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Abstract

Static deformations, and free and forced vibrations of a thick rectangular functionally graded elastic plate are analyzed by using a higher-

order shear and normal deformable plate theory (HOSNDPT) and a meshless local Petrov–Galerkin (MLPG) method. All components of the

stress tensor are computed from equations of the plate theory. The plate material, made of two isotropic constituents, is assumed to be

macroscopically isotropic with material properties varying in the thickness direction only. Effective material moduli are computed by using

the Mori–Tanaka homogenization technique. Computed results for static and free vibration problems are found to agree well with their

analytical solutions. The response of the plate to impulse loads is also computed for different volume fractions of the two constituents.

Contributions of the work include the use of the HOSNDPT and the MLPG method for the analysis of functionally graded plates.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

An advantage of functionally graded materials (FGMs)

over laminated composites is that material properties vary

continuously in an FGM as opposed to being discontinuous

across adjoining layers in laminated composites. The

variation of material properties in an FGM is usually

obtained by changing the volume fractions of two or more

compatible constituents. FGMs with material properties

varying in the thickness direction can be manufactured by

high speed centrifugal casting [1,2], or by depositing

ceramic layers on a metallic substrate [3,4], and those

with properties changing in the plane of a sheet by

ultraviolet irradiation to alter the chemical composition

[5]. A directed oxidation technique has been employed by

Breval et al. [6] and Manor et al. [7] to deposit a ceramic

layer on the outside surface. Functionally graded fiber

reinforced composites can be manufactured by varying the

volume fraction and/or the orientation of fibers in the

preform prior to infusing resin into it.

Several authors [8–12] have used either a first-order or a

third-order shear deformation plate theory coupled with the

finite element method (FEM) to analyze deformations of FG

plates. These plate theories neglect transverse normal

deformations, and generally assume that a plane stress

state of deformation prevails in the plate. These assumptions

may be appropriate for thin plates, but may not give good

results for thick plates with length/thickness equal to 5 or

less. For example, a three-dimensional analytic solution by

Vel and Batra [13,14] of thermoelastic deformations of an

Al/SiC plate gave noticeable changes in the plate thickness.

Jin and Batra [15–17], amongst others, have used the quasi-

static two-dimensional linear thermoelasticity theory to

study fracture characteristics at a crack tip in a FG plate; Vel

and Batra [13] have used the same theory to analyze

transient thermal stresses in a FG plate. Here, we study a

mechanical problem and use a higher order shear and

normal deformable plate theory (HOSNDPT) of Batra

and Vidoli [18] to analyze static deformations, and free
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and forced vibrations of a FG plate with a meshless local

Petrov–Galerkin (MLPG) method [19,20].

In the HOSNDPT the three components of displacement

are expanded in the thickness direction and terms up to the

same degree in the thickness coordinate are retained. In the

compatible HOSNDPT, three-dimensional Hooke’s law is

used to derive constitutive relations for various kinetic

variables in terms of the kinematic variables. Transverse

shear and normal stresses at a point are computed from the

plate equations rather than by integrating, through the

thickness, the three-dimensional balance of linear momen-

tum. The compatible HOSNDPT has been successfully used

to delineate static deformations, and free and forced

vibrations of thick homogeneous elastic plates [21,22]. In

the mixed HOSNDPT [18,23] constitutive relations, inde-

pendent of the expansions of the kinematic variables, are

postulated that satisfy traction boundary conditions on the top

and the bottom surfaces of the plate. For the same order of the

plate theory, the mixed HOSNDPT gives values of transverse

normal and transverse shear stresses that are closer to their

analytical values than the compatible HOSNDPT. However,

the latter is easier to implement in a computer code.

The FG plate is assumed to be made of two randomly

interspread isotropic constituents and the macroscopic

response of the composite is taken to be isotropic. Effective

elastic moduli of the composite are obtained by using the

Mori–Tanaka method [24]. The goal here is to demonstrate

that the compatible HOSNDPT and the MLPG method for

thick FG plates give results very close to the analytical

solution of a problem. Thus the technique of homogenizing

material properties is less critical.

Meshless methods such as the element-free Galerkin

[25], hp-clouds [26], the reproducing kernel particle [27],

the smooth particle hydrodynamics [28], the diffuse element

[29], the partition of unity finite element [30], the natural

element [31], meshless Galerkin methods using radial basis

functions [32], the modified smoothed particle hydrodyn-

amics [53], and the meshless local Petrov–Galerkin

(MLPG) [19,20] for finding an approximate solution of a

given initial-boundary-value problem have gained popular-

ity because nodes can be placed at arbitrary locations.

An advantage of the MLPG method [19,20] over the

FEM and most of the other meshless methods is that no

background mesh is required to numerically evaluate

various integrals appearing in the local Petrov–Galerkin

approximation of a given initial-boundary-value problem.

The essential boundary conditions are satisfied either by

using the penalty method or the method of Lagrange

multipliers or by modifying the stiffness matrix and the load

vector to eliminate the prescribed degrees of freedom. The

MLPG method has been successfully used to study two-

dimensional elastostatic and elastodynamic problems [33,

34], convection dominated flows [35], deformations of

homogeneous plates and free and forced vibrations of a

homogeneous and isotropic plate [22,37,38] static and

dynamic thermoelastic deformations [54,55], and vibrations

of FG plates [56].

The paper is organized as follows. Section 2 gives the

formulation of the problem including a brief description of

the compatible HOSNDPT and the MLPG method. Results

for an aluminum/zirconia plate loaded either statically or

dynamically are given in Section 3. Results of the static

analysis and computed natural frequencies of a simply

supported square plate are found to match well with the

corresponding analytical values. Conclusions are summar-

ized in Section 4.

2. Formulation of the problem

2.1. Brief review of the compatible HOSNDPT

A schematic sketch of the problem studied and the

rectangular Cartesian coordinate axes used to describe

deformations of the rectangular plate are shown in Fig. 1. It

is assumed that the plate occupies the region V ¼

½0; a� £ ½0; b� £ ½2h=2; h=2� in the unstressed reference

configuration. The midsurface of the plate is denoted by S;

the boundary of S by G; and displacements of a point along

the x; y and z-axes by u; v and w; respectively. Let LiðzÞ;

i ¼ 1; 2;… be orthonormalized Legendre polynomials

defined on ½2h=2; h=2�: That is

ðh=2

2h=2
LiðzÞLjðzÞdz ¼ dij; ð1Þ

where dij is the Kronecker delta. L0ðzÞ is a constant, and

LiðzÞ is a polynomial of degree i in z=h: Expressions for

the orthonormal Legendre polynomials are given in Refs.

