
Three-dimensional thermoelastic deformations of a functionally graded
elliptic plate

Z.-Q. Chenga, R.C. Batrab,*
aDepartment of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China

bDepartment of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219, USA

Received 24 February 1999; accepted 4 October 1999

Abstract

A new solution in closed form is obtained for the thermomechanical deformations of an isotropic linear thermoelastic functionally graded
elliptic plate rigidly clamped at the edges. The through-thickness variation of the volume fraction of the ceramic phase in a metal–ceramic
plate is assumed to be given by a power-law type function. The effective material properties at a point are computed by the Mori–Tanaka
scheme. It is found that the through-thickness distributions of the in-plane displacements and transverse shear stresses in a functionally
graded plate do not agree with those assumed in classical and shear deformation plate theories.q 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Macroscopically inhomogeneous materials commonly
appear in all kinds of engineering structures [1,2]. For
example in laminated structures, material properties are
piecewise constant in the thickness direction. A sudden
change in material properties at the interfaces can result in
locally large plastic deformations which may trigger the
initiation and propagation of a micro-crack or even a fatal
crack in a lamina. These adverse interface effects are miti-
gated in a new class of materials termed “functionally gradi-
ent materials”. Functionally gradient materials are spatial
composites in which material properties vary continuously.
This is achieved by gradually changing the volume fraction
of the constituent materials usually in one (the thickness)
direction to obtain a smooth variation of material properties
and an optimum response to external thermomechanical
loads. These materials are being used in aerospace and
power generation industries [3].

There are several two- (2D) and three-dimensional (3D)
theories available to analyze the thermoelastic deformations
of inhomogeneous structures. However, most of these
studies have been conducted for laminated structures. For
structures made of functionally gradient materials, it is

desirable to obtain closed form solutions from 3D theories
to assess the accuracy and validity of 2D theories.

The method of asymptotic expansion [4–6] has been
developed to analyze 3D deformations of inhomogeneous
plates. In Ref. [4], however, material properties and the
deformations of the plate have been assumed to be
symmetric about the mid-plane of the elliptic plate.
However, such is not the case in general for a functionally
graded plate. In the other two studies [5,6] numerical exam-
ples are given only for rectangular laminated plates.

Here the method of asymptotic expansion has been used
to study three-dimensional mechanical deformations of an
isotropic linear thermoelastic elliptic plate, and the defor-
mations due to thermal loads are straightforwardly found.
The plate is made of a functionally graded material and has
edges rigidly clamped at the mid-plane. The closed-form
analytical solution of the problem reveals that the available
plate theories are insufficient to describe the thermomecha-
nical behavior of functionally graded plates. The present
solution can also be used to assess the accuracy of different
plate theories and other numerical techniques.

2. Formulation of the problem

We use rectangular Cartesian coordinatesxi , i � 1;2; 3;
with the planex3 � 0 coincident with the mid-plane of the
elliptic plate, to describe its thermomechanical deformations.
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As shown in Fig. 1, the plate is of thicknessh and its semi-
major and semi-minor axes equala andb, respectively. We
assume that the plate is made of an isotropic material with
material properties varying smoothly in thex3 (thickness)
direction only. In the absence of body forces, equations of
elastostatics that govern the deformations of the plate are

2js ij � 0; eij � 1
2
�2jui 1 2iuj�;

s ij � 2meij 1 �lekk 2 �3l 1 2m�aT�dij ;

�1�

where s ij is the stress tensor,eij the infinitesimal strain
tensor,ui the displacement of a point,T the change in
temperature from that in the stress free reference configura-
tion, 2i ; 2=2xi anddij is the Kronecker delta. A repeated
index implies summation over the range of the index with
Latin indices ranging from 1 to 3 and Greek indices from 1
to 2. The Lame´ coefficients,l andm , and the coefficient of
thermal expansion,a , are functions ofx3:

Eq. (1) may be rewritten in the form of a transfer matrix
as
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" #
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" #
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" #
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" #
T; �2�

where

F �
u1

u2

s33

2664
3775; G �

s13

s23

u3

2664
3775; �3�

The longitudinal stresses are given by

sab � 2lm
l 1 2m

2vuvdab 1 m�2bua 1 2aub�

1
l

l 1 2m
s33dab 2 2mkaTdab: �5�

As is usually done in two-dimensional plate theories, the

mechanical boundary conditions at a rigidly clamped edge
are approximated by

u1 � u2 � u3 � 0;
2u3

2n0
� 0;

at
x2

1

a2 1
x2

2

b2 2 1� 0 and x3 � 0:

