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We present a technique to tailor materials for functionally graded (FG) linear elastic hollow cylinders and
spheres to attain through-the-thickness either a constant hoop (or circumferential) stress or a constant
in-plane shear stress. The volume fractions of two phases of a FG material (FGM) are assumed to vary only
with the radius and the effective material properties are estimated by using either the rule of mixtures or
the Mori–Tanaka scheme; the analysis is applicable to other homogenization methods. For a FG cylinder
we find the required radial variation of the volume fractions of constituents to make a linear combination
of the radial and the hoop stresses uniform throughout the thickness. The through-the-thickness unifor-
mity of the hoop stress automatically eliminates the stress concentration near the inner surface of a very
thick cylinder. The through-the-thickness variations of Young’s moduli obtained with and without con-
sidering the variation of Poisson’s ratio are very close to each other for a moderately thick hollow cylinder
but are quite different in a very thick hollow cylinder. For an FG sphere the required radial variation of the
volume fractions of the two phases to get a constant circumferential stress is similar to that in an FG
cylinder. The material tailoring results presented here should help structural engineers and material
scientists optimally design hollow cylinders and spheres comprised of inhomogeneous materials.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are composites composed
of one or more phases spatially dispersed in a matrix of another
phase. By controlling distributions of the volume fractions of
phases within a body one can optimize structural performance
and simultaneously meet other requirements. FGMs made of par-
ticulate composites have numerous interfaces and their ultimate
strength is determined by the strength of these interfaces; e.g.
see Love and Batra [1]. The interfaces between constituents can
be eliminated or minimized when FGMs are fabricated by layering
a molten mixture of two phases of different volume fractions. Var-
ious manufacturing techniques for FGMs have been discussed by
[2,3].

Many investigators have studied deformations of FG structures
by assuming that the macroscopic material properties are pre-
scribed functions of the spatial coordinates. A challenging problem
is to find the spatial variation of the constituent phases needed to
attain a prescribed spatial distribution of stresses in a structure.
The problem of designing an inhomogeneous orthotropic material
to yield a desired spatial distribution of stresses has been studied
by Leissa and Vagins [4] by assuming that all material moduli are
ll rights reserved.
proportional to each other. They found the spatial variation of
the material elasticities to make either the hoop stress or the max-
imum in-plane shear stress uniform through the cylinder thick-
ness. For designing FGMs with minimum thermal stresses,
Tanaka et al. [5–7] developed a theoretical framework based on
the direct sensitivity and the finite element methods. Sadagopan
and Pitchumani [8–10] analyzed the optimal material tailoring
problem by the combinatorial optimization technique, such as sim-
ulated annealing or genetic algorithms, in conjunction with analyt-
ical microstructure–property relations. Tanigawa et al. [11] used
the nonlinear programming method to find the material composi-
tion for minimizing transient thermal stresses induced in an infi-
nitely long inhomogeneous plate. Vinogradov [12] studied the
effectiveness of material tailoring in asymmetric laminated
beam-columns to enhance their buckling resistance. It is found
that the performance of laminates can be controlled through a
proper selection of the number, the stacking sequence and the
material properties of the layers. Cho and Ha [13,14] presented
an efficient and reliable optimization procedure to ascertain the
volume-fraction distribution for relaxing or minimizing the stea-
dy-state effective thermal stresses in heat-resisting FGMs. Cho
and Choi [15] found the volume-fraction distribution in an elas-
tic–plastic metal-ceramic FGM by considering the variation of its
yield stress with the volume fraction of the constituents. Batra
and Jin [16] determined the fiber orientation in each ply of a
laminated composite plate to optimize its natural frequencies.