[18,23]. By using the Legendre polynomials as basis

functions, we expand u; v and w as power series in z to get

uðx; y; z; tÞ ¼

uðx; y; z; tÞ

vðx; y; z; tÞ

wðx; y; z; tÞ

8>><
>>:

9>>=
>>; ¼

XK
i¼0

uiðx; y; tÞ

viðx; y; tÞ

wiðx; y; tÞ

8>><
>>:

9>>=
>>;LiðzÞ: ð2Þ

Expansions (2) for displacements have been employed

by Mindlin and Medick [39], Batra and Vidoli [18], and

Batra et al. [23]. For K $ 2; the plate theory is called

higher-order. Terms up to the same degree in z are retained

in the expansions (2) of the three components of

displacement. Batra et al. [23] have studied the decay

rate of different terms in Eq. (2) with the distance from a

point source which gives the relative importance of

Fig. 1. Schematic sketch of the problem studied.
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different terms. LiðzÞ has dimensions of (length)21/2 and

ui; vi and wi have dimensions of (length)3/2. Recall that

L0
iðzÞ ¼ dLi=dz is a polynomial in z of degree ði 2 1Þ; thus it

can be written as

L0
iðzÞ ¼

XK
j¼0

dijLjðzÞ; ð3Þ

where for a fixed h; dij are constants. Note that diK ¼ dKi ¼

0 for i ¼ 0; 1; 2;…;K: Values of dij are computed by

multiplying both sides of Eq. (3) with LkðzÞ and integrating

the resulting equation with respect to z from 2h=2 to h=2;

these are listed in Refs. [18,23].

For infinitesimal deformations, the strain tensor 1 is

related to displacements (2) as follows:

1 ¼

1xx

1yy

1zz

21yz

21zx

21xy

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼
XK
i¼0

›uiðx; yÞ

›x

›viðx; yÞ

›y

XK
j¼0

wjðx; yÞdji

›wiðx; yÞ

›y
þ

XK
j¼0

vjðx; yÞdji

›wiðx; yÞ

›x
þ

XK
j¼0

ujðx; yÞdji

›viðx; yÞ

›x
þ

›uiðx; yÞ

›y

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

LiðzÞ

;
XK
i¼0

{hi}LiðzÞ: ð4Þ

For i ¼ 0; 1; 2;…;K; hi is a six-dimensional vector with

components

hið1Þ ¼ ›ui=›x; hið2Þ ¼ ›vi=›y; hið3Þ ¼
XK
j¼0

djiwj;

hið4Þ ¼ ›wi=›y þ
XK
j¼0

vjdji; hið5Þ ¼ ›wi=›x þ
XK
j¼0

ujdji; ð5Þ

hið6Þ ¼ ›vi=›x þ ›ui=›y:

For K . 1; the transverse normal and the transverse shear

strains depend upon u0; v0;w0; u1; v1;w1;…; uK21;

vK21;wK21: For an initially stress-free body, stresses s
at a point x ¼ ðx; y; zÞ are related to strains 1 by Hooke’s law:

s ¼ {sxx syy szz syz szx sxy }T ¼ D1: ð6Þ

Here, D; the matrix of elastic constants, is a function of

z: Substitution from Eq. (4) into Eq. (6) gives stresses at the

point x in terms of displacements and in-plane gradients

of displacements evaluated at the point ðx; yÞ of the

midsurface S:

Eq. (2) gives the following for the velocity _u ¼ ›u=›t of a

point:

_uðx; y; z; tÞ ¼

_uðx; y; z; tÞ

_vðx; y; z; tÞ

_wðx; y; z; tÞ

8>><
>>:

9>>=
>>; ¼

XK
i¼0

_uiðx; y; tÞ

_viðx; y; tÞ

_wiðx; y; tÞ

8>><
>>:

9>>=
>>;LiðzÞ: ð7Þ

A similar expression holds for the acceleration €u: If the

initial velocity €uðx; y; z; 0Þ is known then

_uiðx; y; 0Þ ¼
ðh=2

2h=2
_uðx; y; z; 0ÞLiðzÞdz; ð8Þ

and similar expressions hold for _viðx; y; 0Þ; _wiðx; y; 0Þ and the

initial displacement uðx; y; 0Þ:

The reader is referred to Refs. [18,23] for a derivation of

the plate equations and constitutive relations. When

expansions for stresses are postulated to be independent of

those for displacements and a mixed variational principle is

employed, the resulting plate theory is called mixed

HOSNDPT. However, for stresses derived from the

expansions of displacements and Hooke’s law, Batra et al.

[23] called the resulting plate theory compatible

HOSNDPT.

2.2. Weak formulation of the problem

Neglecting body forces, transient deformations of the

plate are governed by

div s ¼ r €u; in V £ ð0;TÞ;

sn ¼ �f; on Gf � 2
h

2
;

h

2


 �
� ð0; TÞ;

u ¼ �u; on Gu � 2
h

2
;

h

2


 �
� ð0;TÞ;

sn ¼ q^
; on S^ � ð0;TÞ;

uðx; y; z; 0Þ ¼ u0ðx; y; zÞ; in V;

_uðx; y; z; 0Þ ¼ _u0ðx; y; zÞ; in V:

ð9Þ

Here, r is the mass density, div the three-dimensional

divergence operator, and n an outward unit normal to the

surface. Sþ and S2 are the top and the bottom surfaces of the

plate where surface tractions are prescribed, respectively, as

qþ and q2: qþ and q2 need not be normal to Sþ and S2;

respectively; thus both normal and tangential tractions may

be applied to the upper and the lower surfaces of the plate.

