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a b s t r a c t

We study elasto-plastic deformations of unidirectional fiber reinforced polymeric composites (UFPCs)
with fibers assumed to deform elastically and the matrix elasto-plastically. The matrix’s and hence com-
posite’s plastic deformations are analyzed by using both the pressure-independent von Mises yield sur-
face and the pressure-dependent Drucker–Prager yield surface and the associated flow rules. In both
cases the strain hardening of the matrix is considered and values of material parameters for the matrix
are obtained by computing the effective stress versus the effective plastic strain curves from experimen-
tal uniaxial stress–strain curves. Values of parameters in the yield surface for the UFPC in terms of those
of the matrix and the volume fraction of fibers are found by using a micromechanics approach. Wherever
possible, the computed results are compared with the corresponding experimental findings available in
the literature. Significant contributions of the work include providing a methodology for determining val-
ues of elasto-plastic material parameters for a UFPC from those of its constituents and their volume frac-
tions, and giving expressions in terms of volume fractions of fibers for material parameters appearing in
the yield surface of the composite.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Composites being inhomogeneous materials provide challenges
in design since their failure mechanisms are not well understood.
Furthermore, for design purposes, one needs to find properties of
a homogeneous material equivalent in mechanical response to
the composite. Several homogenization techniques have been pro-
posed in the literature to find mechanical properties of the com-
posite from those of its constituents when deformations are
linear elastic; for example, see books by Torquato [1], Suquet [2],
Bensoussan et al. [3], Nemat-Nasser and Hori [4], Mura [5], Aboudi
[6,18], Tsai and Hahn [7], Hyer [8], and Reifsnider and Case [9], and
the review paper by Charalambakis [10]. In contrast to the micro-
mechanical theories, Love and Batra [11] numerically simulated
plane strain elasto-plastic deformations of a metal matrix compos-
ite with circular cylindrical fibers, by keeping edges of the cross-
section plane and deduced values of the elastic and the plastic
parameters at different strains and strain rates by assuming that
under quasistatic deformations the initial yield stress of the com-
posite is given by the rule of mixtures.
ll rights reserved.
We note that, in general, Young’s modulus of a lamina in the
direction of fibers is considerably more than that in directions
orthogonal to fibers. Most fibers undergo infinitesimal elastic
deformations prior to failure, but the matrix bonding the fibers
can deform in-elastically. Hence it can be assumed that inelastic
deformation in the composite is due to that of the matrix.

Bridgman [12] experimentally showed that the hydrostatic
pressure does not affect plastic deformations of metals. However,
mechanical deformations of some polymers have been shown to
be influenced by the hydrostatic pressure. Thus the yield surface
for such a polymer should depend upon the hydrostatic pressure;
this dependence has been considered, among others, by Caddell
et al. [13], and Hu and Pae [14]. The reader is referred to the
World Wide Exercise paper [30] summarizing activities in this
aspect of the problem. Here we consider two such yield criteria
for the matrix and account for matrix’s strain hardening. The
yield surfaces for unidirectional fiber reinforced polymeric com-
posites (UFPCs) are deduced by making the following assump-
tions: (i) the UFPC is a transversely isotropic material with the
fiber axis as the axis of transverse isotropy, (ii) there is no plastic
deformation in the direction of fibers, (iii) fibers deform elasti-
cally, (iv) fibers are perfectly bonded to the matrix, (v) fibers
are transversely isotropic with fiber axis as the axis of transverse
isotropy, and (vi) the matrix is isotropic and obeys either the
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Drucker–Prager pressure dependent yield criterion or the pres-
sure independent von Mises yield criterion. We use a microme-
chanical theory based on the method of cells called free shear
traction (FST) method [15] to quantify the dependence of values
of material parameters appearing in the yield surface as a func-
tion of the volume fraction of fibers and mechanical properties of
the matrix and the fibers. The use of homogenized material
parameters is very useful as it offers an efficient way of analyz-
ing deformations of composite structures. However, it smears out
singularities in stresses and deformations at interfaces between
dissimilar materials, and thus may underestimate damage and
failure initiation and propagation. The functional dependence of
the effective stress of the composite upon the effective plastic
strain (i.e., the strain hardening effect) is taken to be similar to
that of the matrix. This paper generalizes Weeks and Sun’s [26]
work to pressure-dependent yielding of polymers often observed
in experiments, and provides a different technique for finding
values of material parameters.

The rest of the paper is organized as follows. Section 2 describes
pressure-dependent and pressure-independent yield surfaces for
the matrix and the UFPC, and techniques to evaluate various mate-
rial parameters appearing in the yield surface of the UFPC. For an
AS4/PEEK composite, the computed numerical results are com-
pared with the experimental findings available in the literature
in Section 3, and conclusions of this study are summarized in Sec-
tion 4 where values of material parameters in the yield surface for
the UFPC as a function of the volume fraction of fibers are given. In
the appendix we have briefly reviewed the FST approach and have
also compared results obtained by this method with those com-
puted using the Mori–Tanaka (M–T) scheme. The FST scheme is
computationally less expensive than the M–T method and provides
reasonably good values of material parameters. In the M–T
scheme, when the matrix deforms plastically an iterative process
is used to determine the Eshelby tensor because the elasto-plastic
properties of the matrix are unknown a priori. Numerically finding
the Eshelby tensors needed to compute the concentration tensor
(e.g., see [17,33–35]) in an elasto-plastic problem is computation-
ally more expensive than solving a small system of algebraic equa-
tions in the FST method.

2. Elasto-plastic material parameters

2.1. Preliminaries

The polymer in a UFPC usually exhibits an elasto-plastic re-
sponse. However fibers deform elastically and exhibit brittle fail-
ure. Consequently, the failure strain of a UFPC in the direction of
fibers is small. Furthermore, deformations transverse to fibers prior
to failure are also infinitesimal and one can neglect effects of geo-
metric nonlinearities. We first briefly review elasto-plastic defor-
mations of the polymer and the UFPC and then use a
micromechanics approach [15] to determine parameters appearing
in the plastic potential and the functional dependence of the effec-
tive stress on the effective plastic strain of a UFPC.