http://dx.doi.org/10.1016/j.compscitech.2011.01.009
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Qian and Batra [17] employed a meshless method and a higher-or-
der shear and normal deformable plate theory to compute the spa-
tial variation of the volume fractions of constituents to optimize
natural frequencies of a cantilever plate. Love and Batra [18]
numerically computed the effective thermal and mechanical prop-
erties of a particulate composite composed of elasto-plastic inclu-
sions imbedded in an elastic–plastic matrix. Goupee and Vel
[19,20] used a meshless method to study two-dimensional ther-
mo-mechanical deformations of a FG structure and employed a
genetic algorithm to optimize the spatial distribution of the con-
stituent phases. Sun and Hyer [21] delineated the improvement
in the axial buckling load by continuously varying the fiber orien-
tation angle in an elliptic fiber-reinforced composite cylinder. Batra
[22–23] determined the radial variation of the shear modulus in
Hookean and Mooney–Rivlin cylinders and spheres so that either
the hoop stress or the in-plane shear stress is uniform during their
axisymmetric deformations. Nie and Batra [24] found the required
radial variation of the shear modulus for a linear combination of
the radial and the hoop stresses to have a preassigned variation
in a cylinder made of an incompressible FGM. They also deter-
mined the radial variation of either Young’s modulus or Poisson’s
ratio for a cylinder to have either uniform in-plane shear stress
or uniform hoop stress [25] during axisymmetric deformations.
Na and Kim [26–28] optimized the volume fractions of constitu-
ents in a flat and a stepped FG panel to reduce stresses and im-
prove their thermo-mechanical buckling behavior.

Works cited above indicate that one can improve the perfor-
mance of structures through material tailoring. Here we analyti-
cally find the spatial variation of the volume fractions of phases
required to make a linear combination of the hoop and the radial
stresses constant through-the-thickness of a cylinder or a sphere.
For an FGM composed of spherical inclusions imbedded in a ma-
trix, the volume fractions of constituents are evaluated by either
the rule of mixtures or the Mori–Tanaka scheme [29–32]. We note
that Vel and Batra [33] have compared stress and displacement
fields in an FG plate with effective material properties derived by
using the Mori–Tanaka and the consistent schemes. Our computed
values of the volume fractions of constituents depend upon the
homogenization technique employed to derive values of effective
material parameters of the FGM from that of constituents. We note
that Charalambakis [34] has recently reviewed various homogeni-
zation techniques.

2. Formulation of the problem

2.1. Cylinder

Consider an infinitely long FG hollow cylinder with inner radius
rin, outer radius rou, and its inner and outer surfaces subjected,
Fig. 1. Section of an infinitely long FG hollow cylinder.
respectively, to pressures pin and pou, as shown in Fig. 1. We assume
that an axisymmetric plane strain state of deformation prevails in
the cylinder, and describe its deformations in cylindrical coordi-
nates (r, h) with the origin at the center of a cross-section of the
cylinder. Thus the material composition varies only in the thick-
ness direction and not in the axial direction. The problem of finding
the composition as a function of all three coordinates is consider-
ably more challenging than the one studied here. For the present
problem, the compatibility equation in terms of infinitesimal
strains err and ehh is

d
dr
ðrehhÞ � err ¼ 0: ð1Þ

In the absence of body forces the equation of equilibrium is

drrr

dr
þ rrr � rhh

r
¼ 0; ð2Þ

where rrr and rhh are the radial and the circumferential (or the
hoop) stresses respectively. The boundary conditions on the inner
and the outer surfaces of the cylinder are

rrrðrinÞ ¼ �pin; rrrðrouÞ ¼ �pou: ð3a;bÞ

Constitutive equations for a linear elastic isotropic FGM with
radial inhomogeneity are

err ¼
1

E1ðrÞ
½rrr � v1ðrÞrhh�;

ehh ¼
1

E1ðrÞ
½rhh � v1ðrÞrrr�;

ð4a;bÞ

where

E1ðrÞ ¼
EðrÞ

1� v2ðrÞ ; v1ðrÞ ¼
vðrÞ

1� vðrÞ ; ð5a;bÞ

E(r) and v(r) are Young’s modulus and Poisson’s ratio, respectively,
and they are functions of the radial coordinate, r. Henceforth we call
E1 and v1 the effective Young’s modulus and the effective Poisson’s
ratio, respectively.