Batra and Vidoli [18] have analyzed deformations of a plate

whose upper and lower surfaces are subjected to tangential

tractions. Gu and Gf are parts of the boundary ›S of S:

On Gu � ½ð2h=2Þ; h=2� and Gf � ½ð2h=2Þ; h=2� displacements

and surface tractions are prescribed as �u and �f; respectively.

Eq. (9a) is the balance of linear momentum, Eqs. (9b)–(9d)

are boundary conditions, and Eqs. (9e) and (9f) are initial

conditions.
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Let ~u; ~v and ~w be three linearly independent functions of

x defined on V: Like u; v and w in Eq. (2), ~u; ~v and ~w are

expanded in terms of Legendre polynomials LiðzÞ: Multi-

plication of the three Eq. (9a) expressing the balance of

linear momentum in x; y and z directions by ~u; ~v and ~w;

respectively, addition of the resulting three equations, the

use of the divergence theorem and natural boundary

conditions (9b) give

ð
V
~1Ts dV2

ð
›uVm

~uTsn dG2
ð
›f Vm

~uT�f dG

2
ð

Sþ
~uTqþdG2

ð
S2

~uTq2 dGþ
ð
V
r ~uT €u dV ¼ 0:

ð10Þ

Here, �1 is the six-dimensional strain vector derived from

displacements ~u ¼ ð~u; ~v; ~wÞ; and ›uVm and ›fVm are parts of

the boundary ›Vm of the mantle or the lateral surface of the

plate where displacements and surface tractions are

prescribed as �u and �f; respectively; ›uVm ¼ Gu �

½ð2h=2Þ; h=2�; ›fVm ¼ Gf � ½ð2h=2Þ; h=2�: Substitution from

Eqs. (4), (6), and (9b)–(9d) into Eq. (10) and integration

with respect to z from 2h=2 to h=2 give

XK
i¼0

XK
j¼0

ð
S
rij{~ui}

T{€uj}dS þ
ð

S
{ ~hi}

T½Dij�{hj}dS




2
ð
Gu

{~ui}
T½n�½Dij�{hj}dG

�

¼
XK
i¼0

ð
Gf

{~u}T
i {�fi}dGþ Li ^

h

2

� 
ð
S

{~ui}
T{q^}dS

" #
;

ð11Þ

where

{�fi} ¼
ðh=2

2h=2
LiðzÞ{�f}dz; rij ¼

ðh=2

2h=2
rLiðzÞLjðzÞdz;

ð12Þ

½Dij� ¼
ðh=2

2h=2
½D�LiðzÞLjðzÞdz:

Square matrix ½rij� has ðK þ 1Þ rows and columns. The

size of the matrix ½Dij� is 6ðK þ 1Þ £ 6ðK þ 1Þ: Since

material properties are assumed to vary in the thickness

direction only, rij and Dij are independent of x and y: In the

MLPG formulation, it is not necessary to require that {~ui}

vanish on Gu as is often done in the Galerkin formulation of

the problem. Essential boundary conditions are imposed

either by the penalty method or by the method of Lagrange

multipliers or by static condensation in which the prescribed

degrees of freedom are eliminated before solving the system

of algebraic equations. For a plate made of a homogeneous

material, Eqs. (12b) and (12c) simplify to

rij ¼ rdij; ½Dij� ¼ ½D�dij: ð13Þ

2.3. Semidiscrete formulation

Let M nodes be placed on the midsurface S of the plate,

and S1; S2;…; SM be smooth two-dimensional closed

regions, not necessarily disjoint and of the same shape and

size, enclosing nodes 1; 2;…;M; respectively. The union of

S1; S2;…; SM covers S: Let f1;f2;…;fN and c1;c2;…;cN

be linearly independent functions defined on one of these

regions, say Sa: For a Kth order plate theory there are 3ðK þ

1Þ unknowns u0; v0;w0; u1; v1;w1;…; uK ; vK ;wK at every

point in S and hence in Sa: We write these as a 3ðK þ 1Þ

dimensional array {u}; and set

{uðx; y; tÞ} ¼
XN
J¼1

½fJðx; yÞ�{dJðtÞ}; ð14Þ

{~uðx; yÞ} ¼
XN
J¼1

½cJðx; yÞ�{ ~dJ}; ð15Þ

where, for each value of J{dJ} is a 3ðK þ 1Þ dimensional

array of fictitious nodal displacements and {fJ} is a square

matrix of 3ðK þ 1Þ rows. Similar remarks apply to { ~dJ} and

{cJ}: Note that {dJ} are functions of time t but { ~dJ} are not

functions of time. As will become clear from the discussion

in Section 2.4, {dJ} are not necessarily values of {u} at node

J since the basis functions {fJ} do not have the Kronecker

delta property. Substitution of Eqs. (14) and (15) into Eq. (5)

gives

{h} ¼
XN
J¼1

½BJ�{dJ}; { ~h} ¼
XN
J¼1

½ ~BJ�{ ~dJ}; ð16Þ

where {h} and { ~h} are 6ðK þ 1Þ dimensional arrays, and

½B� and ½ ~B� are 6ðK þ 1Þ £ 3ðK þ 1Þ matrices. Elements of

matrix ½B� involving functions fJ and their partial

derivatives with respect to x and y are listed in Refs. [21,22].

Writing Eq. (11) for S ¼ Sa; substituting for {h}; { ~h};

{u} and {~u} from Eqs. (16), (14) and (15), requiring that the

resulting equation hold for all choices of { ~d}; we arrive at

the following system of coupled ordinary differential

equations (ODEs):

½MIJ�{ €dJ} þ ½KIJ�{dJ} ¼ {FI}: ð17Þ

Here

½MIJ� ¼
ð

Sa

½cI�
T½r�½fJ�dS; ð18Þ

½KIJ� ¼
ð

Sa

ð½ ~BI�
T½D�½BJ�ÞdS 2

ð
Gau

ð½cI�
T½n�½D�½BJ�ÞdG

2
ð
Ga0

ð½cI�
T½n�½D�½BJ�ÞdG; ð19Þ
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{FI} ¼
ð
Gaf

½cI�
T{�fi}dGþ Lið^h=2Þ

ð
Sa

½cI�
T{q^}dS; ð20Þ

where Ga0 ¼ ›Sa 2 Gau 2 Gaf ; Gau ¼ ›Sa > Gu and Gaf ¼

›Sa > Gf : The ðK þ 1Þ £ ðK þ 1Þ matrix ½r� is expanded to

the 3ðK þ 1Þ £ 3ðK þ 1Þ matrix in the usual way by

multiplying each element of ½r� by a 3 £ 3 identity matrix.