2.2. Infinitesimal elasto-plastic deformations of polymer

2.2.1. Pressure independent yielding of polymer
We employ incremental theory of plasticity and assume that

during infinitesimal deformations, the increment, de, in strains
has an additive decomposition into elastic, dee, and plastic, dep,
strains, i.e.,

de ¼ dee þ dep ð2:1Þ
For relating dep to dr, we assume the von Mises plastic potential
[19] for the polymer, i.e.,
2FðrijÞ ¼
1
3
ðr22 � r33Þ2 þ

1
3
ðr33 � r11Þ2 þ

1
3
ðr11 � r22Þ2

þ 2r2
23 þ 2r2

31 þ 2r2
12 ð2:2Þ

Here we have used rectangular Cartesian coordinates, and have
expressed the plastic potential in terms of the stress tensor r
rather than in terms of the deviatoric stress sij ¼ rij � 1

3 rkkdij. In
Eq. (2.2) we have tacitly assumed that the polymer is an isotropic
material.

We use the associated flow rule for relating dep to dr, i.e.,

dep
ij ¼ dk

@F
@rij

ð2:3Þ

where dk is the proportionality factor. Eq. (2.3) implies that dep is
normal to the yield surfaceffiffiffiffiffiffiffiffiffiffiffiffi

FðrijÞ
q

¼ rm ð2:4Þ

where
ffiffiffi
3
p

rm is the yield stress of the polymer in a simple tension or
compression test.

We define the effective stress �r as:

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3FðrijÞ

q
ð2:5Þ

and the effective plastic strain, �ep, by requiring that in any incre-
mental deformation,

dep
ijrij ¼ �rd�ep ð2:6Þ

We note that �r ¼ rm in a uniaxial tension or compression test.
Substituting for dep

ij in Eq. (2.6) from Eq. (2.3) and using Eq. (2.5) we
get,

dk ¼ 3
2

d�ep

�r
¼ 3

2Hm
d�r
�r

ð2:7Þ

where the strain-hardening modulus, Hm ¼ d�r
d�ep, has been assumed to

be positive. The function Hmð�epÞ is found from experimental data.
Taking the differential of both sides of Eq. (2.5) we get,

d�r ¼ 3
2�r rij �

rkk

3
dij

� �
drij ð2:8Þ

Substituting for dk from Eq. (2.7) and for d�r from Eq. (2.8) into
Eq. (2.3) we get,

dep
ij ¼

9
4Hm �r2

� �
rij �

rkk

3
dij

� �
rpq �

rll

3
dpq

� �
drpq ¼ Smp

ijkldrkl ð2:9Þ

where Smp is the plastic compliance matrix of the polymer.
Expressing strain increments on the right-hand side of Eq. (2.1)

in terms of incremental stresses we get,

de ¼ Smedrþ Smpdr ð2:10Þ

where Sme = (Cm)�1 is the elastic compliance matrix for the poly-
mer. Hence

dr ¼ ðSme þ SmpÞ�1de ð2:11Þ

which expresses incremental stresses in terms of incremental
strains. We note that Smp depends upon current values of r, and
normal stresses may affect ensuing shear strains.

The dependence of the flow stress, rm, in Eq. (2.4) upon the
effective plastic strain, �ep, is determined from the test data. It will
also determine Hm.

2.2.2. Pressure-dependent yielding of polymer
To account for the pressure sensitive yielding of polymers, the

Drucker–Prager yield potential is used, and the effective stress is
taken to be:

�r ¼
ffiffiffiffiffiffi
3F
p

þ amrkk ð2:12aÞ
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where the parameter am accounts for hydrostatic pressure effects.
The Drucker–Prager yield surface is given by:ffiffiffiffiffiffi

3F
p

þ amrkk ¼ bm ð2:12bÞ

where bm is a material parameter.
Values of parameters am and bm can be found from the magni-

tudes of the yield stresses rt
y and rc

y in simple tension and com-
pression tests, respectively, i.e.,

rt
y þ amrt

y ¼ rc
y � amrc

y ¼ bm ð2:12cÞ

By following the procedure used to derive Eqs. (2.8) and (2.9)
one can deduce an expression for Smp for the Drucker–Prager yield
criterion (2.12b)

2.3. Yield function for unidirectional fiber reinforced polymeric
composite (UFPC)

2.3.1. Pressure independent yielding of composite
We recall that the axial Young’s modulus of reinforcing circular

cylindrical fibers is several times higher than that of the polymeric
matrix. As for the matrix discussed in Section 2.2, we use the asso-
ciative flow rule to analyze infinitesimal elastoplastic deformations
of a UFPC. We assume that the response of the UFPC is transversely
isotropic with the fiber axis as the axis of transverse isotropy, and
there is no plastic deformation along the fiber axis since fibers ex-
hibit brittle linear elastic response, i.e.,

dep
11 ¼ 0 or ep

11 ¼ 0 ð2:13Þ

Following Spencer [20] we write the plastic potential, F, for a
transversely isotropic UFPC as:

�FðrijÞ ¼
1
2
ðr22 � r33Þ2 þ 2A23r2

23 þ 2A12 r2
13 þ r2

12

� �h i
ð2:14Þ

where values of parameters A12 and A23 depend upon the constitu-
ents of the UFPC and their volume fractions. The yield surface for
the UFPC is taken to beffiffiffiffiffiffi

3F
p

¼ �r ð2:15Þ

where �r equals
ffiffiffiffiffiffiffi
1:5
p

ryield
22 in uniaxial tensile or compressive loading

along the x2-axis (i.e., transverse to fibers). We follow the same
procedure as that used to derive Eq. (2.9) and get
½Sp� ¼ 9
4Hp �r2

0 0 0 0 0 0
0 ðr22 � r33Þ2 ðr33 � r22Þðr22 � r33Þ 2A23r23ðr22 � r33Þ 2A12r13ðr22 � r33Þ 2A12r12ðr22 � r33Þ
0 ðr33 � r22Þðr22 � r33Þ ðr33 � r22Þ2 2A23r23ðr33 � r22Þ 2A12r13ðr33 � r22Þ 2A12r12ðr33 � r22Þ
0 4r23ðr22 � r33Þ 4r23ðr33 � r22Þ ð2A23r23Þ2 4A23A12r23r13 4A23A12r23r12

0 2A12r13ðr22 � r33Þ 2A12r13ðr33 � r22Þ 4A23A12r23r13 ð2A12r13Þ2 2A12ð Þ2r13r12

0 2A12r12ðr22 � r33Þ 2A12r12ðr33 � r22Þ 4A23A12r23r12 ð2A12Þ2r13r12 ð2A12r12Þ2

2
6666666664

3
7777777775
fdepg ¼ ½Sp�fdrg ð2:16Þ

where Hp equals the strain hardening modulus of the UFPC, and the
stress and the strain increments are written in the Voigt notation.

