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Abstract. Steady state thermomechanical deformations of a target hit by a rigid cylindrical penetrator with an ellipsoidal
nose are studied. The material of the target is assumed to be thennally softening but strain and strain-rate hardening. Results
computed and presented graphically include the pressure distribution on the nose of the penetrator, dependence of the axial
resisting force upon the speed of the penetrator, and the variation offield quantities such as the temperature and strain-rate
in the target. Computed results show that the ratio of the major to minor axes of the ellipsoidal nose has a significant effect
on the deformations of the target particles in the vicinity of the penetratornose.

1 Introduction

In an attempt to shed some light on the validity of the approximations made in simple tileories of
penetration due to Alekseevskii (1966) and Tate (1967, 1969), Batra and Wright (1986) studied in
detail the penetration problem that simulates the following situation. Suppose that the penetrator
is in the intennediate stages of penetration so that the active target/penetrator interface is at least
one or two penetrator diameters away from either target face, and the remaining penetrator is much
longer than several diameters and is still traveling at a unifonn speed. Thus steady state deformations
of the target, presumed to be made of a rigid/perfectly plastic material, and being penetrated by a
long cylindrical rigid rod with a hemispherical nose were analysed. Subsequently Batra (1987)
showed that the axial resisting force experienced by the rigid penetrator is considerably reduced if
its nose sh3pe is ellipsoidal rather than hemispherical and also investigated the effect of the riepend-
ence of the flow stress upon the strain-rate. Herein we study the steady state penetration problem
when the target material is thennally softening but strain and strain-rate hardening.

Pidsley (1984) has recently given a detailed numerical solution of the penetration problem in
which both materials are considered to be defonnable and rigid/perfectly plastic. We refer the reader
to his paper for more references on this subject. Even though we study a somewhat simpler situation,
our material model is more general in that we account for the effect of strain and strain-rate
hardening and thennal softening. We note that the peak strains and strain-rates encountered during
steady state defonnations of the target are of the order of 10 and 105 sec-l respectively. Also the
temperature at target points may rise to as much as half of the melting point of tile target material.
We study the effect of these competing factors as well as of the penetrator speed and the shape of
its nose on the deformations of the target.

2 Formulation of the problem

Since the axisymmetric deformations of the target appear to be independent of time to an observer
situated on the penetrator nose and moving with it, we choose a cylindrical co-ordinate system
attached to the nose tip with the positive z-axis pointing into the target material. With respect to
these axes translatin~ with a uniform velocity voe, e being a unit vector alon~ the penetrator axis
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and in the direction of its motion, equations governing the thennomechanical defonnations of the
target are

div v = 0, (I)
diva = (1(v - grad) v, (2)

- divq + tr(aD) = (1(v - grad) U, (3)

tr(aD)=(v-grad)", (4)
D = (grad v + (grad v)TJ2 . (5)

Equations (I) through (4) written in Eulerian description of motion express respectively the balance
of mass, linear momentum, internal energy and the evolution of the work hardening parameter x.
In Eq. (4) we have neglected the elastic defonnations of the target and in Eq. (3) assumed that all
of the plastic working, rather than a part of it (e.g. Farren and Taylor 1925) is dissipated in the fonn
of heat. The operators grad and div signify the gradient and divergence operators on fields defined
in the present configuration. Furthennore, a is the Cauchy stress tensor, (1 is the mass density of the
target material, v is the velocity of the target particle relative to the penetrator, q is the heat flux per
unit present area, D is the strain-rate tensor, and U the specific internal energy. Equations (J)
through (4) are to be supplemented by constitutive relations and boundary conditions.