2.2. Sphere

For a hollow sphere with material properties varying only in the
radial direction and loaded by hydrostatic pressures on the inner
and the outer surfaces, it is reasonable to assume that a material
point moves only in the radial direction. Eq. (1) is the compatibility
equation, and the equilibrium equation in spherical coordinates for
an axisymmetric problem is

drrr

dr
þ 2

r
ðrrr � rhhÞ ¼ 0: ð6Þ

The boundary conditions on the inner and the outer surfaces of
the sphere are the same as those listed in Eq. (3). Constitutive
equations for a linear elastic isotropic FGM with radial inhomoge-
neity are

err ¼
1

EðrÞ ½rrr � 2vðrÞrhh�;

ehh ¼
1

EðrÞ ½rhh � vðrÞðrrr þ rhhÞ�:
ð7a;bÞ
3. Homogenization of material properties

For an FGM made of two distinct isotropic materials, for exam-
ple, a metal and a ceramic, the rule of mixtures gives the following
effective material properties

EðrÞ ¼ ½1� nðrÞ�Em þ nðrÞEp; vðrÞ ¼ ½1� nðrÞ�vm þ nðrÞvp;

ð8a;bÞ
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where it has been tacitly assumed that the FGM is also isotropic;
our analysis will also apply to a cylinder whose material is trans-
versely isotropic with the cylinder axis as the axis of transverse isot-
ropy. Alternatively, one can use the Mori–Tanaka scheme to arrive
at

KðrÞ ¼ Km þ
nðrÞðKp � KmÞð3Km þ 4GmÞ

3Km þ 4Gm þ 3ð1� nðrÞÞðKp � KmÞ
; ð9aÞ

GðrÞ ¼ Gm þ
nðrÞðGp � GmÞð5Gmð3Km þ 4GmÞÞ

5Gmð3Km þ 4GmÞ þ 6ð1� nðrÞÞðKm þ 2GmÞðGp � GmÞ
;

ð9bÞ

EðrÞ ¼ 9GðrÞKðrÞ
GðrÞ þ 3KðrÞ ; vðrÞ ¼ 3KðrÞ � 2GðrÞ

2GðrÞ þ 6KðrÞ ; ð9cÞ

where nðrÞ equals the volume fraction of the inclusion (i.e., phase 1),
suffixes m and p denote the matrix and the inclusion, respectively,
and K(r) and G(r) the bulk and the shear moduli, respectively. We
note that the moduli E(r) and v(r) should satisfy the Hashin–Shtrik-
man upper and lower bounds [35] and the material moduli given by
the Mori–Tanaka scheme are lower bounds. Other homogenization
techniques have been reviewed in [34] and our computed through-
the-thickness variations of the volume fractions of constituents de-
pend upon the homogenization technique employed.

4. Stress fields in homogeneous cylinders and spheres

In view of the boundary conditions in Eq. (3), we solve simulta-
neously Eqs. (1), (2) and (4) and then stresses in a hollow cylinder
made of a homogeneous material can be obtained as

rrr ¼
pinr2

in � pour2
ou

r2
ou � r2

in

þ ðpou � pinÞr2
our2

in

r2ðr2
ou � r2

inÞ
;

rhh ¼
pinr2

in � pour2
ou

r2
ou � r2

in

þ ðpin � pouÞr2
our2

in

r2ðr2
ou � r2

inÞ
:

ð10a;bÞ

The expressions of stresses in Eq. (10) are the same as those given in
[22].

Similarly, we can get the expressions of stresses in a hollow
sphere composed of a homogeneous material,

rrr ¼
pinr3

in � pour3
ou

r3
ou � r3

in

þ ðpou � pinÞr3
our3

in

r3ðr3
ou � r3

inÞ
;

rhh ¼
pinr3

in � pour3
ou

r3
ou � r3

in

þ ðpin � pouÞr3
our3

in

2r3ðr3
ou � r3

inÞ
:

ð11a;bÞ

It is clear that the hoop stress varies through the cylinder and
the sphere thickness. For the hollow cylinder loaded on the inner
surface only, the hoop stress is maximum on the inner surface
and minimum on the outer surface. Thus if the cylinder is designed
based on the maximum principal stress or the maximum in-plane
shear stress reaching a critical value, then the material through the
cylinder thickness will not be optimally utilized. One can draw the
same conclusion for the sphere, and the cases when both the cylin-
der and the sphere are loaded by a pressure on the outer surface.