Knowing the elastic compliance matrix, S, for the composite we
can determine the elastic–plastic compliance matrix, (S + Sp), of the
composite.
2.3.2. Pressure dependent yielding of composite
To account for the pressure sensitive yielding of composites, the

Drucker–Prager yield potential for the composite is adopted, and
the effective stress is defined as:

�r ¼
ffiffiffiffiffiffi
3F

p
þ aðr22 þ r33Þ ð2:17Þ

where the parameter a accounts for effects of the hydrostatic pres-
sure on the yielding of the UFPC. The term a (r22 + r33) in Eq. (2.17)
does not containr11because of the assumption ep

11 ¼ 0 for the UFPC.
One can derive the elastic–plastic compliance matrix for this case
by following the same procedure as that outlined in Section 2.3.1.

We note that Chen and Sun [31] assumed the composite to be
an orthotropic material and its plastic potential to be independent
of the dilatational deformation. Furthermore, Cho et al. [32] used a
similar plastic potential in the context of the Drucker–Prager
plasticity.

2.4. Determination of elastic–plastic parameters of the UFPC

2.4.1. Pressure-independent yield surface
We use the FST [15] method to compute the effective stress ver-

sus the effective plastic strain curve for the UFPC from a knowledge
of the material properties of the constituents of the UFPC and the
volume fraction of fibers. One way to obtain this curve is to study
plane stress deformations of a thin lamina with the fiber axis mak-
ing an angle h counter clockwise with the loading (i.e., x�) axis as
shown in Fig. 1. Thus with respect to the global rectangular Carte-
sian coordinate axes (x, y, z), the only non-zero component of the
stress tensor is rxx.

Using either the Mohr circle or the stress transformation equa-
tions, stresses with respect to the material principal axes (x1, x2, x3)
are given by:

r11 ¼ rxxcos2h; r22 ¼ rxxsin2h and r12 ¼ �rxxsinhcosh ð2:18Þ

Substituting for stresses from Eq. (2.18) into Eq. (2.14), and the
result into Eq. (2.15) we get

�r ¼
ffiffiffi
3
2

r
½sin4hþ 2A12sin2hcos2h�1=2rxx ð2:19Þ

It follows from Eq. (2.6) that
�rd�ep ¼ dep
xxrxx ð2:20Þ

and therefore

d�ep ¼ dep
xxffiffi

3
2

q
½sin4hþ 2A12sin2hcos2h�1=2

ð2:21Þ

Thus



Fig. 1. Fiber orientation with respect to the axis of loading, and the material
principal axes (x1, x2, x3).

Table 1
Elastic constants of AS4 carbon fibers.

E1 E2 = E3 G12 m12 m23

234 GPa 14 GPa 27.6 GPa 0.2 0.25
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�ep ¼ exx � rxx=Exxffiffi
3
2

q
½sin4hþ 2A12sin2hcos2h�1=2

ð2:22Þ

Here Exx is Young’s modulus in the x-direction and it is a function of
the elastic constants with respect to the material principal axes (x1,
x2, x3) and the angle h; values of elastic constants with respect to
coordinates x1, x2, x3 are determined either using a micromechanics
theory or test data.

2.4.1.1. Weeks and Sun’s approach [26] for finding A12 and A23. From
Eqs. (2.19) and (2.22) one can find �r as a function of �ep, or equiva-
lently plot the curve �r versus �ep for a given angle h. The value of
parameter A12 is found by trial and error by ensuring that �r versus
�ep curves for various values of h are close to each other within an
acceptable tolerance [26].

We follow a similar procedure to find A23. It is noted that this
term was ignored in [26]. For simple shearing deformations in
the yz-plane with h = 0 we have

�r ¼
ffiffiffiffiffiffi
3A
p

23ryz dep
yz ¼ dkðA23Þryz ð2:23Þ

Using Eqs. (2.5) and (2.6) we have

d�ep ¼
dep

yz

2
ffiffiffiffiffiffiffiffiffiffi
3A23
p or �ep ¼ ep

yz

2
ffiffiffiffiffiffiffiffiffiffi
3A23
p ð2:24Þ

where ep
yz ¼ eyz � ryz=2Gyz and recalling that for h = 0, Gyz = G23.

2.4.1.2. Alternative approach for finding A12 and A23. An alternative
approach for finding values of parameters A12 and A23 as well as
the function �rð�epÞ is now described. Using the FST method we
numerically simulate plane stress deformations of the UFPC under
a uniaxial load in the x2-direction. Thus the only non-zero compo-
nent of the stress tensor is r22, and from Eqs. (2.15) and (2.14) we
get

�r ¼
ffiffiffi
3
2

r
r22 ð2:25Þ

Theoretically the UFPC will begin to deform plastically as soon
as the matrix in one of the three matrix cells of the representative
volume element (RVE) starts yielding. This definition gives unreal-
istically low values of the yield stress of the UFPC and depends on
the type of load (e.g., tensile, compressive, simple shearing) applied
to the RVE. Here we use computed values of r22 and e22 to plot the
r22 versus e22 curve and take the proof-stress for e22 = 0.0015 as
the value of the yield stress. Recall that the proof stress equals
the value of r22 where the straight line parallel to the slope of
the r22 versus e22 curve at e22 = 0 (Young’s modulus at zero strain)
passing through the point (r22 = 0, e22 = 0.0015) intersects the r22

versus e22 curve. We thus find �ryield when the UFPC begins to yield
as:

�ryield ¼
ffiffiffi
3
2

r
rPS

22 ð2:26Þ

where rPS
22 equals the proof-stress r22.
In order to find values of A12 and A23 we use the FST technique
to simulate simple shearing deformations of the UFPC in the x1x2-
and the x2x3-planes. Using the same definition of the yield stress as
that adopted in Eq. (2.26) we obtain

�ryield ¼
ffiffiffiffiffiffiffiffiffiffi
3A12

p
rPS

12 ¼
ffiffiffiffiffiffiffiffiffiffi
3A23

p
rPS

23 ð2:27a;bÞ

We find �ryield from Eq. (2.26), and then values of parameters A12

and A23 from Eq. (2.27a,b).
We note that in Weeks and Sun’s [26] approach values of

parameters A12, A23 and �ryield are determined by considering �r ver-
sus �ep curves for the entire range of values of �ep considered, and
�ryield ¼ �r when �ep ¼ 0. Thus the value of �ryield is determined after
values of A12 and A23 have been found. The �rð�epÞ function is found
from the computed �r versus �ep curve by the least squares method.
However, in the alternative approach proposed here values of A12,
A23 and �ryield are found from those of the proof stresses in uniaxial
loading in the transverse direction, and in simple shearing defor-
mations in the x1x2- and the x2x3-planes. One does not need the
�r versus �ep curves for the entire range of values of �ep.