We assume the following constitutive relations for the target material.

q = -kgradO, (6)

U=cO, (7)

a=-pl+2,u(I,O,tp)D, ifD-I=O, (8)

tr(s2) ~ ~ 0"0(1- a 0)2(1 + ~ )2n, if D = 0, (9)
3 tpo

s=a+pl, {I 0)"

2,u (I, 0, tp) = ~(1 +bI)m(l-aO) (1 + ~)n, (JJ)
V 31 tpo

x(tp) = 0"01jJ(1 + tpJtpo)n, (J2)

12=ttr(D2). (J3)

Equation (6) is Fourier's law of heat conduction, k is the thennal conductivity, 0 is the change in
the temperature of a material particle from that in the underfonned configuration, c is the specific
heat which is assumed to be constant,p is the hydrostatic pressure not detennined by the defonnation
history, and 0"0 is the yield stress in a simple tension or compression test. The material parameters
band m describe the strain-rate sensitivity of the material, the material parameter a describes its
thennal softening, and tpo and n characterize the strain hardening of the material. An integral fonn
of Eq. (12) with" interpreted as the true stress and tp the plastic strain represents the stress-strain
curve in a quasi static reference test. Equation (8) may be interpreted as a constitutive relation for
a Non-Newtonian fluid whose viscosity,u depends upon the strain-rate, temperature and a material
parameter tp. Equation (8) implies that,(1 )t 1 ( tp)n '.-
:2trs2 =j73O"o(l+bI)m(l-aO) 1+~ (J4)

which can be viewed as a generalized Von-Mises yield criterion when the flow stress (given by the
right-and side of (14)) at a material particle depends upon its strain-rate, strain and temperature. A
constitutive relation similar to Eq. (8) has been used by Zienkiewicz et al. (1981) who took

2,u = [0"0 + (2IJ{3y)l/n]J{3I, (15) ~
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wherey and n are functions of(}. They asserted that it representsPerzyna's viscoplastic model. For
a simple shearing deformation, Litonski (1959) proposed that

~ t= c(l - aO)(1 + by)myn (16)

where t and 'Y equal the shear stress and shear strain, and c is a material constant. Note that this
relation implies that -r is zero whenever y = O. Another stress-strain law proposed by Lindholm and
Johnson (1984), based on fitting curves to experimental data obtained from torsion tests, is

() -()
t = (A + Byn) (1 + C In (y/10» ~ (17)

where (}m is the melting point of the material, (}o is a reference temperature, and A, Band Care
material constants. Lin and Wagoner (1986) recently reported that the following curve

u = 556 (8 - 0.014)0.219(6/0.02)0.018(1 - 0.0012 «() - 298»MPa , (18)

fitted well their experimental data derived from a uniaxial tension test on Armco I. F. steel. In Eq.
(18), u and 8 are the axial stress and the axial strain respectively and () is in OK. The linear dependence
of the flow stress upon temperature has also been observed by Bell (1968).

The constitutive relation (8) with Jl given by Eq. (11) is an attempt to generalize the one used by
Wright and Batra (1986) for simple shearing deformations of nonpolar and dipolar materials. They
used it to study shear strain localization phenomenon in metals and derived it by using arguments
similar to those employed by Green, McInnis and Naghdi (1968). A curve fit to the torsion test
data of Costin et al. (1979) for a 1018 cold rolled steel givesn = 0.09, tpo = 0.017, b = 104 sec-1 and
m = 0.025.

Before stating the boundary conditions we non-dimensionalize the variables as follows.

fr=O'/uo, p=p/uo, s=s/uo, v=v/vo, ;=r/ro, i=z/ro, (J=O/(}o,
Vo (19)

D=b-, ii=a(}o, lX=eV~/Uo, P=k/(Qcvoro), (}o=uo/(Qc).'0I . .

Substituting from Eqs. (6) through (12) into the balance laws (1) through (4), rewriting these in
terms of non-dimensional variables, and denoting the gradient and and divergence operators in non-
dimensional coordinates by grad and div, we arrive at the following set of equations.

divv = 0, (20)

divO' = IX(V. grad) v, (21)

tr(O'D) + pdiv(grad(}) = (v' grad)(), (~~)

tr(O'D) = (v. grad)tp, (23)
(1 + tp/tpo)n

where

0'= -pl+~(1 +bl)m(l-a(}) (1 + ~)nD, (24)
V 31 tpo

and we have dropped the superimposed bars. ;

We assume smooth conta~ at the target/penetrator interface. Thus the boundary conditions on
this surface are

t.(O'n)=O, (25.1)

v.n=O, (25.2)
q . n = h «() -(}o), (25.3)

where h is the heat transfer coefficient between the penetrator and the target, (}o is an average
I
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temperature of the penetrator, and nand t are, respectively, a unit normal and a unit tangent vector
to the surface. At points far away from the penetrator

Iv+el-+O, 0-+0, tp-+O as (r2+z2)t-+00, z>-oo, (26.])

l(Jnl -+ 0, Iq.nl -+ 0, tp -+ 0 as z -+ -00, r ~ roo (26.2)

The boundary condition (26.1) states that target particles at a large distance from the penetrator
appear to be moving at a uniform velocity with respect to it and experience no change in their
temperature. Equation (26.2) implies that far to the rear the traction and heat flux fields vanish.