�6�

Heren0 denotes the outward unit normal to the edge of the
elliptic plate. It should be noted that these conditions hold
only at the mid-plane of the plate, thus boundary layer
effects generally found in three-dimensional analysis of
the problem are neglected. For the linear thermoelastic
problem under consideration, deformations due to the
combined thermomechanical loads can be ascertained by
superposing the deformation due to thermal loads and that

due to mechanical loads. Hence we separately study the two
problems.

3. Deformation due to thermal loads

It is assumed that steady-state conditions prevail and the
temperature field in the plate is a function ofx3 only. The heat
conduction equation and the thermal boundary conditions on
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Fig. 1. Geometry of an elliptic plate.



the top and bottom surfaces are

23�k23T� � 0; T ^
h
2

� �
� T^

; �7�

wherek , the thermal conductivity coefficient, is a function
of x3; and T^ are, respectively, the uniform ambient
temperatures on the top and bottom surfaces of the plate.
The solution of the boundary value problem (7) is

T�x3� � T2 1 �T1 2 T2�

Zx3

2 h=2

1
k

dx3Zh=2

2 h=2

1
k

dx3

: �8�

The deformations of the plate can now be calculated from
Eq. (2) and boundary condition (6). The non-zero displace-
ment and stresses are

u3 �
Zx3

0
kaT dx3; s11 � s22 � 22mkaT: �9�

As the transverse stresses vanish, the top and bottom
surfaces of the plate are traction free. Eq. (9) implies that
the plate expands or contracts in the thickness direction
only, and because of the edges being clamped, it is subjected
to in-plane tensions and/or compressions. The in-plane
tensions and/or compressions vary only in the thickness
direction. We note that the foregoing solution applies to a
plate of an arbitrary shape. However, because the edge
conditions are satisfied only on the mid-plane of the plate,
this solution is not valid at points near the edges of the plate.

4. Deformation due to mechanical loads

Assume that tangential tractions,q^
a ; and normal pres-

sures,q^3 ; are applied on the top and bottom surfaces of the
plate. An asymptotic expansion method is used to solve the
problem. We introduce the small parametere � h=2a and
scale the thickness coordinate byx3 � ez; thuszvaries from
2a to a asx3 goes from2h/2 to h/2. The state space equa-
tion (2) can now be written as

2z

F

G

" #
� e
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B 0

" #
F

G

" #
; �10�

and its solution is

F

G

" #
� P

F�0�
G�0�

" #
; �11�

whereP is the transfer matrix which propagates the state
space functions (3) from the reference planez� 0 to a plane
z� constant. In terms of the integral operators

Q�…� ;
Zz

0
�…�dz; �Q�…� ;

Za

0
�…� dz;

Q̂�…� ;
Za

2 a
�…� dz;

�12�

the transfer matrix becomes

P�
X∞
n�0

e2n a�2n� ea�2n11�

eb�2n11� b�2n�

" #
; �13�

where

a�n11� � QAb�n�; b�n11� � QBa�n�; �n $ 0�; �14�
and

a�0� � b�0� � i �15�
is a 3× 3 identity matrix.

We expand the state space variablesF andG in terms of
the small parametere as

F

G

" #
�
X∞
n�0

e2n ef �n�

g�n�

" #
; �16�

and substitute it and Eq. (13) into Eq. (11) to obtain

f �n� �
Xn
k�0

a�2k�f �n2k��0�1 a�2k11�g�n2k��0�
h i

; �n $ 0�;

g�0� � g�0��0�; �17�

g�n� �
Xn2 1

k�0

b�2k11�f �n212k��0�1
Xn
k�0

b�2k�g�n2k��0�; �n $ 1�:

