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The tailoring of elastic moduli in the radial direction is studied to design a fiber-reinforced orthotropic
linear elastic rotating disk with constant radial or hoop stress or constant in-plane shear stress. For fibers
arranged in concentric circles the axes of material symmetry coincide with the radial and the circumfer-
ential directions. However, when fibers are aligned along helices, the orientation of material principal
axes varies with the radial coordinate of a point. For a solid disk made of an orthotropic material with
Young’s moduli proportional to each other, we give explicit expressions for the required variations of
the elastic moduli with the radius to attain a given state of stress. For a rotating annular disk composed
of a fiber-reinforced composite with fibers placed along concentric circles, the required radial variation of
the volume fraction of fibers is calculated numerically and exhibited graphically. For fibers of known vol-
ume fraction laid along helices, the radial variation of the fiber orientation angle is determined. We have
also analyzed the material tailoring problem for a disk of variable thickness. Results presented herein
should help structural engineers and material scientists optimally design rotating disks composed of
radially inhomogeneous materials.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Direct problems concerned with finding stresses and displace-
ments in a structure of known shape and composed of inhomoge-
neous materials, such as fiber-reinforced composites and
functionally graded materials (FGMs), have been studied exten-
sively [1–10]. Generally an inhomogeneous material has material
moduli varying in one or more spatial directions. However, much
less efforts have been devoted to the optimization of structural
topology and spatial variation of material moduli when a structure
is subjected to prescribed loads. For a structure with fixed geome-
try the optimization problem is reduced to finding the gradation of
material properties so as to achieve the desired stress state in the
body. Such problems are usually called material tailoring and we
address here a rotating disk of variable thickness.

Designing an inhomogeneous, orthotropic and linear elastic
structure to yield a desired spatial distribution of stresses has been
studied by Leissa and Vagins [11]. Assuming all material moduli
proportional to each other, they determined the spatial variation
of material moduli to have either the hoop stress or the in-plane
shear stress uniform throughout the cylinder thickness and in a
rotating disk. Pardoen et al. [12] investigated implications of vary-
ing the mass and the stiffness properties in order to achieve a de-
sired stress state in a thick-rim flywheel. Desirable stress states
ll rights reserved.
include having either the hoop stress or the in-plane shear stress
uniform in a cylinder, a sphere and a disk. Danfelt et al. [13] opti-
mized the design of a fiber-reinforced multi-ringed composite fly-
wheel by varying the thickness, Poisson’s ratio, Young’s modulus
and the mass density so that each ring will fail at approximately
the same angular speed. Adali et al. [14] maximized the rotational
speed of composite disks by determining the fiber orientations and
the lamination scheme using the Tsai–Wu strength criterion.
Gowayed et al. [15] used a sequential quadratic programming ap-
proach to optimally design a composite flywheel by varying rein-
forcements in the hoop and the radial directions. Jain et al. [16]
designed a constant thickness composite disk of uniform strength
by radially tailoring the elastic moduli, and Güven et al. [17] found
the radial variation of elastic moduli to attain uniform radial stress
in the disk. Fabien [18] studied the optimal design of a stacked-ply
composite flywheel with fibers oriented either in the hoop or in the
radial direction. Cho and Rowlands [19] optimized fiber directions
to reduce stress concentrations in perforated composites.

Based on optimization techniques and the finite element meth-
od (FEM), Tanaka et al. [20–22] determined the spatial variation of
the constituent phases of FGMs to minimize thermal stresses. Batra
and Jin [23] optimized the natural frequencies of a laminated com-
posite plate by changing the fiber orientation in each ply. Qian and
Batra [24] employed a higher-order shear and normal deformable
plate theory and a meshless method to compute the spatial varia-
tion of the volume fractions of constituents to optimize natural fre-
quencies of a FG cantilever plate. Goupee and Vel [25,26] employed
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a genetic algorithm to optimize the spatial distribution of the con-
stituent phases of FGMs. For cylinders and spheres made of incom-
pressible and isotropic Hookean materials, Batra [27] analytically
found the radial variation of the shear modulus so that either the
hoop stress or the in-plane shear stress is uniform during their axi-
symmetric deformations. Nie and Batra [28] have determined the
radial variation of either Young’s modulus or Poisson’s ratio for a
cylinder to have either uniform in-plane shear stress or uniform
hoop stress during axisymmetric deformations; they [29,30] have
also analyzed similar problems for incompressible linear elastic
materials.