2.4.2. Pressure-dependent yield surface
We now need to find values of parameters a, A12, A23 and �ryield.

When using Weeks and Sun’s [26] approach we find values of a and
A12 by ensuring that the �r versus �ep curves for different values of
the fiber-orientation angle h in Fig. 1, and positive and negative
values of rxx are close to each other within the prescribed toler-
ance. Subsequently, the value of A23 is chosen so that the �r versus
�ep curve for the simple shearing deformations in the yz-plane is
close to the �r versus �ep curve for uniaxial loading.

In the alternative approach proposed here we use the FST tech-
nique to compute r22 versus e22 curves separately for positive and
negative values of r22, and find �rt

yield and �rc
yield from rPS

22. From Eq.
(2.17) we get

a ¼
ffiffiffi
3
2

r
�rc

yield � �rt
yield

�rc
yield þ �rt

yield

( )
; �ryield ¼

ffiffiffi
3
2

r
2�rc

yield
�rt

yield

�rc
yield þ �rt

yield

( )
ð2:28a;bÞ

Values of parameters A12 and A23 are found by following a pro-
cedure similar to that described in Section 2.4.1.2.

3. Numerical results and discussion

3.1. Elastic constants for AS4 fibers

The fiber is modeled as a transversely isotropic material with
the fiber axis as the axis of transverse isotropy. With the x1-axis
of a rectangular Cartesian coordinate system taken along the fiber
axis, values of five independent elastic moduli of AS4 fibers [21] are
listed in Table 1.

3.2. Material parameters for PEEK assuming pressure independent
yielding

The PEEK is assumed to be isotropic and its response in the elas-
tic region is taken to be linear. Values of Young’s modulus, Em, and
Poisson’s ratio, mm, obtained from Goldberg and Stouffer [22] for
the PEEK tested by Bordonaro [23] equal 4 GPa and 0.35, respec-
tively. The axial stress versus the axial strain curve for PEEK de-
formed in simple tension at an axial strain rate of 1.0 � 10�6/s
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taken from [22] is exhibited in Fig. 2a. For a uniaxial tension test
with the load applied along the x1-axis, the only non-zero compo-
nent of the stress tensor is r11, and from the definition (2.5) of the
effective stress, r11 ¼ �r. Eq. (2.6) implies that dep

11 ¼ d�ep, and hence
ep

11 ¼ �ep. From the axial stress–axial strain curve of Fig. 2a, we find
ep

11 by using

ep
11 ¼ e11 �

r11

E
ð3:1Þ

and plot the �r versus �ep curve shown in Fig. 2b where it has been
tacitly assumed that the yield stress of PEEK in uniaxial tension
and compression equals 40 MPa. Assuming that �r and �ep are related
by:

�ep ¼ exp
�r� A

N

� �
ð3:2Þ

in the range 94 MPa P �r P 40 MPa, values of A and N found by
the least squares method and having a regression coefficient of
0.986 are A = 152.7 MPa and N = 13.86 MPa

Eq. (3.2) was verified by numerically analyzing elastoplastic
deformations of a bar made of PEEK and pulled in uniaxial tension.
The boundary value problem (BVP) was studied using the finite
element method (FEM) by implementing the material model for
PEEK as a user subroutine in the software ABAQUS. The elastoplas-
tic problem for the matrix is solved iteratively by first assuming
that deformations during an incremental load are elastic. The iter-
ative process within a load step at each integration point is stopped
when

kekþ1 � ekk
kekk 6 1:0E� 8; kekk2 ¼ ek

ije
k
ij

where k is the iteration number.
The axial stress versus the axial strain curve so obtained is dis-
played in Fig. 2b. It is clear that the computed axial stress versus
the axial strain curve is very close to the experimental one.

3.3. Material parameters for PEEK assuming pressure dependent
yielding

Zheng’s [27] experimental uniaxial tension and compression
stress–strain curves for PEEK at strain rates of 1.0E�6/s and
1.0E�5/s, respectively, are shown in Fig. 3a. For uniaxial tension
test, using Eq. (2.12a), the effective stress �r and the effective plas-
tic strain �ep can be expressed in terms of the axial stress r11 and
the axial plastic strain ep

11 as:

�r ¼ ð1þ amÞr11 and �ep ¼ ep
11

ð1þ amÞ ¼
e11 � r11

Em

ð1þ amÞ ð3:3Þ

Similarly, for uniaxial compressive deformations, we have

�r ¼ ð1� amÞjr11j and �ep ¼
je11j � jr11 j

Em

ð1� amÞ ð3:4Þ

From the experimental uniaxial stress strain curves for tension
and compression tests, the effective stress and the effective plastic
strain are evaluated using Eqs. (3.3) and (3.4). In Weeks and Sun’s
approach, the value of am is found by adopting an iterative ap-
proach so that the effective stress versus the effective plastic strain
curves for tension and compression tests overlap each other within
an acceptable tolerance. In order to find the difference (distance)
between the two curves, fourth-order polynomials are fitted by
the least squares method to the effective stress versus the effective
plastic strain curves for tension and compression data. The per-
centage difference between the two curves was found by using,



0

75

150

225

300

0.0120.0080.0040
Axial strain

A
xi

al
  s

tr
es

s 
(M

P
a)

FST(pressure insensitive PEEK)
FST(pressure sensitive PEEK)
Expt.[26]
30 degrees
45 degrees
14 degrees

Fig. 4. For vf = 0.6, comparison of the computed axial stress–axial strain curves for
off-axis loading using the FST approach with the experimental curves of Weeks and
Sun [26].