Note that the governing Eqs. (20)-{23) are coupled and are nonlinear in v, 0 and tp. Their
solution, if there is one, may not be unique and will depend, in general, upon the rates at which
quantities in (26) decay to zero. Since we are unable to solve these equations analytically and prove
any uniqueness theorem, we will seek a numerical solution of these equations which we hope will
be physically meaningful.

3 Finite element formulation of the problem

The numerical solution of the problem necessitates the consideration of a finite region. Since the
target deformations are axisymmetric, only the target region R shown in Fig. 1 is studied. The
adequacy of the finite domain considered will be verified by soJving the probJem for two separate
regions, one larger and containing the other, and ensuring that the two sets of computed values of
variou5 fie::! qualltities are close to ertch other. Th~ bourutary conditions (26) are replaced by the- following.

00
O"zz = 0, v, =-0, fu = 0 on the surface AB, (27.])

O",z=O, v,=O, ~ = 0 on the axis of symmetry DE, (27.2)
i! or . .

v, = 0, Vz = -1.0, 0 = 0, tp = 0 on the boundary surface EFA. (27.3)

Referring the reader to Becker et al. (]981) and Zienkiewicz et al. (1981) for details, we simply note
that a weak formulatipn of the problem defined on the region R by Eqs. (20)-(24) and boundary
conditions (~5) and (27) is that equations

f;.(divv)dr;=O, (28.1)
R

e
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kt=3.25ro-J Fig. 1. The finite region studied
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...J p (divcp) dv - J J.L (/,0, tp)(D:1gradcp + (grad cp )T»dv= IX J « v . grad) v) . cp dv, (28.2)

R R R

~ J « v . ~rad)O)1J dv + pJgrad(J ; grad" dv +h J 0" dA = J" «J: D)dv - J h °a" dA,:".:',::; (28.3)
R R ~I R R ~IR

!{(v. grad)tp)~dv =!-(l{::~)n ~dv, (28.4

tpo
hold for arbitrary smooth functions )., cp, " and ~ defined on R such that cp, = 0 ou AB, cp = 0 on
EFA, cp . n = 0 on the target/penetratot interface BCD, and" = ~ = 0 on EF A. In these equations,
A: B = tr (A BT) for linear transformations A and B, and 01 R denotes the target/penetrat-orinterface
BCD. Since these equations are nonlinear in v, (J and tp, the following iterative technique has been
employed. At the ith iteration, equations

Jldivvidv = 0, (29.1)
R
J pi (divcp) dv-J Jl (P-1, (Ji-l, tpi-I)(Di: (gradcp + (gradcp)T»dv= IX J«Vi-1 . grad) Vi) . cp dv, (29.2
R R

J ( Vi-I. grad) (Ji)1J dv + P Jgrad(Ji . grad" dv + h J Oi" dA = J" «Ji-1 : Di-l) dv - J h °a~.dA, (29.3)
R ~IR R ~IR

. .., .. O"i-l:..»i-1
J(VI-'. graa)tp/)~dv= j . ~dv, (29.4)
R R

( tp/-l )n
1+- .,

1/'.,-0 '.,

are solved for Vi, Oi, tpi and pi. The iterative process is stopped when, at each nodaJ.poi~t;-'

II Vi - Vi-1 /I + 10i - Oi-I[+ Itpi - wi-II ~ e [11 vi-Ill + 10i-11 + [Wi-II] (30)
'"

~ where /I v/l2 =v~ +v~, and e is a preassigned small number. Values of pi are not included1n Eq. (30)
since p appears linearly in Eq. (29.2).