In this paper, we investigate how to tailor material moduli for
achieving a desirable stress field in a rotating disk composed of
radially inhomogeneous materials. For a disk made of an orthotro-
pic material we find the required radial variation of the elastic
moduli. For a disk made of a composite material with fibers ar-
ranged in concentric circles we find the radial variation of the vol-
ume fraction of fibers, and for fibers oriented in helices we find the
radial orientation of fibers.
2. Problem formulation

2.1. Basic equations

Consider a thin circular disk of non-uniform thickness h(r), in-
ner radius rin, outer radius rou, and rotating at a constant angular
velocity, x, about the centroidal axis perpendicular to the plane
of the disk, as shown in Fig. 1. The thickness of this annular disk
is assumed to vary as a function of the radius according to the
relation

hðrÞ ¼ hou
r

rou

� ��n

; ð1Þ

where n (n P 0) is a constant, and hou is the thickness of the disk at
r = rou. For n = 0 the disk thickness is uniform. For a solid disk the
thickness is assumed to be uniform. The maximum thickness of
the disk is assumed to be sufficiently small as compared to its outer
diameter so that the assumption of the plane state of stress is rea-
sonable. We use cylindrical coordinates (r, h, z) with the origin at
the disk center and the z-axis perpendicular to the plane of the disk
to describe its deformations.

For a thin rotating disk of variable thickness, in the absence of
gravitational forces, the equation of equilibrium in the radial direc-
tion is [31]

d
dr
½hðrÞrrrr � � hðrÞrhh þ hðrÞqx2r2 ¼ 0; ð2Þ

where rrr and rhh are, respectively, the radial and the hoop stresses
at a point, and q is the mass density that is assumed to be a con-
stant. Since the disk thickness varies with r, therefore, the mass
density per unit surface area varies with r. Without the assumption
of constant q we cannot solve the problem since we have more
Fig. 1. A rotating disk of variable thickness and composed of an inhomogeneous
material.
unknowns than the number of equations. However, if q(r) is known,
then we should be able to numerically solve the problem. We solve
the problem for the following two sets of boundary conditions on
the inner and outer surfaces of the disk

(1) Annular disk with its inner and outer surfaces traction free:

rrrðrinÞ ¼ 0:0; rrrðrouÞ ¼ 0:0: ð3a;bÞ

(2) Solid disk with its outer boundary subjected to normal trac-
tions:

rrrðrouÞ ¼ �rou
rr : ð3cÞ

Here �rou
rr is a given value of the normal traction on the outer surface

of the disk. Because of the assumption that deformations are axi-
symmetric, we have

urð0:0Þ ¼ 0:0; ð3dÞ
where ur is the radial displacement of a point.

Assuming infinitesimal deformations, the in-plane radial and
hoop strains, err and ehh; are related to ur; respectively, by

err ¼
dur

dr
; ehh ¼

ur

r
: ð4a;bÞ

The axial strain ezz in the z-direction is generally non-zero. Eqs.
(4a) and (4b) yield the following compatibility equation

d
dr
ðrehhÞ � err ¼ 0: ð5Þ

For a disk in a state of plane stress, the pertinent constitutive
equations for a radially inhomogeneous polar-orthotropic elastic
material with the material principal axes at a point along the ra-
dial, the circumferential, and the z-axis are

err ¼
1

ErðrÞ
ðrrr � v rhðrÞrhhÞ;

ehh ¼
1

EhðrÞ
ð�vhrðrÞrrr þ rhhÞ;

ð6Þ

where ErðrÞ and EhðrÞ are the elastic moduli in the r and the h direc-
tions, respectively, and v rhðrÞ and vhrðrÞ are Poisson’s ratios satisfy-
ing the relation
vhr

Eh
¼ v rh

Er
: ð7Þ
2.2. Description of material properties

The macroscopic material parameters of an inhomogeneous body
are generally related to its microstructure. Here we consider the fol-
lowing three inhomogeneous materials: (i) polar orthotropic mate-
rial with the two Young’s moduli proportional to each other and the
two Poisson’s ratios constants; (ii) fiber-reinforced composite with
fibers forming concentric circles and the spacing between adjacent
fibers a function of r that makes the fiber volume fraction a function
of r; and (iii) fiber-reinforced composite with fibers aligned along
helices and slopes b varying with the radius r. The fiber orientations
for the last two classes of materials are depicted in Fig. 2.