Matrices ½KIJ�; ½MIJ� and {FI} are usually called the

stiffness matrix, the mass matrix and the load vector,

respectively. In the MLPG formulation, M and K need not

be symmetric. Eq. (17) are derived for each Sa; a ¼

1; 2;…;M: There is no assembly of equations required in the

MLPG method.

In order to derive initial conditions on {dJ}; we substitute

from Eqs. (2) and (14) into Eq. (9e), multiply both sides of

the resulting equation by {~u}T; integrate it over Sa and

exploit the fact that it must hold for all choices of { ~dJ}: The

result isð
Sa

{c}T{f}dS


 �
{dð0Þ} ¼

ð
Sa

{c}T{uðx; y; 0Þ}dS: ð21Þ

A similar procedure is adopted to find { _dð0Þ}: For u0 ¼

_u0 ¼ 0; {dJð0Þ} and { _dJð0Þ} are null matrices. Essential

boundary conditions are satisfied by using the method of

static condensation to eliminate the prescribed degrees of

freedom prior to solving the set of algebraic equations

derived from the ODEs (17).

For a structure vibrating freely, {FI} ¼ {0};

{dJðtÞ} ¼ eivt{ �dJ}; ð22Þ

where { �dJ} is the amplitude vector and v is a natural

frequency given by

det½½KIJ�2 v2½MIJ�� ¼ 0: ð23Þ

Having found v; the corresponding mode shape { �dJ} is

computed from

½KIJ�{ �dJ} ¼ v2½MIJ�{ �dJ} ð24Þ

by suitably normalizing { �dJ}:

The basis functions {fJ} in Eq. (14) are found by the

moving least squares (MLS) method of Lancaster and

Salkauskas [40].

2.4. Brief description of the MLS approximation

Let f ðx; y; tÞ be a scalar valued function defined on Sa; f

can be identified with one of the displacements

u0; v0;w0; u1; v1;w1;…; uK ; vK ;wK : The approximation

f hðx; y; tÞ of f is assumed to be given by

f hðx; y; tÞ ¼
Xm
j¼1

pjðx; yÞajðx; y; tÞ; ð25Þ

where

pTðx; yÞ ¼ {1; x; y; x2
; xy; y2

;…} ð26Þ

is a complete monomial in x and y having m terms. For

example, pT ¼ {1; x; y} with m ¼ 3 and pT ¼

{1; x; y; x2; xy; y2} with m ¼ 6 are, respectively, complete

monomials of degree 1 and 2. The m unknown coefficients

ajðx; y; tÞ are determined by minimizing Jðx; tÞ defined

below by Eq. (27) with respect to a1ðx; y; tÞ; a2ðx; y; tÞ;…;

amðx; y; tÞ :

Jðx; tÞ ¼
Xn

i¼1

Wðx 2 xiÞ½p
TðxiÞaðx; tÞ2 f̂iðtÞ�

2
: ð27Þ

Here, f̂iðtÞ is the fictitious value at time t of the function f

at the point xi ¼ ðxi; yiÞ; and n is the number of points in the

vicinity of x for which the weight function Wðx 2 xiÞ . 0:

W is a non-negative function of x and vanishes for lx 2

xil $ rw; where rw is the radius of the compact support of W :

When a quadrature point used to numerically evaluate

integrals appearing in Eqs. (18)–(20) is located at x; then

the n-points in Eq. (27) can be taken from the M nodes

placed on S: We take

Wðx 2 xiÞ

¼
1 2 6

di

rw

� 
2

þ8
di

rw

� 
3

23
di

rw

� 
4

; 0 # di # rw;

0; di $ rw;

8>><
>>:

ð28Þ

where di ¼ lx 2 xil is the distance between points x and xi;

and rw is the radius of the circle outside of which W

vanishes.

Setting ›J=›al ¼ 0; for l ¼ 1; 2;…; n; we obtain the

following system of linear algebraic equations for the

determination of a1ðx; tÞ; a2ðx; tÞ;…; anðx; tÞ :

AðxÞaðx; tÞ ¼ BðxÞf̂ðtÞ; ð29Þ

where

AðxÞ ¼
Xn

i¼1

Wðx 2 xiÞp
TðxiÞpðxiÞ;

BðxÞ ¼ ½Wðx 2 x1Þpðx1Þ;Wðx 2 x2Þpðx2Þ;…;

Wðx 2 xnÞpðxnÞ�:

ð30Þ

Substitution for aðx; tÞ from Eq. (29) into Eq. (25) yields

f hðx; tÞ ¼
Xm
j¼1

fjðxÞf̂jðtÞ; ð31Þ

where

fkðxÞ ¼
Xm
j¼1

pjðxÞ½A
21ðxÞBðxÞ�jk ð32Þ

are the basis functions of the MLS approximation. Note that

fkðxjÞ – dkj; thus f̂iðtÞ – f hðxi; yi; tÞ: For the matrix A to be

invertible, n $ m: For m ¼ 3 or 6, Chati and Mukherjee [41]

have suggested that 15 # n # 30 for two-dimensional

elastostatic problems.
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For a two-dimensional elastodynamic problem, Batra

and Ching [34] used Gauss weight functions, m ¼ 6; and

rw ¼ 3:5 times the distance between the point xi and the

third node nearest to the node at xi: Here, we take

rw ¼ chi; ð33Þ

where hi is the distance from the node at xi to the node

nearest to it and c is a scaling parameter.

2.5. Numerical integration of ODEs

The Newmark family of methods [42] is used to

numerically integrate the system (17) of coupled second-

order ODEs. The recursive relation among displacements,

velocities and accelerations at times tn and tnþ1 ¼ tn þ Dt

are

dnþ1 ¼ dn þ Dt _dn þ
Dt2

2
½ð1 2 2bÞ €dn þ 2b €dnþ1�;

ð34Þ
_dnþ1 ¼ _dn þ Dt½ð1 2 gÞ _dn þ g _dnþ1�;

where dn . dðtnÞ; etc. and b and g are constants. We set

g ¼ 0:5 and b ¼ 0:25; then the Newmark method is

equivalent to the constant average acceleration method. It

is non-dissipative, second-order accurate and uncondition-

ally stable.

