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Abstract. We have developed an adaptive mesh refinement technique that generates elements such that the integral of the
second invariant of the deviatoric strain-rate tensor over an element is nearly the same for all elements in the mesh. It is shown
that the finite element meshes so generated are effective in resolving shear bands, which are narrow regions of intense plastic
deformation that form in high strain-rate deformation of thermally softening viscoplastic materials. Here we assume that the
body is deformed in plane strain compression at a nominal strain-rate of 5000 sec- 1, and model a material defect by introducing
a temperature perturbation at the center of the block.

1 Introduction

In nearly all of the previous numerical studies of shear bands in two-dimensional problems
involving a visco plastic material (e.g., see Needleman 1989; Batra and Liu 1989; Batra and
Zhu 1991), a fixed finite element mesh has been used. Since shear bands are narrow regions of
intense plastic deformation, their satisfactory resolution requires either a very fine mesh through-
out the computational domain, in which case the solution in most of the domain outside the shear
band is overcomputed, or an adaptively refined mesh that concentrates more elements in the
severely deforming region and fewer elements outside of it. Batra and Kim (1990) developed an
adaptive mesh refinement technique for the analysis of one-dimensional shear banding problems
by ensuring that the scaled residuals of the equations expressing the balance of linear momentum
and the balance of internal energy were uniformly distributed. They subdivided elements having
large s~led residuals and observed that high values of the scaled residuals occurred, in general,
in non-overlapping regions. Their technique did not combine elements with low values of the
scaled residuals, and for this reason did not result in an optimum mesh. We make no attempt to
review all of the literature on adaptive mesh refinement and two-dimensional adiabatic shear
banding problems. For the former, we refer the reader to Safjan et al. (1991) and Zienkiewicz and
Zhu (1991), and for the latter to Batra and Zhu (1991).

2 Formulation of the problem

We use a fixed set of rectangular Cartesian coordinates with origin at the centroid of a square
block (cf. Fig. 1) to analyze its plane strain thermomechanical deformations. We assume that the
block is made of a thermally softening viscoplastic material. In terms of the refefential description,
governing equations are:

(pJ). = 0, POVj = Tja.a, poe = -Qa.a + TiaVi,a, (1-3)

where

J=detFia, Fja = Xj,a' Xi,a=OXj/oXa, (4)

Xj is the present location of a material particle that occupied place X" in the reference configuration.
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Fig. 1. A schematic sketch of the problem studied

p its present mass density, Po its mass density in the reference configuration, Vi its present velocity,
Ti2 the first Piola-Kirchoff stress tensor, Qa the heat flux per unit reference area, e the specific
energy, a superimposed dot indicates the material time derivative, and a repeated index implies
summation over the range of the index. For the constitutive relations we take
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Here O"j. is the Cauchy stress tensor, B may be thought of as the bulk modulus for the material of
the blo~k, D is the strain-rate tensor, 0"0 the yield stress of the material in a quasistatic simple
tension or compression test, parameters band m characterize the strai!!-rate sensitivity of the
material, I is the second invariant of the deviatoric strain-rate tensor D, v is the coefficient of
thermal softening, k equals the thermal conductivity of the material, c the specific heat, and 0 the
temperature rise of a material particle.

We introduce non-dimensional variables, indicated below by a superimposed bar, as follows.

f = tyo, J = l/yo, b = byo, Ii = p/Po, i/= 0'/0"0' t = T/O"o,

B=B/O"o, v=vO" (f=O/O" v=v/vo, i=x/H, X=X/H, (lOa)
{) = Pov~/O"o, P = k/(PocvoH),

where

0, = O"o/(Poc), Yo = vo/H. (lOb)

In Eq. (10) 2H is the height of the square block, 0, the reference temperature, Vo is the steady value
of the velocity applied to the top and bottom surfaces in the x2-direction, and Yo equals the average
applied strain-rate. Henceforth we use non-dimensional variables and drop the superimposed bars.
We presume that the deformations of the block are symmetrical about the horizontal and vertical
centroidal axes, and study the deformations of the material in the first quadrant.