For general mechanical loading conditions, excluding the
particular case of equal and opposite tractions on the top and
bottom surfaces, the transverse shear stresses are O�e2� and
the transverse normal stress is O�e3�: The surface conditions
are then scaled by

s13�^a� � e 2q^1 ; s23�^a� � e 2q^2 ;

s33�^a� � 2e 3q^3 :
�18�

They can be further expressed, with the help of Eq. (16), by
a hierarchy of formulations of orders 0–infinity, in which
the load terms only appear in the following equations:

s �1�13 �0�1 b�1�1v�^a�U�0�v 1 b�2�13�^a�U�0�3 � q^1 ;

s �1�23 �0�1 b�1�2v�^a�U�0�v 1 b�2�23�^a�U�0�3 � q^2 ;

s �1�33 �0�1 a�1�3a�^a�s �1�a3 �0�

1a�2�3v�^a�U�0�v 1 a�3�33�^a�U�0�3 � 2q^3 ;

�19�

where

U�n�i ; u�n�i �xr;0�: �20�
Eliminating the transverse stresses from Eq. (19) and eval-
uating some relevant operators in terms of Eq. (14) we
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obtain
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1 2 Q̂m22

2 2Q̂�g 2 m�2122 Q̂zg7 221
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1 2 q2
1
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2 2 q2

2

2�q1
3 2 q2

3 �1 a2a�q1
a 1 q2

a �

2664
3775; �21�

where

7 2 � 22
1 1 22

2; g � 4m�l 1 m�
l 1 2m

: �22�

Eqs. (21) are the governing equations of the leading order
for the functionally graded plate and are of the same form as
those derived by using the two-dimensional classical
Kirchhoff theory.

We now assume that the top and bottom surfaces of the
plate are only subjected to uniform normal pressureq^3 : To
the leading order the edge conditions for the elliptic plate
are

U�0�1 � U�0�2 � U�0�3 � 0;

2U�0�3

2n0
� 0; at

x2
1

a2 1
x2

2

b2 2 1� 0;
�23�

and the solution satisfying these conditions is

U�0�1 � �q1
3 2 q2

3 � C

a2 x1
x2

1

a2 1
x2

2

b2 2 1

 !
;

U�0�2 � �q1
3 2 q2

3 � C

b2 x2
x2

1

a2 1
x2

2

b2 2 1

 !
;

U�0�3 � 2�q1
3 2 q2

3 � D4
x2

1

a2 1
x2

2

b2 2 1

 !2

;

�24�

with

C � 2
Q̂zg

Q̂g
D;

D21 � 2
3
a4 1

2
a2b2 1

3
b4

� �
Q̂z2g 2

�Q̂zg�2
Q̂g

" #
:

�25�

Eqs. (19) give

s �1�13 �0� � �q1
3 2 q2

3 �c1x1; s �1�23 �0� � �q1
3 2 q2

3 �c2x2;

s �1�33 �0� � 2q1
3 1 �q1

3 2 q2
3 �c3; �26�

where

c1 � 2
a2

3
a2 1

1
b2

� �
�Qg�C 1 Dz�;

c2 � 2
b2

1
a2 1

3
b2

� �
�Qg�C 1 Dz�;

c3 � 2
3
a4 1

2
a2b2 1

3
b4

� �
�Qzg�C 1 Dz�:

�27�

The governing equations of higher-orders are obtained
from Eqs. (16)–(18). Omitting details, we only note that
all higher-order unknowns identically vanish. Therefore,
the non-zero reference solution on the mid-plane is

f �0��0� �
U�0�1

U�0�2

0

26664
37775; g�0��0� �

0

0

U�0�3

2664
3775;

f �1��0� �
0

0

s �1�33 �0�

2664
3775; g�1��0� �

s �1�13 �0�
s �1�23 �0�

0

26664
37775:

�28�

Any of the through-thickness displacements and stresses can
be evaluated from the reference solution by straightforward
differentiations with respect toxa and integrations with
respect toz�or x3�: The complete through-thickness solution
is obtained by substituting the reference solution (28) into
Eq. (17), i.e.

g�0� � g�0��0�; f �0� � f �0��0�1 a�1�g�0��0�;

g�1� � g�1��0�1 b�1�f �0��0�1 b�2�g�0��0�; �29�

f �1� � f �1��0�1 a�1�g�1��0�1 a�2�f �0��0�1 a�3�g�0��0�;

g�2� � b�1�f �1��0�1 b�2�g�1��0�1 b�3�f �0��0�1 b�4�g�0��0�:

Thus, the computed displacements and transverse stresses
are

u1 � e�q1
3 2 q2

3 �C 1 Dz

a2 x1

 
x2

1

a2 1
x2

2

b2 2 1

!