Writing Eq. (17) at time tnþ1; and substituting from Eq.

(34) give the following system of algebraic equations

K̂nþ1dnþ1 ¼ F̂nþ1
; ð35Þ

where

K̂nþ1 ¼ Knþ1 þ
4

Dt2
Mnþ1

;

F̂nþ1 ¼ Fnþ1 þ Mnþ1 4

Dt2
d̂n þ

4

Dt

_̂
dn þ

€̂
dn

� 

:

ð36Þ

Having computed dnþ1 from Eq. (35), €dnþ1 and _dnþ1 are

obtained from

€dnþ1 ¼
4

Dt2
ðdnþ1 2 dnÞ2

4

Dt
_dn 2 €dn

;

ð37Þ

_dnþ1 ¼ _dn þ
Dt

2
ð €dn þ €dnþ1Þ:

2.6. Satisfaction of essential boundary conditions

Eq. (35) is separated into two groups: dnþ1
p for nodes

where displacements are prescribed, and dnþ1
f for the

remaining nodes. Using Eq. (14), equations for dnþ1
p are

replaced by

�uðxi; yi; tnþ1Þ ¼
Xn

J¼1

fJðxi; yiÞd
nþ1
J ; i ¼ 1; 2;…;Np; ð38Þ

where Np equals the number of nodes where displacement u

is prescribed as �u:

2.7. Estimation of effective elastic constants

Methods that have been proposed to find the effective

moduli of a composite of two constituents include the rule

of mixture, the three-phase model of Fröhlich and Sack [43],

the self-consistent scheme [44], the Mori–Tanaka technique

[24], the mean field approach [45], and the representative

volume element. Vel and Batra [13,14,46] used the Mori–

Tanaka and the self-consistent methods to find an analytical

solution for static and dynamic deformations of a simply

supported FG plate. They found that the two homogeniz-

ation techniques give different results. Even though the rule

of mixtures is easiest to use, it gives very approximate

values of the effective elastic moduli and does not account

for the interaction among adjacent inclusions. The Mori–

Tanaka method accounts for these interactions and has

rather simple relations to find the bulk modulus Ke and the

shear modulus me of the equivalent homogenized medium.

We adopt it here and find the effective mass density from the

rule of mixtures, and Ke and me from

Ke 2 K1

K2 2 K1

¼
V2

1 þ ð1 2 V2Þð3ðK2 2 K1Þ=ð3K1 þ 4m1ÞÞ
;

me 2m1

m2 2m1

¼

V2

1þð12V2Þðm2 2m1Þ=ðm1 þm1ð9K1þ8m1Þ=6ðK1þ2m1ÞÞ
:

ð39Þ

Here, K1 and m1 are, respectively, the bulk modulus and

the shear modulus of constituent 1 with volume fraction V1;

and K2;m2 and V2 are the corresponding quantities for

constituent 2. Note that V2 ¼ 12V1: It has been tacitly

assumed here that each of the two constituents is isotropic

and the macroscopic response of the composite is also

isotropic. A fiber reinforced plate is usually modeled as

orthotropic, and the material moduli are determined

experimentally. Closed form relations like Eq. (39) are not

readily available since elastic constants will likely also

depend upon the cure cycle. If elastic constants as a function

of the volume fraction are known, then the present analysis

can be adopted for functionally graded orthotropic plates.

One way to obtain FG anisotropic plates is to continuously

vary the fiber orientation through the plate thickness [57].

3. Results and discussion

Boundary conditions imposed at a simply supported ðSÞ;

a clamped ðCÞ and a free ðFÞ edge are:

S : sxx ¼ 0; v ¼ w ¼ 0; on x ¼ 0; a;

syy ¼ 0; u ¼ w ¼ 0; on y ¼ 0; b;

C : u ¼ v ¼ w ¼ 0; on x ¼ 0; a; y ¼ 0; b;

F : sxx ¼ syx ¼ szx ¼ 0; on x ¼ 0; a;

syy ¼ sxy ¼ szy ¼ 0; on y ¼ 0; b

ð40Þ
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Whereas boundary conditions (40c) at a free edge can

be easily realized in a laboratory, Eqs. (40a) and (40b) for

simply supported and clamped edges cannot be well

satisfied in a laboratory setting. One could invoke St

Venant’s principle and say that the computed solution is

valid at points away from the edges. In a laboratory,

plates are either supported on sharp knife edges or rollers

or are clamped in a vice. In practice, plate edges are

generally fixed to supports by screws or bolts or are

welded. If the material of the supports is assumed to be

rigid, then welded edges satisfy boundary conditions (40b)

stipulated for clamped edges. Boundary conditions (40a)

for a simply supported edge have been employed by

Vlasov [47], Srinivas et al. [48] and Pagano [49] to find

analytical solutions of three-dimensional elasticity

equations. Several researchers have subsequently adopted

them. Boundary conditions used by Batra and Geng

[50,51] closely simulate those applicable to plates

supported on rollers.

Henceforth, we will use S to denote a simply supported

edge rather than the midsurface of the plate.

A computer code has been developed to analyze static

deformations, and free and forced vibrations of a FG thick

plate. It has been validated by comparing computed results

for homogeneous plates with the analytical solutions of the

corresponding problems [13,14,46]. For inhomogeneous

plates, as shown below, results for static deformations and

the computed natural frequencies agree very well with the

corresponding analytical values.