0

120

240

360

0.0450.030.0150

A
xi

al
  s

tr
es

s 
(M

P
a)

Axial strain

Constituent level, FST(pressure insensitive PEEK)

Composite, Weeks & Sun's approach

Composite, proposed approach

30 degrees

45 degrees

14 degrees

Fig. 5. For vf = 0.6, comparison of axial stress–axial strain response for off-axis
loading obtained from the FST method with the response of pressure insensitive
yielding of composites using values of parameters determined from the two
approaches.

R.C. Batra et al. / Composites: Part B 43 (2012) 2594–2604 2599
% Difference ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
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i � �rc

i
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P
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�rt
i
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vuuuut 100 ð3:5Þ

where �rt
i and �rc

i are the effective stress values from tension and
compression tests, respectively, corresponding to the effective plas-
tic strain �ep

i . The entire range (0–3%) of �ep was divided into 30 equal
segments and values at the mid-point of a segment were used in Eq.
(3.5). For an error of 1.7%, the iterative procedure gave am = 0.1645.
Fig. 3b shows the effective stress versus the effective plastic strain
curve derived from the uniaxial compression and tension test data
of Zheng [27], and that obtained from the numerical experiments
using am = 0.1645 and the simulation of uniaxial tensile and com-
pressive deformations with the software ABAQUS.

We also employed the alternative approach to find the value of
am by using values of the proof stress as the yield stress in uniaxial
compression and tension tests. The expression for am in terms of
the proof stress in tension, rPS

t , and the proof stress in compression,
rPS

c , obtained from Eqs. (3.3) and (3.4) is:

am ¼ rPS
c � rPS

t

rPS
c þ rPS

t

	 

ð3:6Þ

From the experimental curves depicted in Fig. 3a, we found that
rPS

t ¼ 57 MPa and rPS
c ¼ 73 MPa. Substituting these values for rPS

t

and rPS
c in the expression (3.6) for am, we get am = 0.123. For

am = 0.123 the difference between the effective stress versus the
effective plastic strain curves derived from simulations of the uni-
axial tensile and compressive deformations and using definition
(3.5) was found to be 16.6% for effective plastic strain in the range
0–3.0%. As mentioned earlier Weeks and Sun’s [26] approach uses
the entire set of data for 0 6 �ep

6 0:03 whereas the present ap-
proach uses values of proof stresses which vary with the definition
of the proof stress. For example, one could define the proof stress as
the stress corresponding to the strain of 0.13% rather than 0.15%.

Using the relation (3.2) values of A and N were found by fitting a
curve by the least squares method to the effective stress versus the
effective plastic strain curves derived from the test data of Zheng
[27]. With a regression coefficient of 0.954 and am = 0.1645, we ob-
tained A = 144.0 MPa and N = 8.69 MPa. In Fig. 3a we have com-
pared the experimental uniaxial stress strain curves with those
obtained by implementing the material model for PEEK as a user
subroutine in ABAQUS and employing am = 0.1645, A = 144.0 MPa
and N = 8.69 MPa. It is evident that the computed axial stress ver-
sus the axial strain curves for uniaxial compressive and tensile
deformations are close to the corresponding experimental ones.

3.4. Elasto-plastic properties of the composite

3.4.1. Validity of the FST approach for elasto-plastic deformations
Given values of elastic moduli of the fiber and the matrix, and

the effective stress, �r, of the matrix as a function of the effective
plastic strain, �epm, for the matrix, we find values of A12, A23 and
�rð�epÞ for the UFPC. A user defined subroutine based on the FST
method described in Appendix has been implemented in the FE
software, ABAQUS. The three matrix cells deform elasto-plastically
and the fiber cell elastically.

In order to determine the elastoplastic material response of the
AS4/PEEK composite two material models for the polymer are con-
sidered; one assumes that the von Mises yield surface in which
plastic deformations are independent of the hydrostatic pressure
[24] (discussed in Section 2.2.1) and the other assumes that the
hydrostatic pressure contributes to plastic deformations [27] (dis-
cussed in Section 2.2.2). The elastic–plastic properties for pressure
insensitive and pressure sensitive polymer are given in Sections 3.2
and 3.3, respectively. Using material properties of the constituents
and the volume fraction of fibers we simulated uniaxial deforma-
tions of the composite. Since the composite specimen is expected
to deform homogeneously only one FE is used to simulate these
tests.

For vf = 0.6, Fig. 4 compares the computed axial stress versus the
axial strain curves for off-axis loading (e.g., see Fig. 1) with exper-
imental results reported by Weeks and Sun [26]. It is clear that for
h = 14� the axial stress versus the axial strain response obtained
using the pressure independent von Mises yield surface for the
polymer is in better agreement with the experimental data than
that when the polymer is modeled with the pressure dependent
Drucker–Prager yield surface. However, for h = 30� and 45� the
pressure sensitive and pressure insensitive yield surfaces give
stresses very close to the experimental values. For h = 14�, r11 is
much greater than r22 and matrix’s deformations are negligible.
For h = 30� and 45�, because of the large volume fraction of fibers,
the matrix’s deformations play a less noticeable role and the differ-
ences in the compressive and tensile deformations of the polymer
is less noticeable in the axial stress–axial strain curves. Experimen-
tal results for simple shearing loading of this composite would
have provided a better check on the two yield criteria but we have
not found them.
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3.4.2. Values of material parameters for the homogenized composite
Values of material parameters appearing in the yield surfaces of

the UFPC are determined with the FST method. For vf = 0.6, and
using the techniques discussed in Section 3.4, we get the following
results:
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3.4.3. Comparison of results from the FST method with those from the
homogenized composite

In Fig. 5 we compare the axial stress versus the axial strain
curves for off-axis loading obtained from the FST method with
the axial stress versus the axial strain response for the pressure
insensitive yielding of composites using above-listed values of
material parameters. It is clear that the three sets of curves are
close to each other.