2 e3�q1
3 2 q2

3 �d6x1;

u2 � e�q1
3 2 q2

3 � C 1 Dz

b2 x2

 
x2

1

a2 1
x2

2

b2 2 1

!

2 e3�q1
3 2 q2

3 �d7x2;
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u3 � 2
1
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1 e4�2q1
3 d1 1 �q1

3 2 q2
3 ��c3d1 1 d9��;

s13 � 2e 2�q1
3 2 q2
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s23 � 2e 2�q1
3 2 q2

3 �d5x2; �31�

s33 � e 3�2q1
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3 2 q2
3 ��c3 1 d8��;

where
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l 1 2m
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a2 Q
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l 1 2m
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The longitudinal stresses obtained from Eq. (5) are

s11 � e�q1
3 2 q2

3 ��C 1 Dz�
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3x2
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3 �
"
gd6 1 �g 2 2m�d7 2
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�c3 1 d8�

#)
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s22 � e�q1
3 2 q2

3 ��C 1 Dz�
"
g 2 2m
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1
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x2
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b2 2 1
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1
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3x2
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2 e3
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3
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1 �q1

3 2 q2
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"
gd7 1 �g 2 2m�d6

2
l

l 1 2m
�c3 1 d8�

#)
;

s12 � e�q1
3 2 q2

3 � 4m
a2b2 �C 1 Dz�x1x2: �33�

Note that d1–d9 can be evaluated by straightforward
quadratures. For a homogeneous plate, the in-plane
displacementsu1 and u2 are polynomials of degree 3
in x3; and the transverse shear stressess13 and s23

are polynomials of degree 2. The orders of in-plane
displacements and transverse shear stresses agree with
those presumed in the third-order plate theory [7]. This
is, however, not the case for a functionally graded plate
whose material moduli vary in the thickness direction.
Therefore, results predicted by the higher-order, classi-
cal and first-order plate theories may not be satisfactory.
Note that in the latter two theories, a linear distribution
of the in-plane displacements is assumed. This estab-
lishes the necessity of using a 3D formulation such as
the present one to calculate deformations of a function-
ally graded plate.

5. Numerical results

A functionally graded material is made by mixing
two distinct material phases, for example, a metal
and a ceramic. The locally effective material proper-
ties are evaluated by the Mori–Tanaka scheme [8,9].
It should be noted that in general there is no repre-
sentative volume element to be defined in function-
ally gradient materials, the average field estimates
can only be applied with a reasonable degree of confidence
[10].

Consider a two-phase composite consisting of a matrix
phase denoted by subscript 1 and a particulate phase
denoted by the subscript 2, respectively. The composite is
reinforced by spherical particles, randomly distributed in the
plate plane. The locally effective bulk modulusK and shear
modulusm of the functionally gradient material are given

Z.-Q. Cheng, R.C. Batra / Composites: Part B 31 (2000) 97–106 101

Fig. 2. Through-the-thickness distribution of the volume fraction of the
ceramic phase in the functionally graded plate.



by the Mori–Tanaka estimates [8,9] as

K 2 K1

K2 2 K1
� V2

.
1 1 �1 2 V2� K2 2 K1

K1 1 �4=3�m1

� �
;

m 2 m1

m2 2 m1
� V2

.
1 1 �1 2 V2� m2 2 m1

m1 1 f1

� �
;

f1 � m1�9K1 1 8m1�
6�K1 1 2m1� :

�34�

The locally effective heat conductivity coefficientk is given
by [11]

k 2 k1

k2 2 k1
� V2

1 1 �1 2 V2���k2 2 k1�=3k1� : �35�

The coefficient of thermal expansiona is determined in
terms of the correspondence relation [12]

a 2 a1

a2 2 a1
� 1

K
2

1
K1

� �. 1
K2

2
1

K1

� �
: �36�

HereV2 is the volume fraction of the particulate phase. The
Mori–Tanaka estimates on statistically homogeneous
composites with spherical reinforcements coincide with
the Hashin–Shtrikman upper and lower bounds on elastic
moduli [13], when the stiffer phase serves as a matrix or
reinforcement of well-ordered composites, respectively.