Previous studies of homogeneous thick plates and

numerical experiments with FG thick plates having aspect

ratio (length/thickness) 5 with the MLPG method have

given that the following values of different variables in the

MLPG technique yield very good results:

K ¼ 5; m ¼ 15; c ¼ 15; N ¼ 13 £ 13 ¼ 169;

NQ ¼ 9 £ 9 ¼ 81:

That is, a fifth-order plate theory is adequate, complete

fourth-order monomials should be considered in Eq. (25) to

generate the MLS basis functions, the radius of the support of

the weight function W in Eq. (28) should equal 15 times the

distance from the node at xi to the node closest to it, and 81

integration points, NQ; ought to be used to evaluate integrals

appearing in Eqs. (18)–(20). Sa equals a circular region with

center at xa and radius equal to the distance from the node at

xa to the nearest node. Functions {fJ} in Eq. (14) are the

MLS basis functions. For the node at xa; cJðx; yÞ in Eq. (15)

equals Wðx 2 xaÞwith support equal to Sa:Thus integrations

in Eqs. (18)–(20) are to be performed over a circular region.

For evaluating these integrals numerically, a circle is mapped

onto a square of size 2 £ 2 and Gaussian integration points

with the corresponding weights are employed as in the FEM.

Thirteen equally spaced nodes, in the x and y-directions, as

shown in Fig. 2, are sufficient. Thus for a free plate the total

number of degrees of freedom equals 3 £ 6 £ 169 ¼ 3042:

The consisent mass matrix is used to compute solutions of

dynamic problems. Note that no background mesh is used to

evaluate integrals in Eqs. (18)–(20). As will be evident from

the results presented below, the above listed values of K;m; c;

N and NQ give results for FG plates with different volume

fractions of constituents that are close to the analytical

solution of the corresponding problems. Convergence

studies for different values of K;m; c;N and NQ were

conducted in Refs. [21,22]; those results should be valid

for the present problem also since Eq. (17) is similar to those

for a homogeneous plate.

We compute results for a FG plate comprised of either

aluminum and zirconia or aluminum and a ceramic (SiC)

mainly because analytical results [13,14,46] for a plate

made of these materials are available for comparison.

Material properties of the aluminum (Al), zirconia (ZrO2)

and ceramic (SiC) are

Al : Em ¼ 70 GPa; nm ¼ 0:3; rm ¼ 2702 kg=m3
;

ZrO2 : Ez ¼ 200 GPa; nz ¼ 0:3; rz ¼ 5700 kg=m3
; ð41Þ

SiC : Ec ¼ 427 GPa; nc ¼ 0:17; rc ¼ 3100 kg=m3
:

Here, E is the Young’s modulus and n the Poisson ratio;

these are related to K and m by K ¼ E=3ð1 2 2nÞ and m ¼

E=2ð1 þ nÞ: We assume that the volume fraction of the

ceramic phase is given by

Vc ¼ V2
c þ ðVþ

c 2 V2
c Þ

1

2
þ

z

h

� 
p

; ð42Þ

where Vþ
c and V2

c are, respectively, the volume fractions of

the ceramic phase on the top and the bottom surfaces of the

plate, and the parameter p dictates the volume fraction

profile through the thickness. For example, for an

aluminum/zirconia FG plate, p ¼ 0 corresponds to a

homogeneous plate with a uniform distribution, Vþ
c ; of

Fig. 2. Locations of 169 uniformly distributed nodes on the midsurface of

the plate.
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zirconia, and p ¼ 1 to a homogeneous plate with a

uniform distribution, V2
c ; of zirconia. Through-the-thick-

ness variations of E for different values of p are exhibited

in Fig. 3. For 0 # Vc # 1; the Poisson ratio was found to

vary between 0.294 and 0.3; it has been taken as 0.3

throughout the plate. For an Al/SiC plate, E and n will be

functions of z:

In the Tables and Figures to follow, vertical or transverse

displacement w; longitudinal or axial stress sxx; thickness

coordinate z; and frequency v have been non-dimensiona-

lized as follows:

�w ¼
100Emh3

12a4ð1 2 n2
mÞq0

w; �sxx ¼
h2

a2q0

sxx;

�z ¼
2z

h
; �v ¼ vh

ffiffiffiffiffiffiffiffi
rm=Em

p
:

ð43Þ

Here, a is the length of a square plate, q0 is either

the amplitude or the intensity of the uniformly distributed load

applied on the top surface of the plate, and an overbar signifies

a non-dimensional quantity.

3.1. Static problems

3.1.1. Comparison of computed results with the analytical

solution

Figs. 4 and 5 compare, respectively, the numerical and

the analytical solutions for the transverse deflection of the

plate centroid and the axial stress at the centroid of the top

surface of the simply supported Al/SiC square FG plate. The

top surface of the plate is loaded by a normal pressure given

by q0 sin px=a sin py=a and the bottom surface of the plate is

traction free. Note that any traction applied on the top

surface can be represented as a Fourier series and

the solution obtained by the method of superposition.

It thus suffices to consider the pressure given by q0 sin �

px=a sin ðpy=bÞ: We have set V2
c ¼ 0; Vþ

c ¼ 1:0 and h=a ¼

0:2: The analytical solution is due to Vel and Batra [46]. It is

clear that the numerical solution of the problem with the

compatible HOSNDPT and the MLPG method agrees very

well with the analytical solution. A comparison of results

given in Fig. 3 of Vel and Batra [46] with those plotted in

our Figs. 4 and 5 reveals that the compatible fifth-order

HOSNDPT gives results much closer to the analytical

solution than those obtained from the third-order shear

deformation theory (TSDT); results with the TSDT are given

in Ref. [46]. Since the axial stresses at the centroid of the top

surface of the plate computed from the solutions of

Fig. 4. Comparison of the presently computed centroidal deflection of an

Al/SiC FG plate with the analytical solution of Vel and Batra [46].

Fig. 5. Comparison of the presently computed axial stress at the centroid of

the top surface of an Al/SiC FG plate with the analytical solution of Vel and

Batra [46].

Fig. 3. Variation of Young’s modulus with the non-dimensional thickness

for different values of the exponent p in Eq. (42).
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the classical plate theory, the first-order shear deformation

theory and the TSDT were essentially the same (Fig. 3e of

Ref. [46]) it appears that the consideration of normal

deformations has given axial stress significantly closer to

the analytical value.