For the pressure sensitive yield surface, Fig. 6 compares the ax-
ial stress versus the axial strain curves for off-axis loading of a lam-
ina obtained using the FST method with those computed by using
the above-listed values of material parameters. Again, the three
sets of curves are close to each other.
3.4.4. Dependence of the yield surface upon the fiber volume fraction
We only use the von Mises yield criterion for the matrix and the

composite with the composite modeled as a transversely isotropic
material and the fiber axis as the axis of transverse isotropy; re-
sults for the pressure dependent yield surface can be similarly ob-
tained. Furthermore, we seek an expression for the effective stress
of the composite with variables A and N depending upon the vol-
ume fraction of the fibers. We have exhibited in Fig. 7a and b the
dependence of parameters A, N, A12 and A23 upon the volume frac-
.045

off-axis
ensitive
he two
tion of fibers ranging from 0.3 to 0.75. The least squares cubic poly-
nomial fits to the computed values of these variables are listed as
insets in the figures. It is clear that values of all four parameters
rapidly increase with an increase in the value of the volume frac-
tion of fibers.
4. Conclusions

We have used a micromechanics approach (i.e., the free shear
traction method proposed by Robertson and Mall that is a modifi-
cation of Aboudi’s method of cells) to find values of material
parameters for elasto-plastic deformations of AS4/PEEK composite
modeled by two yield criteria – the von Mises that stipulates that
plastic deformations are independent of the hydrostatic pressure
and the Drucker–Prager that includes dependence of the yield sur-
face upon the hydrostatic pressure. Whereas the von Mises yield
surface is quadratic in deviatoric stresses the other one has a term
linear in the pressure.

For uniaxial elasto-plastic deformations of the composite lam-
ina and fibers making an angle h with the axis of loading, the axial
stress versus the axial strain curves computed with the von Mises
yield criterion for the PEEK agree better with the experimental re-
sults of Weeks and Sun than those derived by assuming that the
yield criterion is pressure dependent. Assuming that the plastic
deformations of the composite are also independent of the hydro-
static pressure, we have found values as a function of the volume
fraction of fibers of the two material parameters in the yield sur-
face and the two material parameters that characterize strain hard-
ening of the composite.

The pressure independent yield surface for the AS4/PEEK com-
posite studied herein is given by:

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3FðrijÞ

q
¼ Aþ N lnð�epÞ

where
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FðrijÞ ¼
1
2
ðr22 � r33Þ2 þ 2A23r2

23 þ 2A12 r2
13 þ r2

12

� �h i
A ¼ 2:597ðVFÞ3 � 1:473ðVFÞ2 þ 0:116ðVFÞ þ 0:396

N ¼ 0:107ðVFÞ3 þ 0:008ðVFÞ2 � 0:050ðVFÞ þ 0:039

A23 ¼ 158:0ðVFÞ3 � 164:4ðVFÞ2 þ 58:44ðVFÞ � 1:5

A12 ¼ 135:8ðVFÞ3 � 138:8ðVFÞ2 þ 47:77ðVFÞ � 0:5

and VF equals the volume fraction of the fibers with VF between 0.3
and 0.75. By following a procedure similar to that used here and
simulating homogeneous deformations of the UFPC at different
strain rates one can quantify the dependence of the yield stress of
the UFPC upon the strain rate characteristics of the fiber and the
matrix.

Acknowledgements

This research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-06-2-0014. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing official policies, either expressed or implied, of
the Army Research Laboratory or the US Government. The US Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
hereon. The work was also partially supported by the Office of Na-
val Research Grant N00014-1-06-0567 to Virginia Polytechnic
Institute and State University with Dr. Y.D.S. Rajapakse as the pro-
gram manager.

Appendix A

A.1. Comparison of results between Mori–Tanaka and the FST
techniques

The FST approach used to establish values of material parame-
ters is briefly reviewed. The FST approach is a modification of the
method of cells (MoC) and assumes that at the interfaces between
the four cells in the RVE a normal stress does not induce shear
stresses thereby simplifying the homogenization scheme. Robert-
son and Mall [15] have shown that values of material parameters
Fig. 8. Left: cross-section of a UFPC with uniform arrangement of fibers; right: representa
fourth one of the fiber; a ¼

ffiffiffiffiffi
v f
p

, b = 1 � a
derived by using the FST method are close to those obtained by
using the MoC and that the FST approach requires less computa-
tional effort than the MoC. The maximum difference of 10% was
found in the values of the in-plane shear modulus derived from
the two approaches over a range of fiber volume fractions of prac-
tical interest. Robertson and Mall [16] have also used the FST ap-
proach to homogenize material properties of a composite with
visco-plastic constituents. Gardner [28] has generalized the MoC
to include fiber/matrix debonding.

In the FST approach a cylindrical RVE of square cross-section is
considered with the cross-section divided into two square and two
rectangular cells; e.g., see Fig. 8. Each cell is made of a homoge-
neous material and is assumed to deform uniformly. The material
of one rectangular cell is fiber and that of the remaining three cells
the matrix.

The displacement continuity conditions at the interfaces be-
tween cells, expressed in terms of strain components, are listed be-
low [15,16].

eF
11 ¼ �e11 eM1

11 ¼ �e11 eM2
11 ¼ �e11 eM3

11 ¼ �e11

aeF
22 þ beM1

22 ¼ aeM3
22 þ beM2

22 ¼ ðaþ bÞ�e22

aeF
33 þ ceM3

33 ¼ aeM1
33 þ ceM2

33 ¼ ðaþ cÞ�e33

cF
12 ¼ cM3

12 cM1
12 ¼ cM2

12

acF
12 þ bcM1

12 ¼ ðaþ bÞ�c12

cF
13 ¼ cM1

13 cM2
13 ¼ cM3

13

acF
13 þ ccM3

13 ¼ ðaþ bÞ�c13

a2cF
23 þ abcM1

23 þ bccM2
23 þ accM3

23 ¼ ðaþ bÞðaþ bÞ�c23

ðA:1Þ

In Eq. (A.1) strain components with an over bar represent the
average strains in the RVE.