5. Material tailoring for cylinders

5.1. Stress fields

From the standpoint of macromechanical failure theories for
brittle and ductile materials, it is desirable to have either the max-
imum principal stress or the maximum shear stress constant in the
cylinder. We now find the spatial distribution of constituents to
achieve
krrr þ rhh ¼ C0; ð12Þ

through the cylinder thickness. In Eq. (12) k is a prescribed constant,
and the constant C0 is related to pressures applied on the inner and
the outer surfaces, and the radii of the inner and the outer surfaces
of the hollow cylinder. For k = 0 (�1) in Eq. (12), the hoop stress (the
in-plane shear stress) is constant through the cylinder thickness.
Assuming that k – �1, we substitute from Eq. (12) into Eq. (2), inte-
grate the resulting equation with respect to r and get

rrr ¼
C0

kþ 1
þ C1r�k�1; rhh ¼

C0

kþ 1
� kC1r�k�1; ð13a;bÞ

where C1 is a constant to be determined. We follow a similar proce-
dure for finding stresses when k = �1. Using boundary conditions
listed as Eq. (3a,b), the radial and the hoop stresses for k – �1
and k = �1, respectively, can be expressed as

rrr ¼
ðpin � pouÞrkþ1

in rkþ1
ou r�k�1 þ pourkþ1

ou � pinrkþ1
in

rkþ1
in � rkþ1

ou

; ð14aÞ

rhh ¼
kðpou � pinÞrkþ1

in rkþ1
ou r�k�1 þ pourkþ1

ou � pinrkþ1
in

rkþ1
in � rkþ1

ou

; ð14bÞ

and

rrr ¼
ðpou � pinÞ ln r � pou ln rin þ pin ln rou

ln rin � ln rou
; ð15aÞ

rhh ¼
ðpou � pinÞ ln r � pou ln rin þ pin ln rou þ pou � pin

ln rin � ln rou
: ð15bÞ

Thus the problem reduces to finding E(r) and m(r) (alternatively,
the volume fraction of constituents) such that stresses are given by
Eqs. (14) and (15) rather than by Eq. (10).

5.2. Material tailoring for hollow cylinders

Substitution for normal strains from Eq. (4a,b) into Eq. (1) gives
the equation

ðrhh � rrrÞ½1� v1ðrÞ� þ
r

E1ðrÞ
dE1ðrÞ

dr
½rrrv1ðrÞ � rhh�

� rrrr
dv1ðrÞ

dr
þ r

drhh

dr
� rv1ðrÞ

drrr

dr
¼ 0: ð16Þ

for the determination of E1(r) and v1(r). Substitution for stresses
from Eqs. (14) or (15), and for E1(r) and v1(r) either from Eq. (8)
or from Eq. (9) into Eq. (16) gives a nonlinear first-order ordinary
differential equation for the volume fraction n(r) of the inclusion
which we numerically integrate with respect to r by using the Run-
ge–Kutta method.

As an example, we consider a FG hollow cylinder composed of
silicon carbide (SiC) and aluminum (Al), and the inner and the out-
er surfaces subjected to uniform pressures. We take EAl = 73 GPa,
ESiC = 450 GPa, mAl = 0.33, and mSiC = 0.16. For a prescribed value of
n(rin) the volume fraction n(r) of SiC particulates is determined
from the nonlinear equation for n(r).

5.2.1. Effect of different homogenization techniques
Consider a moderately thick cylinder with rin = 60 mm, rou =

100 mm, pin = 100 MPa and pou = 0 MPa. With the effective material
properties of the FGM evaluated by the rule of mixtures and for the
hoop stress to be constant in the cylinder, the required variation
with the radius of the volume fraction of SiC particulates is com-
puted under the condition of n(rin) = 0.0. The polynomial function
obtained by fitting through these discrete values by the least
squares method is

nðrÞ ¼ 0:0038444r � 0:229528; 60 mm 6 r 6 100 mm: ð17Þ



Fig. 2. The required variations of: (a) Young’s modulus and (b) Poisson’s ratio to achieve a constant hoop stress and a constant in-plane shear stress in a FG hollow cylinder
with uniform pressures applied to its inner and outer surfaces.

Fig. 3. For rin/rou = 0.1 and the two homogenization techniques, the required variations of: (a) Young’s modulus and (b) Poisson’s ratio to achieve a constant hoop stress in an
FG cylinder.