For the boundary conditions we take

V2=0, TI2=0, Q2=0 on X2=X2=0, (11.1)

VI =0, T'1 =0, QI =0 on Xl =XI =0, (11.2)
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T" =0, -. -. on . , (11.3)

v2=-h(t), T'2=0, Q2=0 on X2=H. (11.4)

The boundary conditions (11) signify that the boundaries of the block are insulated, the right
surface is traction free, there is no tangential traction acting on the top surface, and the top surface
moves downward at a prescribed speed h(t). The boundary conditions (11.1) and (11.2) follow from
the assumed symmetry of deformations about the X, and X 2 axes.

For the initial conditions we take

p(x,O) = 1, Vl(X,O) = 0.37xl' V2(X,0) = - x2, (12.1-12.3)

()(x,O) = 0.2(1- r2)ge-Sr2, r2= X: + X~. (12.4,12.5)

The initial conditions on the velocity field represent the situation when the transients have died
out. Batra and Liu (1989) found this velocity field by taking

h(t) = tjO.005, 0 ~ t ~ 0.005,
= 1, t ~ 0.005,

assuming that the initial temperature distribution is uniform, and computing the solution till the
steady state had been reached. The changes in the mass density and the computed temperature
rise were found to be insignificant to justify assuming that the initial mass density is uniform. The
assumptions (12.2) and (12.3) result in a smaller value of the CPU time needed to analyze the
problem and do not affect the qualitative nature of the results. The initial temperature distribution
given by (12.4) models a material inhomogeneity; the amplitude of the perturbation can be thought
of as representing the strength of the singularity.

Equations obtained by combining (1) through (9) are to be solved under the side conditions
(11) and (12). Since these coupled equations are highly nonlinear, it is not clear whether or not
they have a unique solution. Here we find their approximate solution by first reducing the partial
differential equations to a set of coupled, nonlinear, and ordinary stiff differential equations by
using the Galerkin approximation. The number of these equations equals four times the number
of nodes in the finite element discretization of the domain. We use three-noded isoparametric
triangular elements and the lumped mass matrix obtained by the row-sum technique. These stiff
ordinary differential equations are integrated with respect to time by using the backward difference
Adam's method included in the subroutine LSODE (e.g., see Hindmarsh 1971). We could not use
the Gear method because of the limited core storage available to us. The computer code developed
by Batra and Liu (1989) was suitably modified to solve the present problem.

f'Jl =0, O. =0 X.=H

3 Adaptive mesh refinement technique

We first select a coarse mesh and find a solution of the aforestated problem. This mesh is refined
so that

ae= J Idn, e= 1,2,...,ne" (13)
n.

is nearly the same for each element ne. In (13), nel equals the number of elements in the coarse
mesh and ne is one of the elements. Since one may not have an idea where the solution will exhibit
sharp gradients, we choose the coarse mesh to be uniform. The motivation behind making ae the
same over each element ne is that within the region of localization of the defonnation values of I
are very high as compared to those in the remaining region. Other variables such as the temperature
rise, the maximum principal strain, and the equivalent strain which are also quite large within the
band will be suitable replacements for I in Eq. (13). The refined mesh will depend upon the variable
used in Eq. (13). In order to refine the mesh, we find

1 "., a Ii 1 N.
a-=- '""' a ;: =-!. h =-!. ~ nd H =- ~ h n= 12 11'-- e' ..e -' e , - " L.. e' , ,..., 04' ,-,

nele=l a c.e Nee=l
(14-17)
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Here, h" is the size of the element il" in the coarse mesh, N e equals the number of elements meeting
at node n, and nod equals the number of nodes in the coarse mesh. We refer to Hn as the nodal
element size at node II.