3.1.2. Results for a uniformly distributed pressure on the top

surface of a FG plate

For an Al/SiC simply supported FG plate, Figs. 6 and 7

depict, respectively, the through-the-thickness variation, at

points on the centroidal axis, of the transverse displacement

�w and of the axial stress �sxx for different values of the

exponent p in Eq. (42). It is clear that even for a

homogeneous plate the transverse displacement is not

symmetrical about the midsurface; note that the applied

load is not symmetrical about the plate’s midsurface.

Analytical solution of the problem also exhibits this

asymmetry [46]. From the plot of the through-the-thickness

variation of the axial stress shown in Fig. 7, one can

conclude that the maximum tensile stress at points on the

bottom surface of a ceramic plate is reduced by adding

aluminum to the ceramic and the magnitude of the

compressive stress at points on the top surface is increased.

The compressive strength of a ceramic is considerably

larger than its tensile strength. For p ¼ 0:5; 1:0 and 2.0, the

stress distributions through the thickness of the plate are

very close to each other and the transverse deflections are

qualitatively similar. Transverse deflections decrease with

an increase in the volume fraction of the ceramic in the plate

since Young’s modulus for the ceramic is nearly three times

that of aluminum. The effect of varying the volume fraction

of the ceramic at the top surface of the FG plate on the

through-the-thickness variation at points on the centroidal

axis of the transverse displacement �w and the axial stress �sxx

is exhibited in Figs. 8 and 9, respectively. Whereas,

through-the-thickness variation of the axial stress is not

influenced that much by the value of Vþ
c ; the deflection

varies noticeably with Vþ
c :

3.2. Free vibrations

We compare our results for the natural frequencies of a

simply supported Al/ZrO2 FG plate with those of Vel

and Batra [14] who solved the problem analytically.

Fig. 6. For different values of the exponent p; through-the-thickness

variation at points on the centroidal axis of the non-dimensional deflection

of the simply-supported square FG plate with a=h ¼ 5 under uniform load

applied on the top surface of the plate.

Fig. 7. For different values of the exponent p; non-dimensional axial stress

at points on the centroidal axis in the simply-supported square FG plate

with a=h ¼ 5 under uniform load applied on the top surface of the plate.

Fig. 8. For different values of Vþ
c ; non-dimensional deflection of the

simply-supported square FG plate with a=h ¼ 5 under uniform normal load

applied on the top surface of the plate. — Vþ
c ¼ 0:3; - ·- ·- Vþ

c ¼ 0:5; - - -

Vþ
c ¼ 0:7; - ··- ··- Vþ

c ¼ 1:0:
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They assumed displacements of the form

uðx; y; z; tÞ

vðx; y; z; tÞ

wðx; y; z; tÞ

8>><
>>:

9>>=
>>; ¼

X1
m;n¼1

eivmnt

UmnðzÞcos
mpx

a
sin

npy

b

VmnðzÞsin
mpx

a
cos

npy

b

WmnðzÞsin
mpx

a
sin

npy

b

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð44Þ

Batra and Aimmanee [52] have shown that the lower

limit in the summation in Eq. (44) should be 0 in order not to

miss any of the in-plane pure distortional modes of vibration

which can occur in a FG plate only when m=r is independent

of z: Whereas the present method can rank frequencies from

the lowest to the highest, in Vel and Batra’s exact solution

[14] they are computed by assigning different values to m

and n: Presently computed results for different values of

Vþ
c ;V2

c and p are compared with those of Vel and Batra [14]

in Tables 1–3, and the first 10 natural frequencies of a

simply supported square FG plate are listed in Table 4.

The presently computed natural frequency of the fourth

thickness mode corresponding to m ¼ n ¼ 1 and for a=h ¼

20 listed in Table 1 differs from the exact value by less than

1.3%; the difference is less for the lower order thickness

modes. For a=h ¼ 5; the difference between the computed

and the analytical frequencies of the fourth thickness mode

with m ¼ n ¼ 1 is 1.64%. Results presented in Table 3 show

that the frequencies of thickness modes associated with the

first flexural mode are virtually unaffected by the values of

Vþ
c : Since the plate is square, therefore the second and the

third lowest frequencies are identical; the same is true for

the fourth and the fifth lowest frequencies. The second and

third frequencies correspond to m ¼ 2; n ¼ 1 and m ¼ 1;

n ¼ 2: Results given in Table 4 reveal that for V2
c ¼ 0 and

Vþ
c ¼ 1; natural frequencies of the pure ceramic and the

pure metal plate are the upper and the lower bounds of the

frequencies of an FG plate. The value of p; i.e. the precise

through-the-thickness distribution of the ceramic phase has

a minute effect on the natural frequencies of a FG plate.

Also, for fixed values of V2
c ; p and a=h; the first 10

frequencies are not affected much by the value of Vþ
c :

However, the aspect ratio a=h of the plate has a noticeable

influence on the first 10 natural frequencies.

3.3. Forced response

A time harmonic uniformly distributed normal pressure

of 10 sin 5000t is applied for 0 # t # 5 ms to the top

surface of a simply supported square Al/ZrO2 FG plate with

a=h ¼ 10 and then suddenly removed. Fig. 10 depicts the

time history of the centroidal deflection for the first 5 ms.

The time period 1.25 ms of the centroidal deflection equals

Fig. 9. For different values of Vþ
c ; through-the-thickness variation of the

non-dimensional axial stress at points on the centroidal axis in a simply-

supported square FG plate with a=h ¼ 5 under uniform normal load applied

on the top surface of the plate. — Vþ
c ¼ 0:3; - ·- ·- Vþ

c ¼ 0:5; - - - Vþ
c ¼ 0:7;

- ··- ··- Vþ
c ¼ 1:0:

Table 1

Comparison of thickness mode natural frequencies of a simply supported

square Al/ZrO2 FG thick plate with V2
c ¼ 0; Vþ

c ¼ 1; p ¼ 1; and m ¼ n ¼ 1

in Eq. (44)