4 Computation and discussion of results

The finite element code developedear1ier [Batra and Wright (1986)] to solve the problem when the
targe~ m:lt::ria1 is mod~!ed as rigid/perfectly plastic an':! the penetrator n,:>s,~ ir h~mispherical has
been modified to solve the present problem. It employes six-noded triangular elements with v" Vz,
tp and 0 approximated by quadratic functions over an element and p by a linear function defined in
terms of its values at the vertices of the triangular element. The validity of the code was established
by first modifying Eqs. (29) to include arbitrary source terms on their right-hand sides, and then
solving simple problems for incompressible Navier-Stokes-Fourier fluids. The source terms were
adjusted so that the governing equations were satisfied by the presumed analYtic expressions for v"
VB' p, 0 and tp. Results for a sample problem that does not include thermal effects are given in Batra
and Wright (1986).

A major difference between the problem studied herein and those studied earlier by Batra and
Wright (1986) and Batra (1987) is that Eq. (28.4) does not have any diffusive term in it. This
necessitates the use of either an'Ultrafine mesh or a fine mesh with an artificial diffusive term included
in Eq. (28.4). Brooks and Hughes (1982) have discussed in detail the justification for including such
a term and have given equivalent ways of achieving the same objective. We added a term
{}Jgrad tp . grad ~dv to the left-hand side ofEq. (28.4) and computed results for {} = 10-6 and 10-7.

R
The two sets of values of 0, p, v, and Vz differed by less than one percent at each node. The results
presented below are for c5 = 10-6. We next ascertained the adequacy of the region considered by
increasing DE in Fig. I from 3.25ro to 4.5ro. Again the difference in the values of 0, p, V" Vz and tpt at points in the vicinity of the penetrator nose was negligible. .
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We note ihatexperimental data for the range of deformations expected to occur in the penetration
problem under ~tudy is not available in the open literature. Therefore, values of material parameters
b, m, a, 11'0 alidn in Eq. (14) found by fitting a curve to the experimental data in torsion of Costin
et al. (1979) were assumed to be valid under the more general state of stress studied here. This
should enable us to undertake the parametric study for a reasonable range of values of various
material pat;ameters. The values of various parameters used to compute numerical results are:

n = 0.09, 11'0 = 0.017, b = 104sec-l, m = 0.025, a = 0.000555/oC, k = 48 W/moC,
c = 473 J/kgOC, e = 7800 kg/m3, 0"0 = 180 X 106 Pa, h = 20 W/m2OC, ro = 2.54 rom,
f, = 0.02, 8~ :i= O.

However~ the res\llts presented below are in terms of non-dimensional quantities and the variables
that are assigned values different from those given above are so indicated in the figures along with
their new values.

In Fig. 2 is plotted the pressure distribution on the penetrator nose for a relatively blunt nose
(rn/ro = 0.2), a hemispherical nose (rn/ro = 1) and an ellipsoidal nose (rn/ro = 2.0). As expected the
normal pressure on the blunt nose stays essentially uniform over most of its surface and drops off
sharply near its extremities. Note the change in the curvature of the pressure curve in going from
hemispherical to an ellipsoidal nose. The non-dimensional axial resisting force decreased from
17.091 for the blunt nose to 8.902 for the hemispherical nose and further to 5.085 for the ellipsoidal
nose. The axial resisting force F is given by

IIl2 [ (r )2 J1
F= 2! (n' an) sinO cos (f) sin20+ ~ COS2() d(),

where angles 0 and (f) are defined in Fig. I. The corresponding axial force in physical units is given
by F (1t r~ 0"0)' The normal pressure on the hemispherical and the ellipsoidal nose surface for the
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Fig. 2. Distribution of the normal pressure on the penetrator
0 nose for three different nose shapes. - Blunt nose
0 90 (r,/ro = 0.2); hemispherical nose (r,/ro = 1.0);
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(/) ,,' .I "- ature change 0 on the penetrator nose for three dIfferent nose0 .~- 0 shapes. - Blunt nose (r ,fro = 0.2); - - - - - hemispher-

0 ical nose (r,/ro = 1.0); ellipsoidal nose (r,/ro = 2.0); ~

ANGULAR POSITION a = 4.0
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angle () greater than nearly 75° is not plotted because of the difficulties encountere9,inR<;>mputing
it accurately. The mesh in this region was not fine enough to yield reliable ~lu,es~ Figure 3
depicts the variation of the strain-rate invariant I and temperature change () on the np~e surface. 1

Whereas the maximum value 4.21 of I occurs at the penetrator nose tip for the ellJp~oidal nose, it ,:'0
assumed very high values at the extremities for the blunt nose. For these two nose shapes significant ,.

values of I occur near the nose tip and the nose periphery respectively. For tile hemis~,!1erical nose ~

shape I decreases almost linearly from its maximum value of 2.16 at the nose tip to 0.4 at its
periphery (0 = 90°). The dimensional values of I equal 1.1 (105) times the non-dimensional values.