For a fiber-reinforced composite with fibers aligned along con-
centric circles and variable spacing between adjacent fibers, elastic
moduli of the composite can be expressed in terms of those of the fi-
bers and the matrix and the volume fraction nf ðrÞof the fibers by [32]

ErðrÞ ¼
Ef Em

nf ðrÞEm þ ð1� nf ðrÞÞEf
;

EhðrÞ ¼ nf ðrÞEf þ ð1� nf ðrÞÞEm; ð8a;bÞ

vhrðrÞ ¼ nf ðrÞv f þ ð1� nf ðrÞÞvm; v rhðrÞ ¼
ErðrÞ
EhðrÞ

vhrðrÞ; ð8c-dÞ



Fig. 2. Two different alignments of fibers in a fiber-reinforced composite rotating
disk.
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where suffixes m and f denote the matrix and the fiber, respectively.
We note that several homogenization techniques have been re-
ported in the literature, e.g., see [33]. The focus of this work is on
establishing a methodology for tailoring material properties to at-
tain a desired state of stress in the disk; thus we have used a rather
simple homogenization technique.

For fiber-reinforced composites with fibers aligned along heli-
ces it is assumed that the radial reinforcement in half of the plies
are constructed with the fiber angle of þbðrÞ and the other half
with the fiber angle of �bðrÞ. Thus the effective compliance matrix
for this composite structure corresponds to that of an orthotropic
material [18], and the corresponding elastic moduli can be ex-
pressed as [34]

ErðrÞ ¼
1

V1 þ V2 cosð2bðrÞÞ þ V3 cosð4bðrÞÞ ;

v rhðrÞ ¼
�V4 þ V3 cosð4bðrÞÞ

V1 þ V2 cosð2bðrÞÞ þ V3 cosð4bðrÞÞ ;

EhðrÞ ¼
1

V1 � V2 cosð2bðrÞÞ þ V3 cosð4bðrÞÞ ;

ð9a-cÞ

where

V1 ¼
1
8

3
E1ðrÞ

þ 3
E2ðrÞ

� 2v12ðrÞ
E1ðrÞ

þ 1
G12ðrÞ

� �
;

V2 ¼
1
2

1
E1ðrÞ

� 1
E2ðrÞ

� �
;

V3 ¼
1
8

1
E1ðrÞ

þ 1
E2ðrÞ

þ 2v12ðrÞ
E1ðrÞ

� 1
G12ðrÞ

� �
;

V4 ¼
1
8

1
E1ðrÞ

þ 1
E2ðrÞ

� 6v12ðrÞ
E1ðrÞ

� 1
G12ðrÞ

� �
; ð10Þ

and subscripts 1 and 2 denote the fiber and the transverse direc-
tions, respectively. E1ðrÞ; E2ðrÞ; v12ðrÞ and G12ðrÞ are determined
from Eq. (8) for a given volume fraction of fibers.

3. Desirable stress fields

3.1. Constant hoop stress

Consider the hoop stress to be constant as a desired plane stress
state in the disk, that is,

rhh ¼ C1; ð11Þ
where C1 is related to the boundary conditions.

By simultaneously solving Eqs. (11) and (2) and considering
boundary conditions listed in Eq. (3), we find stresses in the disk.

Case 1: Annular disk with the inner and the outer surfaces trac-
tion free
For a constant hoop stress throughout the disk, the radial and
the hoop stresses, respectively, are given by

rrrðrÞ ¼
qx2ðrnR1 þ r3R2 þ rR3Þ

ðn� 3ÞR2r
;

rhhðrÞ ¼
qx2ð1� nÞR3

ðn� 3ÞR2
; for n – 1;n – 3; ð12a;bÞ

rrrðrÞ ¼
qx2ðR4 ln r � R5r2 þ R6Þ

2R5
;

rhhðrÞ ¼
qx2R4

2R5
; for n ¼ 1; ð13a;bÞ

rrrðrÞ ¼
qx2ð�R4r2 ln r þ R7r2 þ R8Þ

R4
;

rhhðrÞ ¼
2qx2r2

inr2
ouR5

R4
; for n ¼ 3; ð14a;bÞ

where R1 ¼ rinrouðr2
in � r2

ouÞ; R2 ¼ rinrn
ou � rn

inrou, R3 ¼ rn
inr3

ou � r3
inrn

ou,
R4 ¼ r2

in � r2
ou, R5 ¼ lnðrin=rouÞ, R6 ¼ r2

ou ln rin � r2
in ln rou, R7 ¼ r2

in ln
rin � r2

ou ln rou; R8 ¼ r2
inr2

ou lnðrou=rinÞ; and the value of n describes
the variation of the disk thickness according to Eq. (1).