Fig. 4. The required variation of Young’s modulus computed with and without
considering the variation of Poisson’s ratio for the hoop stress and the shear stress
to be constant through the cylinder thickness.
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Following the same procedure as above, for the in-plane shear
stress to be constant in the cylinder we get

nðrÞ ¼ 0:0000655r2 þ 0:000865r � 0:28818;
60 mm 6 r 6 100 mm: ð18Þ

When the effective material properties of the cylinder are de-
rived by using the Mori–Tanaka scheme, the analogues of Eqs.
(17) and (18), respectively, are

nðrÞ ¼ �0:000086r2 þ 0:0233524r � 1:0904;
60 mm 6 r 6 100 mm; ð19Þ

and

nðrÞ ¼ �0:00023206r2 þ 0:05547233r � 2:489869;
60 mm 6 r 6 100 mm: ð20Þ

The corresponding variations of Young’s modulus and Poisson’s ra-
tio for a constant hoop stress and a constant in-plane shear stress
computed from Eqs. (8) and (9) are exhibited in Fig. 2. In Fig. 2,
‘mixtures’ and ‘MT’ represent, respectively, solutions obtained by
using the rule of mixtures and the Mori–Tanaka scheme, and ‘hoop’
and ‘shear’ denote, respectively, a constant hoop stress and a con-
stant in-plane shear stress in the cylinder. It is observed from re-
sults plotted in Fig. 2a that the variation of Young’s modulus with
the radius for the hoop stress to be constant through the cylinder
thickness is nearly linear; this agrees with the earlier result of Nie
and Batra [25]. In order to achieve a constant in-plane shear stress,
Young’s modulus and Poisson’s ratio must have relatively steep
variations from the inner to the outer surfaces of the cylinder.
Young’s modulus needs to increase quickly and Poisson’s ratio
needs to decrease from the inner to the outer surfaces. Furthermore,
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we note that the required variation of Young’s modulus with the ra-
dius to achieve the same stress field is nearly the same for the two
homogenizations methods. However, the required variation of Pois-
son’s ratio to achieve the same stress state depends upon the
homogenization scheme.

As mentioned in the Introduction, for a very thick cylinder
stress concentration near the inner surface can be eliminated by
suitably tailoring the volume fractions of phases. We now consider
an Al/SiC FG cylinder with rin/rou = 0.1, rou = 100 mm, pin = 0, and
pou = 100 MPa. For the two homogenization techniques and for
Fig. 5. For rin/rou = 0.1, the required variation of Young’s modulus computed with
and without considering the variation of Poisson’s ratio for the hoop stress to be
constant through the cylinder thickness.

Fig. 6. For rin/rou = 0.1 and three values of the volume fraction of SiC on the inner surface
Young’s modulus, and (c) Poisson’s ratio to achieve a constant hoop stress and the corre
the hoop stress to be a constant in a very thick cylinder, the
required variations of Young’s modulus and Poisson’s ratio with
the radius are shown in Fig. 3. We note that values of the effective
Young’s modulus increase rapidly at points adjacent to the inner
surface of the cylinder, and then almost affinely. However, the
value of Poisson’s ratio should monotonically decrease with an
increase in r to attain a constant hoop stress in the cylinder, and
eliminate stress concentration near the inner surface of the cylin-
der. It is found that for the two homogenization techniques values
of Young’s modulus on the outer surface of the cylinder differ by
about 13% and the maximum difference in the values of Poisson’s
ratio occurs at a point in the cylinder interior. As mentioned earlier
other homogenization techniques will give different variations of
the volume fractions of the two constituents. Only physical tests
can decide which homogenization technique gives reasonable val-
ues of the effective moduli over the range of interest.
5.2.2. Effect of the variation of Poisson’s ratio
For a moderately thick cylinder with rin = 60 mm, rou = 100 mm,