,
The values of temperature at the nose tip do not depend that much on the nose shape. However the
temperature decreases with 0 for the ellipsoidal and the hemispherical nose, it increases with 0 for
the blunt nose. Because of the high-strain rates near the vicinity of the periphery of the blunt nose,
there is a lot of heat generated in this narrow region. Since material particles near the periphery of
the nose are moving relatively slowly, not much of the heat produced is convected or transported
away. In Fig. 4 is plotted the variation of the strain rate I and temperature change (J on the axial
line. For the blunt nose, the deformation has spread to a larger distance as compared to that for
the ellipsoidal nose. Accordingly the temperature drops off slowly for the blunt nose than it does
for the other two cases. The actual temperature,s in °C are obtained by multiplying their non-
dimensional values by 48.9. Thus temperatures as high as 605°C occur at and near the nose tip. t.,
The maximum value of strain-rate Ion the axial line appears to occur at a point slightly away from
the nose tip. This initial rise is probably only an artifact and the curves should be extended smoothly
to the nose-tip.

;
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Fig. 4. Variation of the temperature change and strain-rate measure I on the axial line for tllree different nose shapes.
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Figures 5 -~nd 6 iJIustrate the effect of speed of the penetrator on various solution parameters at
or in the vici.nity Q.f its eJIipsoidal nose with r n/ro = 2.0. As shown in Fig. 5, the normal pressure
near the penetratornose tip increases with the speed but de~reases near its periphery. Nea~ .9 = ~5°, ~

the speed has.,no effect on the normal pressure. Such a behavIor was also observed for a hemIspherIcal
nose and a -rigid/perfectly plastic target material by Batra and Wright (1986). The dependence of
the non-dimensional axial force F upon the speed (through non-dimensional variable a)
is given by

F = 5.021 +O.07321X, eJIipsoidal nose (r n/ro = 2.0)

F= 8.71 +O.2145!X, hemispherical nose.

For rigid/perfectly plastic materials, Batra and Wright (1986) obtained F = 3.903 + 0.0773 a for a
hemispherical nosed penetrator, and Batra (1987) computed F= 2.58 + 0.019a for a penetrator
with an eJIipsoidal nose having r n/ro = 2.0. Thus the consideration of strain and strain-rate hardening
and thermal softening effects more than doubles the axial resisting force. In every case studied so
far, F depends upon !X weakly. This weak dependence of F upon a seems to explain why the choice
of constant target resistance in the simple theory of Tate (1967, 69) gives such good qualitative
results. On most of the nose surface, the temperature decreases with a. This is shown in Fig. 5.
Figure 6 depicts that most of the target deformations are concentrated near the penetrator nose.
The peak value of.Jon the axial line appears to occur not at the nose tip but slightly away from it.
The plots of strain-rate invariant I and the temperature change in the target region, shown in Fig.
7 confirm that significant target deformations occur in the vicinity of the tatget/penetrator interface., - .

~
w -~~

w a: 10 ~\\~
a: ::> ,,'
::> C/J ,~~
';1 f(J ~~~
~ R: '~~~ ~w u '~~""'" . .
~ ~ -~~
9= ~5 ~~~
Z C/J-~- 0 .~~ ct a: =~'=..-=~

a: (:)