Case 2: Solid disk with its outer boundary subjected to normal
tractions
For a constant hoop stress throughout the solid disk of uniform

thickness (i.e., n ¼ 0 in Eq. (1)) the radial and the hoop stresses,
respectively, are given by

rrrðrÞ ¼
qx2ðr2

ou � r2Þ
3

þ �rou
rr ; rhhðrÞ ¼

qx2r2
ou

3
þ �rou

rr : ð15a;bÞ
3.2. Constant in-plane shear stress

Consider the in-plane shear stress to be uniform throughout the
disk as a desired stress state,

rhh � rrr ¼ C2; ð16Þ

where C2 is related to the boundary conditions. For C2 ¼ 0; Eq. (16)
implies that the radial and the hoop stresses are equal to each other
at every point in the disk; this stress state in an axisymmetric rotat-
ing disk has been discussed in [16,17].

Simultaneously solving Eqs. (16) and (2) and considering Eq. (3),
we get the following expressions for stresses for the annular and
the solid disks.

Case 3: Annular disk with the inner and the outer boundaries
traction free

For a constant in-plane shear stress throughout the disk the ra-
dial and the hoop stresses are given by

rrrðrÞ ¼
qx2ð�rnR4 þ r2R9 þ R10Þ

ðn� 2ÞR9
;

rhhðrÞ ¼
qx2ð�rnR4 þ r2R9 þ ð1� nÞR10Þ

ðn� 2ÞR9
; for n – 0;n – 2 ð17a;bÞ

rrrðrÞ ¼
qx2ðR4 ln r � R5r2 þ R6Þ

2R5
;

rhhðrÞ ¼
qx2ðR4ð1þ ln rÞ � R5r2 þ R6Þ

2R5
; for n ¼ 0 ð18a;bÞ

rrrðrÞ ¼
qx2ð�R4r2 ln r þ R7r2 þ R8Þ

R4
;

rhhðrÞ ¼
qx2ð�R4r2 ln r þ R7r2 � R8Þ

R4
; for n ¼ 2 ð19a;bÞ

where R9 ¼ rn
in � rn

ou, R10 ¼ r2
inrn

ou � rn
inr2

ou.
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Comparing Eqs. (13a) and (18a), it is found that expressions for
the radial stresses are the same for the disk with constant hoop
stress when the thickness is described by Eq. (1) with n ¼ 1 and
the disk with constant in-plane shear stress when the thickness
is uniform (n ¼ 0).

Case 4: Solid disk with its outer boundary subjected to normal
tractions

In this case the constant C2 in Eq. (16) must be 0, the in-plane
shear stress throughout the disk vanishes, and the radial and the
hoop stresses are given by

rrrðrÞ ¼ rhhðrÞ ¼
qx2ðr2

ou � r2Þ
2

þ �rou
rr : ð20a;bÞ

Expressions for stresses in Eq. (20) are the same as those given
in Ref. [16].

3.3. Constant radial stress

We now consider the case of constant radial stress in the disk,
that is,

rrr ¼ D0; ð21aÞ

where the constant D0 is related to the boundary conditions. For an
annular rotating disk the boundary conditions on the inner and the
outer surfaces must be rrrðrinÞ ¼ rrrðrouÞ ¼ D0:

For a solid rotating disk the condition urð0:0Þ ¼ 0 is identically
satisfied for a constant radial stress state and rrrðrouÞ ¼ D0:

Substituting Eq. (21a) and the thickness expression (1) into the
equilibrium Eq. (2), the hoop stress is found to be

rhh ¼ D0ð1� nÞ þ qx2r2: ð21bÞ

Expressions (12)–(21) for stresses are universal for a rotating
disk because they are valid irrespective of the material of the disk.