pin = 100 MPa, pou = 0 MPa, and n(rin) = 0.0 we investigate the effect
of the variation of Poisson’s ratio. It is assumed that Poisson’s ratio
is constant through the cylinder thickness and we compute
Young’s modulus by using the rule of mixtures. For Poisson’s ratio
of the composite equal to that of the matrix, the through-the-thick-
ness variation of Young’s modulus is exhibited in Fig. 4; results for
Poisson’s ratio obtained by the rule of mixtures are also plotted in
Fig. 4 for comparison purposes. The curves represented by ‘cP-’ in
Fig. 4 are solutions obtained by setting Poisson’s ratio equal to that
of the matrix. It is clear that the two variations of E(r) are very close
, the required through-the-thickness variations of: (a) the volume fraction of SiC, (b)
sponding variation of (d) the radial displacement in an FG cylinder.
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to each other implying thereby that the variation of Poisson’s ratio
with the radius has little effect on the required variation of Young’s
modulus to achieve a given stress state for a moderately thick hol-
low FG cylinder.

Results for the required variations of Young’s modulus obtained
with and without considering the variation of Poisson’s ratio in a
very thick cylinder are exhibited in Fig. 5. Consider the very thick
cylinder with rin/rou = 0.1, rou = 100 mm, pin = 0, and pou = 100 MPa.
It is seen that two values of Young’s modulus on the outer surface
of the cylinder differ by about 14%. By comparing results plotted in
Fig. 5 with those shown in Fig. 4, we conclude that the influence of
the variation of Poisson’s ratio on the required variation of Young’s
modulus to achieve a constant hoop stress in the cylinder is greater
for a cylinder with rin/rou = 0.1 than that for a cylinder with rin/
rou = 0.6.
5.2.3. Effect of different values of material properties on the inner
surface

For an Al/SiC FG cylinder with rin/rou = 0.1, rou = 100 mm, pin = 0,
and pou = 100 MPa we now consider the effect of different values of
the volume fraction of SiC assigned on the inner surface of the cyl-
inder. For the hoop stress to be constant in the cylinder, the com-
puted variations of the volume fraction and the corresponding
Young’s modulus and Poisson’s ratio based on the rule of mixtures
are displayed in Fig. 6. Different variations of volume fractions of
phases give the same stress field evincing thereby that the inverse
problem does not have a unique solution. However, as depicted in
Fig. 6d, the displacement field for the three different volume frac-
tions differs from that in a homogeneous cylinder with Young’s
modulus and Poisson’s ratio equal to their average values of the
two phases, Al and SiC.
Fig. 7. The required variations of: (a) the volume fraction of SiC, (b) Young’s modulus an
6. Material tailoring for hollow spheres

6.1. Stress fields

For a hollow sphere we analyze the problem for

rhh ¼ C0; ð21Þ

where C0 is related to pressures applied on the inner and the outer
surfaces and their radii. Substituting from Eq. (21) into Eq. (6) and
considering the boundary conditions listed in Eq. (3a,b), we get

rrr ¼
ðpour2

ou � pinr2
inÞr2 þ ðpin � pouÞr2

inr2
ou

ðr2
in � r2

ouÞr2
; ð22aÞ

rhh ¼
pinr2

in � pour2
ou

r2
ou � r2

in

: ð22bÞ
6.2. Material tailoring for spheres

Substitution for the strains from Eq. (7) into Eq. (1) and for
stresses from Eq. (22) into the resulting equation, we arrive at
the following ordinary differential equation for finding E(r) and
v(r):

ðrhh � rrrÞ½1þ vðrÞ� þ r
EðrÞ

dEðrÞ
dr
½ðrrr þ rhhÞvðrÞ � rhh�

� rðrrr þ rhhÞ
dvðrÞ

dr
� rvðrÞdrrr

dr
þ r½1� vðrÞ� drhh

dr
¼ 0: ð23Þ

For an Al/SiC FG sphere with pin = 0, pou = 100 MPa, rou = 100 mm,
and n(rin) = 0.01, the computed radial variations of the volume
fraction of SiC in three spheres with rin/rou = 0.1, rin/rou = 0.3, and
d (c) Poisson’s ratio to achieve constant circumferential stress in three FG spheres.



Fig. 8. For the two homogenization schemes the required variations of: (a) Young’s modulus and (b) Poisson’s ratio to achieve constant circumferential stress in two FG
spheres.