In the following numerical results, the metal is taken as
the matrix phase and the ceramic is taken as the particulate
phase. We assume that the volume fraction of the ceramic
phase is given by

V2 � h 1 2x3

2h

� � n

: �37�

Fig. 2 shows the through-thickness variation of the volume
fraction of the ceramic forn� 0:2; 0.5, 1, 2, 5. Note that the
volume fraction of the metal is high near the bottom surface
of the plate, and that of ceramic high near the top surface.

In actual service conditions, zirconia top coat is typically
employed as a thermal barrier on Ni-based structural
components in aircraft engines. The constituent materials
of the functionally graded plate are taken to be nickel-
based alloy, Monel (70Ni–30Cu), and zirconia with mate-
rial properties [14–16]

Km � 227:24 GPa; mm � 65:55 GPa;

am � 15× 1026
=K; km � 25 W=mK; for Monel;

Kc � 125:83 GPa; mc � 58:077 GPa;

ac � 10× 1026
=K; kc � 2:09 W=mK; for zirconia:

�38�

In the linear theory used here, results for complex loadings
can be obtained by superposing results for each of the
simple loading. We assume thatT2 � q2

3 � 0 on the
bottom surface of the elliptic plate. Two simple loading
conditions, namely a uniform temperature change and a
uniform normal pressure on the top surface are examined

in the following numerical examples. The physical quanti-
ties are non-dimensionalized by

�T � T�x3�
T1 ; �u3 � u3�x3�

5hapT1 ; �s 11 � s11�x3�
E papT1 ; �39�

for the applied temperature loadT1
; and by

�u1 � Epu1�2a; 0; x3�
q1

3 a
; �u3 � Epu3�0;0; x3�

q1
3 a

;

�s 11 � s11�0; 0; x3�
q1

3
; �s 13 � s13�2a;0; x3�

q1
3

;

�s 33 � s33�2a;0; x3�
q1

3
;

�40�

for the applied mechanical pressure2q3
1, where Ep �

1 GPa andap � 1026
=K: The span-to-thickness ratio 2a=h

is taken as 10.
Figs. 3–5 depict the through-thickness distributions of the

dimensionless temperature�T; deflection�u3 and longitudinal
stress �s 11 in the plate under the uniform thermal loadT 1

:

Note that these quantities only vary in the thickness direc-
tion, i.e. they are uniform in a plane parallel to the reference
planex3 � 0: Moreover, results due to the thermal load are
valid for a plate of arbitrary shape. The through-thickness
variation of the temperature in a homogeneous ceramic
plate, which coincides with that in a homogeneous metallic
plate, is linear and the temperature at a point in a homoge-
neous plate is always greater than that at the corresponding
point in a functionally graded (FG) metal–ceramic plate
with n� 0:2; 0.5, 1, 2 or 5. The deflection of a point in
the upper half of the plate is upward and that of a point in
the lower half of the plate is downward. Except for the FG
plate with n� 5 whose deflections are intermediate
between those of a ceramic plate and a metallic plate, the
magnitude of the deflection of a point in the FG plate with
n� 0:2; 0.5, 1 or 2 is smaller than that of the corresponding
point in the ceramic plate. Of course, because of the lower
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value of the coefficient of thermal expansion, the magnitude
of the deflection of a point in the ceramic plate is less than
that of the corresponding point in the metallic plate. As
exhibited in Fig. 5, the longitudinal stress,�s 11; is compres-
sive throughout the plate, and the maximum compressive
stress occurs at a point on the top surface and minimum
value of zero at a point on the bottom surface of the FG
plate. Except at points on the top and bottom surfaces, the
magnitude of the compressive stresses at a point in an FG
plate withn� 0:2; 0.5, 1 or 2 is less than that at the corre-
sponding point in either the ceramic or the metallic plate.