In order to generate the new mesh, we first discretize the boundary by following the procedure
given by Cescotto and Zhou (1989). Let AB be a segment of the contour to be discretized, s the
arc length measured from point A, and H A and H B be nodal element sizes for nodes located at
points A and B, respectively. From a knowledge of the values of Hat discrt:te points, corresponding
to the nodes in the coarse mesh, on AB we define a piecewise linear continuous function H(s) that
takes the previously computed values at the node points. In order to discretize AB for the new
mesh, we start from point A if H A < H B; otherwise we start from B. For the sake of discussion,
let us assume that A is the starting point. We first find temporary positions of nodes on the segment
AB by using the following recursive procedure. Assume that points 1,2,..., k have been found.
Then the temporary location of point (k + 1) is given by

Sk+ 1 = Sk + t[H(Sk) + H(s:+ 1)]' (18)

where

S:+ 1 = Sk + H(Sk). (19)

Referring to Fig. 2, the above procedure will give rise to the following four alternatives: a = b = 0,
a < b, a > b, a = b # O. If a = b = 0, then the temporary locations of node points are their final
positions. Depending upon whether a < b or b ~ a, the node points 2 to p or 2 to p + 1 are mov.ed,-
the displacement of a node being proportional to the value of H there, so that either node p or
node (p + 1) coincides with B. This determines the final positions of nodes on the segment AB.

Having discretized the boundary, we use the concept of advancing front (e.g., see Lo 1985;
Peraire et al. 1987, 1988; Habraken and Cescotto 1990) to generate the elements. An advancing
front consists of straight line segments which are available to form a side of an element. Thus, to
start with, it consists of the discretized boundary. We choose the smallest line segment (say side
AB) connecting the two adjoining nodes, and determine the nodal element size HM = H(SM) =
(HA + HB)/2 at the midpoint M of AB. We set

r 0.8 AB ~--
if

{) HM

1.4AB

-- HM<O.8AB,
- -

if O.8AB ~ HM ~ 1.4AB,

if 1.4AB < HM,

and find point C1 at a distance {) from A and B (cf. Fig. 3). Here AB equals the length of segment
AB. We search for all nodes on the active front that lie inside the circle with center at C1 and

Fig. 2. Discretization of a boundary segment for mesh refinement

Active

Fig. 3. Advancing front and new element generation
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radius fJ, and order them according to their distance from Ct with the first node in the list being
closest to Ct. At the end of this list are added points Ct, C2, C3, C4, and Cs, which lie on CtM
and divide it into five equal parts. We next determine the first point C in the list that satisfies the
following three conditions.

(i) Area of triangle ABC> O.
(ii) Sides AC and BC do not cut any of the existing sides in the front.

(iii) If any of the points Ct, C2,... , C 5 is chosen, that point is not too close to the front.
The triangle ABC is an element in the new mesh. If C is one of the points Ct, C2,..., Cs, then a
new node is also created. The advancing front is updated by removing the line segment AB from
it, and adding line segments AC and CB to it. The element generation process ceases when there
is no side left in the active front.

We determine the values of solution variables at a newly created node by first finding out to
which element in the coarse mesh this node belongs, and then finding values of solution variables
at this node by interpolation. This process and that of searching for line segments and points in
the aforestated element generation technique consume a considerable amount ofCPU time. These
operations are optimized to some extent by using the heap list algorithm (e.g., see Lohner, 1988)
for deleting and inserting new line segments, and quadtree structures and linked lists for searching
line segments and points and also for the interpolation of solution variables at the newly created
nodes.

4 Results and discussion

We assume that the block is made of a typical steel and assign the following values, also used by
Batra and Liu (1989), to various parameters.

b= 10,OOOsec, O"o=333MPa, k=49.2Wm-1°C-1, m=0.025, c=473Jkg-1°C-1,
Po = 7,800 kg/m3, B = 128 GPa, (21)

v=0.0222°C-1, vo=25msec-1, H=5mm, h(t) = 1.0.

