
11ðkþ t1Þ2;

F2 ¼ mð�c0
22 þ c0

66ð�1þ kþ t1Þ þ c0
12ðkþ t1ÞÞ;

F3 ¼ kðc0
12 þ c0

11ð�1þ kþ t1ÞÞ=rou;

F4 ¼ kmc0
12=rou;

F5 ¼ �mðc0
22 þ c0

12ðkþ t1Þ þ c0
66ð1þ kþ t1ÞÞ;

F6 ¼ �c0
22m2 þ c0

66ðk
2 þ 2kt1 þ t2

1 � 1Þ;
F7 ¼ �kmc0

66=rou;

F8 ¼ c0
66kð�2þ kþ t1Þ=rou:

Assuming that f12 = 0, we find b0 from Eq. (18a) as

b0 ¼ �f 0
11a0=f 0

12: ð19Þ

Equating to zero the determinant of the coefficient matrix of a0

and b0 in Eq. (18a,b), we get the following equation for the expo-
nent t1:

c0
11c0

66t4
1 þ ct2

1 þ c0
22c0

66ðm� 1Þ2ðmþ 1Þ2 ¼ 0; ð20Þ

where c ¼ �ðc0
11 þ c0

22Þc0
66 þ ðc0

12ð2c0
66 þ c0

12Þ � c0
11c0

22Þm2. Eq. (20) can
be analytically solved for t1 and we omit the lengthy expression.

Solutions of Eq. (16a,d) are

uc
rmðrÞ ¼

X4

j¼1

X1
k¼0

Cja
j
krkþtj

1 ; us
hmðrÞ ¼

X4

j¼1

X1
k¼0

Cjb
j
krkþtj

1 ; ð21a;bÞ

where constants Cj (j = 1, 2, 3, 4) are determined from boundary
conditions in Eqs. (6)–(8).



Fig. 3. A quarter of the cylinder divided into (a) several layers, and (b) the FE mesh for solving the problem by the FEM.
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Following the same procedure as above, we get solutions of Eq.
(16b,c) as

us
rmðrÞ ¼

X4

j¼1

X1
k¼0

Djc
j
krkþtj

2 ; uc
hmðrÞ ¼

X4

j¼1

X1
k¼0

Djd
j
krkþtj

2 ; ð21c;dÞ

where constants Dj (j = 1, 2, 3, 4) are determined from the boundary
conditions.

Substituting for uc
r0 and uc

h0 from Eq. (12a,b) or (13a,b) and for
uc

rm;u
s
hm;u

s
rm and uc

hm (m > 0) from Eq. (21a–d) into Eq. (10a,b), we
get analytical solutions for displacements of the FG cylinder. Note
that Eq. (11) can also be solved for uc

r0 and uc
h0 by the Frobenius ser-

ies method following the same procedure as above, and the prob-
lem may no solution for some values of the graded index k. because
special functions in Eq. (13) may not be well defined. Knowing dis-
placements, stresses can be computed.

4. Example problems

4.1. Convergence of the series solution

Example 1: Consider a FG cylinder with lengths of the major
and the minor semi-axes of the elliptical inner surface as
ain = 0.6 m and bin = 0.55 m, respectively, the radius of the circular
outer surface rou = 1.0 m, and vales of material parameters as