The continuity of resultant forces at the interfaces between the
regions gives the following equations wherein superscripts F and
M stand for the fiber and the matrix, respectively, and the addi-
tional superscripts 1, 2 and 3 correspond to the cell number.

rF
22 ¼ rM1

22 rM2
22 ¼ rM3

22 rF
33 ¼ rM3

33 rM1
33 ¼ rM2

33

asF
12 þ csM3

12 ¼ asM1
12 þ csM2

12

asF
13 þ bsM1

13 ¼ asM3
13 þ bsM2

13

sF
23 ¼ sM3

23 ¼ sM2
23 ¼ sM1

23

ðA:2Þ
tion of the cross-section by four cells, three of which are made of the matrix and the
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Using constitutive equations for the fiber and the matrix Eqs.
(A.1) and (A.2) can be re-written as:

eF
22

eF
33

( )

eM1
22

eM1
33

( )

eM2
22

eM2
33

( )

eM3
22
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8>>>>>>>>>>>>>>>><
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ðaþ bÞ�e22
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21
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�e11

0
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�e11

0

8>>>>>>>>>>>>>>><
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ðA:3Þ
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where
½SHEAR� ¼

0 0 1 0 0 0 0 0 0
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As indicated below, inelastic deformations of the matrix are
accommodated by incorporating plastic strains in Eqs. (A.3) and
(A.4).
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where [NORMAL] and [SHEAR] are as defined in Eqs. (A.4) and (A.5)
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feMPig ¼
eMPi

1

eMPi
2

eMPi
3

8><
>:

9>=
>;
0 0 �1
0 0 0
0 0 0
0 0 0
0 �1 0
0 b 0

ab 0 0
M
66 0 0 bCM

66

0 �aCM
55 0

�CM
44 0 0

0 0 0

0 0 0

3
77777777777777777777777775

�1



4

6

8

10

12

0.80.60.40.2

E
la

st
ic

 m
od

ul
us

, E
2

=E
3

(G
P

a)

Fiber volume fraction

M-T

FST

Expt.[24]

Expt.[25]

Expt.[26]

 (a)
2

4

6

8

0.80.60.40.2Sh
ea

r 
m

od
ul

us
, G

12
=G

13
(G

P
a)

Fiber volume fraction

M-T

FST

Expt.[24]

Expt.[25]

Expt.[26]

(b)

1

2

3

4

0.80.60.40.2

Sh
ea

r 
m

od
ul

us
, G

23
(G

P
a)

Fiber volume fraction

M-T

FST

Expt.[26]

 (c)
0.2

0.25

0.3

0.35

0.80.60.40.2

P
oi

ss
on

's
 r

at
io

, ν
12

Fiber volume fraction

M-T

FST

Expt.[24]

Expt. [26]  (d)

0.25

0.3

0.35

0.4

0.45

0.5

0.80.60.40.2

P
oi

ss
on

's
 r

at
io

, ν
23

Fiber volume fraction

M-T

FST

Expt.[24]

Expt. [26]
 (e)

Fig. 9. Using different micromechanics approaches, computed variation with v f of (a) the elastic modulus E2 = E3, (b) G12 = G13, (c) G23, (d) Poisson’s ratio m12, and (e) Poisson’s
ratio m23 obtained using M–T = Mori–Tanaka, FST = free shear traction. Test data from Refs. [24–26] are shown in the figure.

Table 2
Values of material parameters for the matrix.

Elastic modulus Poisson’s ratio Yield stress Hardening modulus

45 GPa 0.35 0.15 GPa 1.28 GPa

Table 3
Elastic constants of carbon fibers.

E1 E2 = E3 G12 = G13 m12 = m13 m23

224 GPa 14 GPa 14 GPa 0.2 0.25
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Fig. 10. For v f = 0.3, comparison of the axial stress versus the axial strain curves for
off-axis loading computed using the incremental M–T and the FST methods.

R.C. Batra et al. / Composites: Part B 43 (2012) 2594–2604 2603
CM
Ji

h i
¼ CM

J1 CM
J2 CM

J3

h i
Cij

M and Cij
F stand for elastic constants of the matrix and the fiber,

respectively.
Fig. 9a–e compares values of the elastic constants predicted by

the FST method with those found by using the M–T scheme, and
available experimental values [24–26]. Results from the two ap-
proaches agree qualitatively and are, in general, close to each other
for the fiber volume fraction ranging between 0.3 and 0.75.
Next we compare results of elasto-plastic deformations ob-
tained using the incremental Mori–Tanaka (M–T) and the FST
methods. The algorithm for the M–T method has been given by
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Pettermann et al. [29], and we study the same composite (carbon
fiber reinforced metal matrix) as that analyzed in [29]. It is as-
sumed that only the matrix deforms plastically, and it can be mod-
eled as an elasto-plastic material obeying the von-Mises yield
criterion with the effective stress an affine function of the effective
plastic strain (i.e., affine strain hardening). Values of material
parameters for the matrix taken from [29] are listed in Table 2,
and those for the carbon fiber given in Table 3 are slightly different
from those listed in Table 1. Here we have used values of parame-
ters from Ref. [29] so that we can compare our computed results
with those of Pettermann et al. [29].

In Fig. 10 we have plotted the axial stress versus the axial strain
curves for off-axis loading of a lamina obtained by using the two
approaches. In general, the results from the two methods agree
well with each other. However, when fibers are inclined at either
60� or 90� with the loading axis, yielding occurs at a lower value
of the strain for the FST method than that with the incremental
M–T approach. In Figs. 11 and 12, we have compared results for
the cyclic loading along the fiber direction and for the in-plane
shear loading. The initial slope, G23 of the shear stress versus the
shear strain curve from the incremental M–T method is higher
than that of the curve computed with the FST approach. The yield
stress obtained from results using the FST method is higher than
that deduced from results of the M–T approach, and the FST meth-
od predicts a lower value of the strain hardening modulus than the
input value. Thus the two micromechanics theories that give very
close results for axial deformations of a composite lamina do not
provide close values of the yield stress and the hardening modulus
for in-plane shear deformations.

We note that Jiang and Batra [33–35] used the energy equiva-
lence principle and the Mori–Tanaka method to homogenize par-
ticulate composites containing elastic–plastic inclusions and a
viscoleastic matrix.