Thickness mode h=a ¼ 0:05 h=a ¼ 0:10 h=a ¼ 0:2

Present Exact Present Exact Present Exact

1 0.0149 0.0153 0.0584 0.0596 0.2152 0.2192

2 0.1457 0.1456 0.2913 0.2912 0.5820 0.5823

3 0.2448 0.2454 0.4872 0.4901 0.9687 0.9752

4 2.0334 2.0598 2.0788 2.0750 2.1696 2.1346

Table 2

Comparison of thickness mode natural frequencies of a simply supported

square Al/ZrO2 FG thick plate with m ¼ n ¼ 1 in Eq. (44), V2
c ¼ 0; Vþ

c ¼ 1

and different values of p

Thickness mode p ¼ 2 p ¼ 3 p ¼ 5

Present Exact Present Exact Present Exact

1 0.2153 0.2197 0.2172 0.2211 0.2194 0.2225

2 0.5709 0.5711 0.5659 0.5660 0.5612 0.5610

3 0.9494 0.9564 0.9414 0.9478 0.9346 0.9398

4 2.0154 2.0150 1.9586 1.9530 1.9204 1.9075

Table 3

Comparison of thickness mode natural frequencies of a simply supported

square Al/ZrO2 FG thick plate with m ¼ n ¼ 1 in Eq. (44), V2
c ¼ 0; p ¼ 1;

h=a ¼ 0:2 and different values of Vþ
c

Thickness mode Vþ
c ¼ 0:3 Vþ

c ¼ 0:5 Vþ
c ¼ 0:7

Present Exact Present Exact Present Exact

1 0.2109 0.2112 0.2112 0.2120 0.2122 0.2139

2 0.5509 0.5505 0.5550 0.5547 0.5627 0.5626

3 0.9224 0.9228 0.9278 0.9292 0.9393 0.9420

4 2.0893 2.0263 2.0847 2.0446 2.0192 2.0736
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2p=v ¼ 1:257 ms of the applied load for each one of the five

values of p considered. The amplitude of the centroidal

deflection of the FG plate is bounded by that of the pure

ceramic and the pure metallic plates. The numerical

integration scheme introduces a small damping even though

the Newmark method is non-dissipative for g ¼ 1=2 and

b ¼ 1=4: The time history of the axial stress at the centroid

of the top surface of the plate is plotted in Fig. 11. Figs. 12

and 13 show results similar to those plotted in Figs. 10 and

11 except that a uniformly distributed pressure equal to 10 is

applied on the top surface of the plate for 0 # t # 2:5 ms

and then suddenly removed. It is clear that the time period of

the oscillations of the ceramic plate is less than that of the

metallic plate. The time period of the metallic plate equals

about 0.4 ms. As long as the pressure load acts on the plate,

the plate centroid does not move above its horizontal

undeformed position. Upon removal of the load, the plate

oscillates about the horizontal equilibrium position.

4. Conclusions

The static and the dynamic response of a simply

supported thick square functionally graded (FG) plate has

been analyzed by using a compatible higher order shear and

normal deformable plate theory (HOSNDPT) and a

meshless local Petrov–Galerkin (MLPG) method. In the

MLPG method, no background mesh is required to evaluate

integrals appearing in the weak formulation of the problem.

Effective material moduli have been determined by using

Table 4

First 10 natural frequencies of a simply supported square thick Al/ZrO2 FG plate

V2
c ¼ 0; Vþ

c ¼ 1; h=a ¼ 0:2 V2
c ¼ 0; p ¼ 1:0; h=a ¼ 0:2 V2

c ¼ 0; Vþ
c ¼ 1;

p ¼ 1:0

Ceramic p ¼ 1:0 p ¼ 2:0 p ¼ 5:0 Metal Vþ
c ¼ 0:3 Vþ

c ¼ 0:5 Vþ
c ¼ 0:7 h=a ¼ 0:05 h=a ¼ 0:1

1 0.2469 0.2152 0.2153 0.2194 0.2122 0.2109 0.2112 0.2122 0.0149 0.0584

2 0.4535 0.4114 0.4034 0.3964 0.3897 0.3891 0.3920 0.3975 0.0377 0.1410

3 0.4535 0.4114 0.4034 0.3964 0.3897 0.3891 0.3920 0.3975 0.0377 0.1410

4 0.5441 0.4761 0.4720 0.4760 0.4675 0.4650 0.4659 0.4686 0.0593 0.2058

5 0.5441 0.4761 0.4720 0.4760 0.4675 0.4650 0.4659 0.4686 0.0747 0.2058

6 0.6418 0.5820 0.5709 0.5611 0.5517 0.5509 0.5550 0.5627 0.0747 0.2164

7 0.7881 0.6914 0.6817 0.6832 0.6772 0.6737 0.6753 0.6797 0.0769 0.2646

8 0.9076 0.8192 0.8056 0.7928 0.7615 0.7788 0.7844 0.7952 0.0912 0.2677

9 0.9326 0.8217 0.8105 0.8053 0.7799 0.7973 0.7993 0.8047 0.0913 0.2913

10 0.9354 0.8242 0.9022 0.8099 0.8013 0.8020 0.8040 0.8096 0.1029 0.3264

Fig. 10. Time history of the non-dimensional centroidal deflection of a

simply supported square FG plate with the top surface loaded by a

uniformly distributed pressure load of 10 sin 5000t for 0 # t # 5 ms: —

ceramic, - - - p ¼ 0:5; - ·- ·- p ¼ 10; – – – p ¼ 20; - ··- ··- metal.

Fig. 11. Time history of the non-dimensional axial stress at the centroid of

the top surface of a simply supported square FG plate loaded by a uniformly

distributed pressure load of 10 sin 5000 t for 0 # t # 5 ms: — ceramic,

- - - p ¼ 0:5; - ·- ·- p ¼ 10; – – – p ¼ 20; - ··- ··- metal.
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the Mori–Tanaka method. No shear correction factor is

employed. Computed natural frequencies of the FG plate are

found to match very well with their analytical values. Both

for static and dynamic loads, the centroidal deflection of a

FG plate is found to be between those for a pure ceramic and

a pure metallic plate. The gradients in the material

properties do not significantly affect the fundamental natural

frequency of a simply supported square FG plate. Natural

frequencies computed with a fifth order compatible shear

and normal deformable plate theory, 169 uniformly

distributed nodes on the midsurface of the square plate

with length/thickness ¼ 5 and the MLPG method are found

to match very well with the analytical results. Thus

the HOSNDPT and the MLPG method are effective in

analyzing three-dimensional deformations of a thick plate.
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