c11ðrÞ ¼ 1:0 expð6r=rouÞ GPa; c22ðrÞ ¼ c11ðrÞ;
c12ðrÞ ¼ 0:343c11ðrÞ; c66ðrÞ ¼ 0:328c11ðrÞ:
Fig. 4. Variation in the radial direction of (a)
For the pressure, 1.0 MPa, applied on the elliptical inner surface
and the circular outer surface fixed, results are compared with
those obtained from the commercial finite element software,
ANSYS, realizing that the finite element method (FEM) provides
an approximate solution of a BVP whose accuracy can be improved
upon by increasing the number of elements into which the prob-
lem domain is divided. For analyzing the problem with ANSYS, a
quarter of the cylinder is divided into two parts – one a circular
cylinder of inner radius 0.6 m and outer radius 1.0 m, and the other
of thickness 0.05 m at h = p/2 and 0 at h = 0. The first part of uni-
form thickness is divided into 16 equal parts in the radial direction
with uniform material properties equal to those at the center as-
signed to these thin cylinders. The FE mesh for each thin cylinder
has three (800) uniform elements in the radial (circumferential)
direction. The second portion of the cylinder of thickness 0.05 m
at h = p/2 and 0 at h = 0 is divided into two homogeneous thin lay-
ers composed of 4808 triangular elements, as shown in Fig. 3. The
total number of nodes and elements in the FE mesh equal 41,485
and 43,208, respectively. Values of elastic moduli in each layer
are constants and equal those obtained from Eq. (5) at the mid-
point of the layer. Boundary conditions resulting from the symme-
try of the problem (i.e., null tangential tractions and zero normal
displacements) are applied to nodes on the horizontal and the ver-
tical planes. For results presented in Fig. 4 below, ‘a’ and ‘p’ repre-
sent, respectively, solutions obtained with the FEM and the present
approach, and ‘m’ denotes the circumferential wave number of the
external pressure. It is clear that results from the two approaches
agree well with each other. We note that the present (FEM)
the hoop stress, and (b) the radial stress.



Table 1
Effect of the number of Gauss points and the number of terms in the Fourier and the Frobenius series on the radial stress at the point (0.625 m, 0).

Gaussian points Number of terms in the Fourier series–number of terms in the Frobenius series

6–30 6–40 8–30 8–40 12–30 12–40

64 �0.96584 �0.96584 �0.96577 �0.96577 �0.96576 �0.96576
128 �0.96585 �0.96585 �0.96576 �0.96576 �0.96569 �0.96569

The radial stress at the point (0.625 m, 0) from ANSYS is �0.96086 MPa.
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approach involves 480 (82,970) unknowns; thus the proposed
method for this problem is computationally more efficient than
the FEM.

For 64 and 128 Gauss points used to numerically evaluate inte-
grals, and different number of terms retained in the Fourier and the
Frobenius series, we have listed in Table 1 values of the radial
stress at the point (0.625 m, 0). It is clear that the value of the ra-
dial stress hardly changes when either 6 (30) or 8 (40) terms in the
Fourier (Frobenius) series and either 64 or 128 Gauss points are
used to numerically evaluate integrals. Furthermore, the radial
stress obtained from the present method differs from that com-
puted with the FEM by less than 0.5%.

Note that the number of terms in the Frobenius and the Fourier
series needed to obtain a converged solution varies with the eccen-
tricity of the elliptical inner surface of the cylinder and the grada-
tion of material properties. Therefore, in the following examples,
the number of terms in these series is increased till stresses at a
point have converged to within 0.1% of their values.
4.2. Parametric studies

We investigate through numerical examples the influence of (i)
the gradation of material properties, (ii) non-uniform external
Fig. 5. For three values of the gradation index k of material properties, through-the-thick
line h = 0, (c) the hoop stress on the line h = p/2, and (d) the radial stress on the line h =
pressures, and (iii) the eccentricity of the elliptical inner surface
on displacements and stresses induced in FG cylinders. For results
presented below, unless otherwise noted, the elliptical inner sur-
face is fixed, the pressure applied on the circular outer surface
equals either 1.0 MPa or 1.0 � cos(4h) MPa, number of terms in
the Fourier series for displacements = 8, number of terms in the
Frobenius series for the coefficient of each term is the Fourier ser-
ies = 30, number of Gauss points used to numerically evaluate
integrals = 128.
4.2.1. The effect of the gradation of material properties
Example2: For k = �6, 0 and 6, and uniform pressure on the

outer surface = 1.0 MPa, through-the-thickness distributions of
the radial and the hoop stresses along the major and the minor
semi-axes of the inner ellipse are exhibited in Fig. 5. Note that
the cylinder thickness is minimum for the radial line h = 0, maxi-
mum along the radial line h = p/2, and results for k = 0 are for a
homogeneous cylinder. Whereas k = �6 makes the hoop stress
essentially uniform on the two radial lines in the cylinder, the max-
imum magnitude of the radial stress is greater than that for the
homogeneous cylinder. Stresses plotted in Fig. 5a–d illustrate that
the magnitude of the hoop stress on the radial line h = p/2 in-
creases significantly at points in the vicinity of the outer surface
ness distributions of (a) the hoop stress on the line h = 0, (b) the radial stress on the
p/2.