4. Material tailoring for rotating disks

We assume that EhðrÞ > 0; ErðrÞ > 0 and substitute for strains
from the constitutive relation (6) into the compatibility Eq. (5) to
arrive at the following first-order ordinary differential equation
(ODE) for finding the elastic moduli.

rhh þ r
drhh

dr
� rrrvhrðrÞ � rvhrðrÞ

drrr

dr
� rrrr

dvhrðrÞ
dr

� �
ErðrÞ

þ ðrrrrvhrðrÞ � rrhhÞ
ErðrÞ
EhðrÞ

dEhðrÞ
dr

þ ðrhhv rhðrÞ � rrrÞEhðrÞ

¼ 0: ð22Þ

We discuss below the problem of material tailoring in a rotating
disk composed of three different inhomogeneous materials de-
scribed in Section 2.2.

4.1. Solid disk made of a material with Young’s moduli proportional to
each other

Because there is only one ODE for finding the two elastic moduli
and one Poisson’s ratio, we employ a simplifying assumption sim-
ilar to that used by Leissa and Vagins [11] and Bert and Niedenfuhr
[35], namely, the two Young’s moduli are proportional to each
other, and Poisson’s ratios are constants. Thus

ErðrÞ ¼ aEhðrÞ; v rh ¼ avhr; ð23a;bÞ

where the constant aða > 0Þ denotes the degree of anisotropy of the
material; a ¼ 1 for an isotropic material.
Substituting Eq. (23) into Eq. (22), we find its solution to be

EhðrÞ ¼ E0 exp
Z r

rin

gðyÞdy

 !
; ð24Þ

where E0 = Eh(rin) and the function gðyÞ is related to stresses. The ex-
plicit expressions for Eh(r) for some special stress states are given
below; otherwise the integral on the right-hand side of Eq. (24)
can be numerically evaluated.

For a solid disk of uniform thickness and a constant hoop stress
in it, substitution for stresses from Eq. (15) into Eq. (22) gives the
required variation of the elastic modulus in the disk as

EhðrÞ ¼ Eou
r

rou

� � a�1
að1�vhr Þ ð1� vhrÞð3P þ 1Þ þ vhrr2=r2

ou

3Pð1� vhrÞ þ 1

� �1þvhrað2�3vhr Þ
2vhrað1�vhr Þ

;

ð25Þ

where Eou = Eh(rou) and P ¼ �rou
rr

qx2r2
ou

is a non-dimensional number. For

�rou
rr ¼ 0; we get P ¼ 0 and the expression (25) for the elastic modu-

lus becomes

EhðrÞ ¼ Eou
r

rou

� � a�1
að1�vhr Þ

1� vhr þ vhr
r2

r2
ou

� �1þvhrað2�3vhr Þ
2vhrað1�vhr Þ

: ð26Þ

Thus the required variation of Eh in the radial direction is inde-
pendent of the angular speed of the disk.

For the in-plane shear stress to be constant throughout a solid
disk of uniform thickness, substitution for the radial and the hoop
stresses from Eq. (20) into Eq. (24) and the assumption �rou

rr – 0
yields

EhðrÞ ¼ Eou
r

rou

� � a�1
að1�vhr Þ

1þ qx2r2
ou

2�rou
rr
ð1� r2=r2

ouÞ
� �

: ð27Þ

Setting a ¼ 1 in Eq. (27), we find that Eh(r) for an isotropic mate-
rial is the same as that given in Ref. [16], and is independent of
Poisson’s ratio.

For the radial stress to be a non-zero constant D0 in a solid disk
of uniform thickness, substitution for the radial and the hoop stres-
ses from Eq. (21) into Eq. (24) gives

EhðrÞ ¼ Eou
r

rou

� � a�1
að1�vhr Þ Qðvhr � 1Þ � r2=r2

ou

Qðvhr � 1Þ � 1

� �1það2�2vhr�v2
hr
Þ

2að1�vhr Þ

; ð28Þ

where Q ¼ D0
qx2r2

ou
is a non-dimensional number.

4.2. Annular fiber-reinforced composite disks with fibers along
concentric circles

Substituting for the elastic moduli from Eq. (8) and the desired
stress states from Eqs. (12)–(21) into Eq. (22), we calculate the re-
quired variation of the volume fraction of the fiber to have either
the hoop stress or the radial stress or the in-plane shear stress uni-
form throughout the disk.