In Figs. 6–10 we have plotted the through-thickness
variations of the displacements�u1 and �u3; and stresses
�s 11; �s 13 and �s 33 for (a) a circular plate (i.e.a=b� 1), (b)
an elliptic plate witha=b� 0:5; and (c) an infinite strip (i.e.
a=b� 0) whose top surface is loaded by the uniform
mechanical pressure2q1

3 : The volume fraction of the FG
plate is taken asn� 0:5 or 2 in these figures. It is clear that
the through-thickness distributions of these quantities are
similar for the three values ofa=b; however, the magnitudes
at the corresponding points are different. The transverse
normal stress,�s 33; does not depend upon the ratioa=b:
Markers for different values ofn have been omitted in
Figs. 6, 9 and 10 because the value at a point in an FG
plate is very close to that at the corresponding point in a
homogeneous metallic or ceramic plate.

The values of the in-plane displacement�u1 (cf. Fig. 6) and
the lateral deflection�u3 (cf. Fig. 7) at a point of the FG plate
with n� 0:5 or 2 lie between those at the corresponding
points of the metallic and ceramic plates. The deflection is
nearly constant through the thickness of the plate; this trend
agrees with the assumption of constant deflection made in
various plate theories. The tensile and compressive values
of the longitudinal stress,�s 11 (cf. Fig. 8), are maximum at a
point on the top and bottom surfaces of the FG plate, respec-
tively. For n� 0:5 and 2, the maximum value of the trans-
verse shear stress,�s 13 (cf. Fig. 9), occurs at a point a little

below the mid-plane of the plate, and its magnitude is close
to that in a metallic or a ceramic plate. The through-thick-
ness distribution of�s 13 is nearly parabolic fora=b� 0; 0.5
and 1. The magnitude of the transverse normal stress,�s 33

(cf. Fig. 10), at any point in an FG plate is very close to that
at the corresponding point in a homogeneous plate. In the
absence of any interlayer in an FG plate, the out-of-plane
stressess13; s23 ands33 are not important and are negligi-
ble as compared to the longitudinal stresss11:

6. Conclusions

We have analyzed thermomechanical deformations of a
linear elastic functionally graded elliptic plate with rigidly
clamped edges. Because of the assumption of linearity,
deformations due to thermal and mechanical loads applied
to the top and bottom surfaces of the plate are separately
computed. Deformations due to the temperature varying
only in the thickness direction are calculated analytically,
and those due to the mechanical load are obtained by the
method of asymptotic expansion. It is found that the
assumption of constant deflection usually made in plate
theories is not valid for the case of the thermal load, but it
is a good approximation for the mechanical load. The cubic
through-thickness distribution of the in-plane displacements
and the quadratic through-thickness distribution of trans-
verse shear stresses assumed in the higher-order plate theory
[7] agree with the present solution only for a homogeneous
plate. However, this is not the case for a functionally graded
plate whose deformations depend on the volume fraction of
the constituent materials. The gradients in material
properties significantly affect the response of a functionally
graded plate under thermal loads. The deflection and the
longitudinal stress at a point in a functionally graded elliptic
plate are not necessarily between those at the corresponding
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Fig. 5. Through-the-thickness distribution of the dimensionless longitudinal
stress�s 11 of the functionally graded plate under the thermal load.

Fig. 4. Through-the-thickness distribution of the dimensionless deflection
�u3 of the functionally graded plate under the thermal load.
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Fig. 6. Through-the-thickness distribution of the dimensionless in-plane
displacement�u1 of (a) a circular plate�a=b� 1�; (b) an elliptic plate�a=b�
0:5�; and (c) an infinite strip�a=b� 0�; under the mechanical load.

Fig. 7. Through-the-thickness distribution of the dimensionless deflection
�u3 of (a) a circular plate�a=b� 1�; (b) an elliptic plate�a=b� 0:5�; and (c)
an infinite strip�a=b� 0�; under the mechanical load.
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Fig. 8. Through-the-thickness distribution of the dimensionless longitudinal
stress�s 11 of (a) a circular plate�a=b� 1�; (b) an elliptic plate�a=b� 0:5�;
and (c) an infinite strip�a=b� 0�; under the mechanical load.

Fig. 9. Through-the-thickness distribution of the dimensionless transverse
shear stress�s 13 of (a) a circular plate�a=b� 1�; (b) an elliptic plate�a=b�
0:5�; and (c) an infinite strip�a=b� 0�; under the mechanical load.



points in identical homogeneous metallic and ceramic
plates.
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Fig. 10. Through-the-thickness distribution of the dimensionless transverse
normal stress�s 33 of an elliptic plate for an arbitrary value ofa=b; under the
mechanical load.