t;, ~

°0 . ().2 Q3 0.4 00 t5 2.0
rnSTANCE FROM THE NOSE-TIP DISTANCE FRO~~ THE !'JOSE-TIP

Fig. 6. Variation of the hydrostatic pressure and the strain-rate mesure Ion the axial line for different values of 2. Explanations
see Fig. 5
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2Zct
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.
Fig. 7. Tempera~u~e and strain-rate distribution in the target region for cx = 3.0. ~
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How different material parameters infJuence the deformations of the target is demon~trated by
results presented in Figs. 8 through II, Figure 8 shows that strain-ratehar'dening ide.teases the
normal pressure more than the work:-hardenin~ does. The inclusion of thermal softemng affectS '-;
little, if any, the normal pressure gistribution on thepenetrator nose. Nearthe'i1ose tip'(Fig: 9) the ';
inclusion of work-hardening and strain.,.r~te hardening decreases the value ofthe-strain:.tl;i:teihvariant .I
I but increases the temperature. This l~ due to the fact that these hardening effects increase the '1
material's flow stress and cause more plastic working which is converted into beat. The thermal ':
softening has a noticeable effect on the temperature distribution at the penetrator nose. From the
plot of the strain-hardening parameter tp on the penetrator nose and on the axial .line!in Fig. 10,
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z '--", Fig. 8. Effect of different material param~ters on the pressure -
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Fig. 11. Effect of strain-hardening, strain-rate hardening and thermal softening on relative z-velocity, temperature change
and the hydrostatic pressure at points on the axial line. Explanations see Fig. 8

one may conclude that the thermal softening reduces its value significantly, especially at points near
the nose surface. On the axial line as well as on the nose surface, strain-rate hardening in turn
increases strain"hardening:We should add that a steady-state penetration problem is being studied
and thus it is tacitly assumed that the increased energy required for deforming the targetis available
wheneyer ncecessary. Fig. II depicts the variation of the hydrostatic pressure; temperature and
relative z-vel09it)1 on the ~xial line. The hydrostatic pressure, the temperature and the absolute
z-velocity of .3;)arget particle on the axial line increase with thl;, inclu;3iolJ. of hardeili,,1g c;ffects b\lt
change very tittle 'by the considerati9n also of thermal softening. In order to investigate further the
effect of thermal softening, we a.rbitrarily doubled the value of the thermal softening parameter a.
This increased the value of the strain-rate invariant I but changed very little the value of other
quantities on the penetrator nose.

On the axial line uniaxial strain conditions prevail approximately. Thus the magnitude of the
deviatoric stress Szz at a point should equal 2/3 the effective flow stress O"e defined as

; " '

O"e = 0"0(1 + bI)nI(1 - aO)(1 + tIJ/tlJo)n.

"
Of all the points on the axial line, the nose tip is the most critical one since the strain-hardening
parameter tIJ assumes \,ery high values there. In Table I below are compared the values of (-szz)
and 2/30" e at the nose tip. Whereas the error is negligible when the target material is rigid/perfectly
plastic, it is rather high for the other three cases. A possible reason for the high error is that values
oftIJ atthecept~raresertsitivetd the value of the artificial viscosity,tJ eventhough other field variables
show negligible dependence upon the precise value' of t5 within! a certain range. To support this
reasoning, we list in Table .2 values of the saine variables but with the effect of strain-hardening
neglect-ed;,Note'that thesc are for a higher val~e of the. speed of the penetrator.

Finally we 'remarkth'atresults presented here are valid only for the constitutive model used
herein.
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Fig. 12. Variation of strain-hardening parameter tp in the target region. (IX =3.0.! ,,/t 0 = 2.0)

Conclusion
, , ..

The computed res~ts sho~ that.dunng tbesteady s{ateportionQfthc perietratfonpf~Ss, the
penetrator,noseshapehas a signifi~:ant.,etrect
rates at~l1i'l.her foNhe sha~erellipspidal nose, deforma~ions spread't6a largerdistal1c~iwayfrom
the nose ,surfac-e 4or the blunt '.nos~'oThe speed of the penetrato~:has a~ak effecf::onJrl1e axial
resisting fQI:t::e ex~~en~ by the penetrator ev~n though the h);'4rostati~pressur~ p~~ 'increase
with .the spe~Q:" The;inclusion',of .tQermal so.fte~ingeffec.t~ incre,g,se.scthe strain-rate.in'th6targetmaterial but doosnot alter the ,pressure.distribution on the :penettatornose: 'co;: ,!.'" :,1.

. '"

" );""!':ic;;jf'
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