For example, let us consider three annular disks composed of E-
glass/epoxy having the outer radius rou ¼ 100 mm and the inner
radius rin = 20 mm, 40 mm, and 60 mm. The elastic moduli are

Ef ¼ 72:3 GPa; v f ¼ 0:22; Em ¼ 3:5 GPa; vm ¼ 0:33:

Substituting for stresses from Eqs. (12) and (8) into Eq. (22) and
taking n = 0 for the disk of uniform thickness and nf ðrinÞ ¼ 0:2, the
required variation of the volume fraction of fibers is plotted in
Fig. 3a; the variations of the corresponding elastic moduli are
shown in Fig. 3b–d. It is noticed from Fig. 3a that, for
rin=rou ¼ 0:4 and 0.6, the volume fraction of fibers is a monotoni-
cally increasing function of the radius r in order to achieve a



Fig. 3. For a constant hoop stress throughout the disks with rin=rou = 0.2, 0.4 and 0.6, the required variation with the radius of (a) the volume fraction of fibers, (b) elastic
modulus Eh ; (c) elastic modulus Er ; and (d) Poisson’s ratio vhr :
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constant hoop stress throughout the disk. However, for
rin=rou ¼ 0:2; the required volume fraction of the fibers at first in-
creases with r, has the maximum value at r/rou = 0.28 and the min-
imum value at r/rou = 0.65. The variations of the elastic moduli with
Fig. 4. For constant in-plane shear stress throughout the disks with rin=rou = 0.2, 0.4 an
elastic modulus Eh ; (c) elastic modulus Er ; and (d) Poisson’s ratio vhr :
the radius r are similar to those of the fiber volume fraction. We
note that the volume fraction of fibers varies between 0.16 and
0.25, 0.2 and 0.43 and 0.2 and 0.4 for the three disks studied.
One cannot quickly assess the effect of the radial variation in the
d 0.6, the required variation with the radius of (a) the volume fraction of fiber, (b)



Fig. 5. For a constant radial stress throughout the disks with rin=rou = 0.2, 0.4 and 0.6, the required variation with the radius of (a) the volume fraction of fiber, (b) elastic
modulus Eh; (c) elastic modulus Er ; and (d) Poisson’s ratio vhr :
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mass density induced by the change in the volume fraction of fi-
bers on the computed radial variation of the elastic moduli without
iteratively solving this problem.

Substituting for stresses from Eqs. (18) and (8) into Eq. (22), the
required variations of the elastic moduli with r to attain a constant
in-plane shear stress is exhibited in Fig. 4. We note from Fig. 4 that
the elastic moduli have the maximum and Poisson’s ratio the min-
imum value at points in the interior of the disk for rin=rou ¼ 0:2:

The variations of the elastic moduli with the radius r are similar
for disks with rin=rou ¼ 0:4 and 0.6 but these noticeably differ from
those for the disk with rin/rou = 0.2. Thus the ratio rin=rou of the disk
significantly affects the qualitative variation of the elastic moduli
with r.

Substituting for stresses from Eqs. (21) and (8) into Eq. (22), the
required variations of the elastic moduli to attain a constant radial
stress in a disk are found, and these are shown in Fig. 5. It is
Fig. 6. For disks with rin=rou = 0.2 and 0.6, and either uniform or non-uniform thicknes
constant hoop stress, (b) a constant in-plane shear stress throughout the disk.
observed that the variations of the elastic moduli with the radius
are similar for the three disks with rin/rou = 0.2, 0.4 and 0.6.

We now investigate the effect of the thickness variation on
material tailoring. When the disk thickness is either uniform
(n = 0) or inversely proportional to r (n = 1), the required variation
of the volume fraction of fibers to achieve the desired stress field is
shown in Fig. 6. Curves labeled ‘0-‘ (or ‘1-‘) represent results for
n = 0 (or 1) and the second number ‘0.2’ (or ‘0.6’) following 0 and
1 denotes the ratio rin/rou. It is found that the variation of the thick-
ness has significant effect on the required variation of the volume
fraction of fibers to attain the constant hoop stress and the con-
stant in-plane shear stress within the disk having rin/rou = 0.2.
However, there is very little influence of the thickness variation
on the volume fraction of fibers for the disk with rin/rou = 0.6.