Fig. 6. For three values of the graded index of the material properties, through-the-thickness distributions of (a) the hoop stress on the radial line h = 0, (b) the radial stress on
the radial line h = 0, (c) the hoop stress on the radial line h = p/2, (d) the radial stress on the radial line h = p/2, and (e) the shear stress on the radial line h = p/8.
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for k = 6, and the magnitude of the radial stress on the line h = p/2
increases noticeably at points near the inner surface for k = �6. The
difference in stresses on the radial lines h = 0 and h = p/2 reveals
the influence of the inner elliptical surface (or of the variation of
the thickness) of the cylinder. The shear stress at a point in the cyl-
inder is considerably less than the magnitude there of the normal
stresses, and is thus not plotted here.

4.2.2. The effect of non-axisymmetric external pressures
Example 3: For the BVP of example 2 except that the pressure

on the outer surface is given by 1.0 � cos(4h) MPa, through-the-
thickness stress distributions are displayed in Fig. 6. The value of
a quantity at a point (r, h) is obtained by multiplying the value of
the quantity at the point (r, 0) by cos(4h).

Through-the-thickness distributions of stresses on the two ra-
dial lines differ noticeably from those shown in Fig. 5, and signify
the effect of non-axisymmetric pressure applied on the outer sur-
face of the cylinder. Whereas for a uniform pressure the hoop
stress is compressive everywhere (see Fig. 5a and c), for a non-uni-
form pressure it can be tensile at an interior point of the cylinder
(see Fig. 6a and c). Due to the eccentricity of the inner elliptical sur-
face, on the radial line h = p/2, the hoop stress at points near the
outer surface is greater than that at the corresponding points on
the line h = 0 for k = 6. Whereas the shear stress in example 2 for
the uniform pressure case is very small, that for the non-uniform
pressure loading is comparable in magnitude to the normal stres-
ses at points on the inner clamped surface.

4.2.3. The effect of the eccentricity of elliptical inner surface
Example 4: For the cylinder considered in example 1, we now

vary length of the minor axis to alter the eccentricity of the inner
elliptic surface. For bin = 0.5, 0.55, 0.6 m, and the cylinder outer sur-
face subjected to a uniform pressure 1.0 MPa, Fig. 7 exhibits
through-the-thickness distributions of the radial and the hoop
stresses when k = �6 and 6.

The through-the-thickness distributions of two stresses de-
pend continuously upon the eccentricity of the inner elliptic sur-
face. For k = �6, the radial stress at a point on the line h = p/2 is



Fig. 7. For three values of the eccentricity of the inner elliptic surface, through-the-thickness distributions on the radial line h = p/2 of (a) the hoop stress for k = �6, (b) the
radial stress for k = �6, (c) the hoop stress for k = 6, and (d) the radial stress for k = 6.
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not affected much by the eccentricity on the inner surface but
the maximum magnitude of the hoop stress increases with an
increase in e. However, for k = 6, with an increase in e, the max-
imum value of the hoop stress increases but that of the radial
stress decreases.
5. Conclusions

We have studied analytically static plane-strain deformations of
functionally graded polar-orthotropic cylinders with elliptic inner
and circular outer surfaces by employing the Fourier and the
Frobenius series and assuming that the four relevant elastic moduli
have the same exponential variation in the radial direction. The ra-
dial and the circumferential displacements are expanded in Fourier
series in the angular coordinate and the ordinary differential equa-
tions for coefficients of the Fourier series are solved by using the
Frobenius series method. Boundary conditions are satisfied in the
sense of Fourier series. The stresses obtained with the present
method are found to agree very well with those computed with
the finite element method using commercial software with the cyl-
inder thickness divided into several contiguous perfectly bonded
homogeneous cylinders. It is found that the distributions of the
hoop and the radial stresses along different radial lines are notice-
ably affected by the gradation of material properties, the wave
number of the pressure applied on the outer surface, and the
eccentricity of the inner surface. An inappropriate value of the gra-
dation index may adversely affect stresses at a point in the sense
that it may significantly increase rather than decrease their magni-
tudes. Also, the sign of the hoop stress at a point depends strongly
upon the value of the gradation index.

The analytical solutions presented here can serve as benchmark
solutions for comparing results computed with other numerical
algorithms.
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