References

[1] Torquato S. Random heterogeneous media. New York: Springer-Verlag; 2002.
[2] Suquet PM. Continuum micro-mechanics. New York: Springer-Verlag; 1997.
[3] Bensoussan A, Lions JL, Papanicolaou G. Asymptotic analysis for periodic

structures. New York: North-Holland Publishing Company; 1978.
[4] Nemat-Nasser S, Hori M. Micromechanics: overall properties of heterogeneous

materials. 2nd ed. Amsterdam: North Holland; 1999.
[5] Mura T. Micromechanics of defects in solids. New York: Kluwer Academic

Press; 1987.
[6] Aboudi J. Mechanics of composite materials. Amsterdam: Elsevier Science

Publication; 1991.
[7] Tsai SW, Hahn HT. Introduction to composite materials. Lancaster

PA: Technomic Publication; 1980.
[8] Hyer MW. Stress analysis of fiber-reinforced composite materials. Lancaster

PA: Destech Pubs Inc.; 2008.
[9] Reifsnider KK, Case SW. Damage tolerance and durability in material

systems. New York: Wiley-Interscience; 2002.
[10] Charalambakis N. Homogenization techniques and micromechanics. A survey

and perspectives. Trans ASME Appl Mech Rev 2010;63:030803–10.
[11] Love BM, Batra RC. Determination of effective thermomechanical parameters

of a mixture of two thermoviscoplastic constituents. Int J Plast
2006;22:1026–61.

[12] Bridgman PW. Studies in large plastic flow and fracture with special emphasis
on the effects of hydrostatic pressure. New York: McGraw-Hill; 1952.

[13] Caddell RM, Raghava RS, Atkins AG. Pressure dependent yield criteria for
polymers. Mater Sci Eng 1974;13:113–20.

[14] Hu LW, Pae KD. Inclusion of the hydrostatic stress component in formulation
of the yield condition. J Frank Inst 1963;6:491–502.

[15] Robertson DD, Mall S. Micromechanical relations for fiber-reinforced
composites. J Compos Technol Res 1993;15:181–91.

[16] Robertson DD, Mall S. Micromechanical analysis for thermo-viscoplastic
behavior of unidirectional fibrous composites. Compos Sci Technol
1994;50:483–96.

[17] Gavazzi AC, Lagoudas DC. On the numerical evaluation of Eshelby’s tensor and
its application to elastoplastic fibrous composites. Comput Mech 1991;7:13–9.

[18] Aboudi J. Micromechanical analysis of composites by the method of cells.
Trans ASME Appl Mech Rev 1989;42:193–221.

[19] Hill R. The mathematical theory of plasticity. New York: Oxford University
Press; 1998.

[20] Spencer AJM. Plasticity theory for fiber-reinforced composites. J Eng Math
1992;26:107–18.

[21] Chen JK, Allahdadi FA, Sun CT. A quadratic yield function for fiber-reinforced
composites. J Compos Mater 1997;31:788–811.

[22] Goldberg RK, Stouffer DC. Strain rate dependent analysis of a polymer matrix
composite utilizing a micromechanics approach. J Compos Mater
2002;36:773–93.

[23] Bordonaro CM. Rate dependent mechanical behavior of high strength plastics:
experiment and modeling. PhD Dissertation. Troy, New York: Rensselaer
Polytechnic Institute; 1995.

[24] Kyriakides S, Arseculeratne R, Perry E, Liechti K. On the compressive failure of
fiber reinforced composites. Int J Solids Struct 1995;32:689–738.

[25] Jen MHR, Lee CH. Strength and life in thermoplastic composite laminates
under static and fatigue loads. Part I: experimental. Int J Fatig
1998;20:605–15.

[26] Weeks CA, Sun CT. Modeling non-linear rate-dependent behavior in fiber-
reinforced composites. Compos Sci Technol 1998;58:603–11.

[27] Zheng X. Nonlinear strain rate dependent composite model for explicit finite
element analysis. PhD Dissertation. Akron, Ohio: University of Akron; 2006.

[28] Gardner, J.P. 1994, Micromechanical modeling of composite materials in finite
element analysis using an embedded cell approach. M.Sc. thesis. Cambridge,
Massachusetts: MIT.

[29] Pettermann HE, Plankensteiner AF, Boehm HJ, Rammerstorfer FG. A thermo–
elasto-plastic constitutive law for inhomogeneous materials based on an
incremental Mori–Tanaka approach. Comput Struct 1999;71:197–214.

[30] Hinton MJ, Kaddour AS, Soden PD. Evaluation of failure prediction in
composite laminates: background to ‘part C’ of the exercise. Compos Sci
Technol 2004;64:321–7.

[31] Chen JK, Sun CT. A plastic potential suitable for anisotropic fiber composites. J
Compos Mater 1993;27:1379–90.

[32] Cho J, Fenner J, Werner B, Daniel IM. A constitutive model for fiber-reinforced
polymer composites. J Compos Mater 2010;44:3133–50.

[33] Jiang B, Batra RC. Micromechanical modeling of a composite containing
piezoelectric and shape memory alloy inclusions. J Intell Mater Syst
2001;12:165–82.

[34] Jiang B, Batra RC. Effective properties of a piezocomposite containing shape
memory alloy and inert inclusions. Contin Mechs Thermodynam
2002;14:87–111.

[35] Jiang B, Batra RC. Effective electroelastic properties of a piezocomposite with
viscoelastic and dielectric relaxing matrix. J Intell Mater Syst 2001;12:847–66.


	Material parameters for pressure-dependent yielding of unidirectional  fiber-reinforced polymeric composites
	1 Introduction
	2 Elasto-plastic material parameters
	2.1 Preliminaries
	2.2 Infinitesimal elasto-plastic deformations of polymer
	2.2.1 Pressure independent yielding of polymer
	2.2.2 Pressure-dependent yielding of polymer

	2.3 Yield function for unidirectional fiber reinforced polymeric composite (UFPC)
	2.3.1 Pressure independent yielding of composite
	2.3.2 Pressure dependent yielding of composite

	2.4 Determination of elastic–plastic parameters of the UFPC
	2.4.1 Pressure-independent yield surface
	2.4.1.1 Weeks and Sun’s approach [26] for finding A12 and A23
	2.4.1.2 Alternative approach for finding A12 and A23

	2.4.2 Pressure-dependent yield surface


	3 Numerical results and discussion
	3.1 Elastic constants for AS4 fibers
	3.2 Material parameters for PEEK assuming pressure independent yielding
	3.3 Material parameters for PEEK assuming pressure dependent yielding
	3.4 Elasto-plastic properties of the composite
	3.4.1 Validity of the FST approach for elasto-plastic deformations
	3.4.2 Values of material parameters for the homogenized composite
	3.4.3 Comparison of results from the FST method with those from the homogenized composite
	3.4.4 Dependence of the yield surface upon the fiber volume fraction


	4 Conclusions
	Acknowledgements
	Appendix A 
	A.1 Comparison of results between Mori–Tanaka and the FST techniques

	References