Fig. 10. The required variations of Young’s modulus to achieve a constant
circumferential stress in two FG spheres with different values of the volume
fraction of SiC on their inner surfaces.
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rin/rou = 0.6 for the circumferential stress to be constant are exhib-
ited in Fig. 7a. Here the rule of mixtures has been used to determine
the effective material properties and through-the-thickness varia-
tions of Young’s modulus and Poisson’s ratio obtained from Eq.
(8) are shown in Fig. 7b and c. Comparing results exhibited in
Fig. 7 with those plotted in Figs. 2 and 5, it is seen that the required
variations of Young’s modulus and Poisson’s ratio are qualitatively
similar for a cylinder and a sphere. For the sphere with rin/
rou = 0.1, the stress concentration near the inner surface can be
effectively eliminated by varying the volume fractions of the two
constituents. For the hollow sphere with rin/rou = 0.6, the variation
of Young’s modulus with the radius is nearly linear. We recall that
for a sphere made of an incompressible FGM Batra [22] found that
for the circumferential stress to be constant in the sphere the shear
modulus must vary linearly with the radius.

For the two homogenization techniques the required variations
of Young’s modulus and Poisson’s ratio with the radius to attain a
constant circumferential stress in a sphere are compared in Fig. 8.
The curves marked ‘M0.1’ and ‘M0.6’ represent results obtained by
using the rule of mixtures and for rin/rou = 0.1 and 0.6, respectively.
Similarly curves labeled ‘MT0.1’ and ‘MT0.6’ represent results ob-
tained with the Mori–Tanaka scheme. Note that the homogeniza-
tion technique strongly affects the variation of Poisson’s ratio
with the radius but has a little influence on values of Young’s
modulus.

By using the rule of mixtures to derive the effective material
properties, we have compared in Fig. 9 results obtained by consid-
ering the variation of Poisson’s ratio to those when Poisson’s ratio
Fig. 9. The required variation of Young’s modulus computed with and without
considering the variation of Poisson’s ratio for the circumferential stress to be
constant in two FG spheres.
is constant and equals that of the matrix. The curves represented
by ‘cP-’ are solutions for the constant Poisson’s ratio, and ‘0.1’(or
‘0.6’) denotes the value of rin/rou. It is found that the spatial varia-
tion of Poisson’s ratio strongly affects the spatial variation of E(r)
for the sphere with rin/rou = 0.1 but has a little effect for the sphere
with rin/rou = 0.6. The maximum difference in the two values of E(r)
for the sphere with rin/rou = 0.1 is nearly 10%.

For two different values of the volume fraction of SiC particu-
lates on the inner surface of a sphere, the computed required
variations of Young’s modulus to achieve the same constant
circumferential stress are compared in Fig. 10. Curves labeled
‘0.01–’ (or ‘0.05–’) represent results for n(rin) = 0.01 (or 0.05) and
‘0.1’ (or ‘0.6’) denotes the ratio rin/rou. As for the cylinder problem
studied above, it is seen that different values of n(rin) can attain
the same stress field within a sphere; however the corresponding
displacements will be different.
7. Conclusions

We have studied the tailoring of volume fractions of constitu-
ents in FG hollow cylinders and spheres to achieve either
through-the-thickness uniform hoop (or circumferential) stress
or in-plane shear stress. For a cylinder, we have found the radial
variation of the volume fraction of the constituents to have a linear
combination of the radial and the hoop stresses constant through
the cylinder thickness. Thus by suitably varying the composition,
one can eliminate the stress concentration near the inner surface
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of a thick FG cylinder. It is found that the two homogenization
techniques, namely the rule of mixtures and the Mori–Tanaka
scheme, generally have a small (large) influence on the computed
spatial variation of Young’s modulus (Poisson’s ratio). It is reason-
able to conclude that the computed radial variations of the volume
fractions of the two phases will depend upon the homogenization
technique used. The through-the-thickness variations of Young’s
moduli obtained with and without considering the variation of
Poisson’s ratio are very close to each other for a moderately thick
hollow cylinder but are quite different in a very thick hollow cylin-
der. In order to have a uniform circumferential stress through the
sphere thickness, the radial variations of Young’s modulus and
Poisson’s ratio are similar to those for a hollow cylinder.

The present findings should help structural engineers and mate-
rial scientists optimally design inhomogeneous cylinders and
spheres.
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