For two different values of the volume fraction of fibers on the
innermost surface of a disk, the computed required variations of
s, the required variation with the radius of the volume fraction of fibers for (a) a



Fig. 7. The required variation with the radius of the volume fraction of fibers to
achieve a constant hoop stress in two disks with different values of the volume
fraction of fiber on their inner surfaces.
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the volume fraction of fibers to achieve the same constant hoop
stress are exhibited in Fig. 7. Curves labeled ‘0.15-’ (or ‘0.2-’) repre-
sent results for nf ðrinÞ ¼ 0:15 (or 0.2) and the second number ‘0.2’
(or ‘0.6’) following 0.15 and 0.2 denotes the ratio rin/rou. It is seen
that different values of nf (rin) can give the same stress field within
a disk evincing thereby that the inverse problem does not have a
unique solution. However, the corresponding displacement fields
will be different since stress fields are not sensitive to the precise
values of the elastic moduli, e.g., the axial stress in a cylindrical
bar of cross-section A and loaded by an axial force, P, equals P/A
irrespective of the material of the bar.

4.3. Annular fiber-reinforced composite disks with fibers aligned along
helices

Substituting for the elastic constants from Eq. (9) and the de-
sired stress states from Eqs. (12)–(21) into Eq. (22), we can find
the required variation of the fiber orientation angle with the radius
to attain either a constant hoop stress, or a constant radial stress or
a constant in-plane shear stress in the disk.
Fig. 8. For a constant hoop stress in disks with rin=rou = 0.2, 0.4 and 0.6, the required varia
modulus Er ; and (d) Poisson’s ratio vhr :.
For example, consider three annular disks composed of T300/
934 (graphite/epoxy) with the volume fraction of fibers equal to
0.65 and

E1 ¼ 131 GPa; E2 ¼ 10:3 GPa; G12 ¼ 6:9 GPa; v12 ¼ 0:22:

Substituting for the elastic moduli from Eq. (9) and for stresses
from Eqs. (12) and (21), respectively, into Eq. (22) and setting n = 0
for the disk of uniform thickness, the required variation of the fiber
angle for the condition bðrinÞ ¼ p=4 is shown in Figs. 8 and 9. Com-
paring results plotted in Figs. 3–5 with those exhibited in Figs. 8
and 9, it is found that there are different ways to attain the same
desired stress state, for example, by either changing the volume
fraction of fibers along concentric circles or by varying the orienta-
tion of fibers in the radial direction. However, these two material
tailoring techniques give different variations with r of the corre-
sponding hoop and the radial elastic moduli. For fibers aligned
along concentric circles, the hoop and the radial elastic moduli
increase or decrease simultaneously with r. However, when the
orientation of fibers in the radial direction is varied, the corre-
sponding hoop and the radial elastic moduli increase and decrease,
respectively, with an increase in the radius r.
5. Conclusions

We have investigated the material tailoring problem for a rotat-
ing disk composed of a radially inhomogeneous material to attain
either a constant hoop stress, or a constant radial stress or a con-
stant in-plane shear stress throughout the disk. For a solid disk
made of a material with the elastic moduli proportional to each
other, an analytical expression is given for the required variation
of the hoop modulus with the radius to attain a desired state of
stress. For fiber-reinforced composites, the hoop and the radial
elastic moduli increase or decrease simultaneously when we
change the volume fraction of fibers that are arranged along
concentric circles. However, when the fiber orientation angle is
tions with the radius of (a) the orientation of fibers, (b) elastic modulus Eh; (c) elastic



Fig. 9. For a constant radial stress throughout the disks with rin=rou = 0.2, 0.4 and 0.6, the required variation with the radius of (a) the orientation of fibers, (b) elastic modulus
Eh; (c) elastic modulus Er ; and (d) Poisson’s ratio vhr .
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varied with the radius, the hoop elastic modulus increases with r
but the radial elastic modulus decreases with r. Other constraints,
e.g., minimizing the weight, can help decide whether to achieve
material tailoring with fibers arranged in concentric circles or in
helices. For a very thick rotating disk (e.g., rin/rou = 0.2) the influ-
ence of the non-uniform thickness is evident in the sense that
the required radial variation of the volume fraction of fibers is dis-
tinctly different from that for a moderately thick disk.

The material tailoring techniques presented herein will help
structural engineers and material scientists design radially inho-
mogeneous rotating disks.
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