Here we have made an exception to our notation and indicated dimensional quantities to clarify
the units used. As stated earlier, the transients are assumed to have died out, the top surface moves
downward with the prescribed speed va' and the average strain-rate at which the block is being
deformed equals 5000 sec-l. For values given in (21), Or = 89.6 °C, and the non-dimensional
melting temperature equals 0.5027. We note that the value of the thermal softening coefficient v
has been purposely taken to be high so as to reduce the computational time. It should not affect
the qualitative nature of the results reported herein. The test data to find values of material
parameters at strain-rates, strains, and temperatures likely to occur in a shear band is not available.

Figure 4 depicts the initial coarse mesh at time t = 0, and the generated refined meshes at
non-dimensional time t = 0.025,0.040, and 0.047. We note that the non-dimensional time also
equals the average strain. In the solution of the problem, the mesh was also adaptively refined at
t = 0.015,0.030, and 0.035; however, these are not shown here for the sake of brevity. The times
at which the mesh is refined were selected manually, and are to some degree arbitrary. A possible
criterion could be to refine the mesh when the second invariant of the strain-rate tensor or the
temperature at the center has risen by a certain amount. The meshes shown in Fig. 4 vividly reveal
that the refinement technique outlined in Sect. 3 gives rise to nonuniform meshes with finer mesh
in the severely deforming region and coarse mesh elsewhere. We did not impose any restriction
on the number of new nodes that can be introduced when the mesh is refined. Practical considera-
tions such as the core storage available may require this kind of restriction.

In Fig. 5 we have plotted the contours of the second invariant I of the deviatoric strain-rate
tensor at t = 0.019, 0.032, 0.042, and 0.047 in the deformed configuration. These plots suggest that
as the block continues to be deformed, the deformation localizes into a band whose width keeps
on decreasing. Contours of successively !ncreasing values of I originate from the center of the block
and propagate outward. The contours of the temperature rise at t = 0.019, 0.032, 0.042, and 0.047
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Fig. 4 a-d. Finite element meshes at a t = 0.0, b t = 0.025, c t = 0.040, and d t = 0.047

are exhibited in Fig. 6. The distribution of the velocity field in the deforming region at t = 0.047
is shown in Fig. 7. These plots support Tresca's (1878) and Massey's (1921) assertions that the
tangential velocity is discontinuous across a shear band. In our work the velocity field is forced
to be continuous throughout the domain. The sharp jumps in Vi and V2 across the shear band
lend credence to the discontinuity of the tangential velocity across the shear band. The plot of the
effective stress se, defined as

Se = A(l - v{})(l + bI)m,

in Fig. 8 reveals that Se drops considerably within the shear band. All of the aforestated observations
are in qualitative agreement with Batra and Liu's (1989) results, except that the results reported
herein are sharper in the sense that the region of localized deformation is considerably narrower
and the computed values of Imax for the same value of {}max are higher. Here Imax and {}max denote,
respectively, the peak values of the second invariant of the deviatoric strain-rate tensor and the
temperature rise. For example, at {}max = 0.45, Batra and Liu (1989) found Imax = 21. Here, we get
I max = 91 for the same value of {}max. We note that Batra and Liu (1989) used 9-noded quadrilateral
elements and employed a fixed 16 x 16 mesh.

In an attempt to elucidate the improvement, if any, in the computed results obtained by using
adaptively refined meshes, we have plotted in Fig. 9 the evolution, at the block center, of the second
invariant I of the deviatoric strain-rate tensor, the temperature rise, and the effective stress for
three different meshes. Two of these meshes with 441 and 841 nodes, and consisting of uniform
linear triangular elements are fixed, while the third one was adaptively refined at times t = 0.015,
0.025,0.030,0.035,0.040, and 0.047 with uniform linear triangular elements and 441 nodes at t = 0
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Fig. 5 a-d. Contours of the second invariant of the deviatoric strain-rate tensor at a t = 0.019, b t = 0.032, c t = 0.042, and d
t = 0.047

and nonuniform linear triangular elements with 1200 nodes at t = 0.047. Out of the three variables
Se, I, and e, the evolution of I is affected most by the successive refinements of the mesh. For the
two fixed meshes with 441 and 841 nodes, I at the specimen center seems to reach a plateau, which
is misleading. Also after the deformation has started to localize, the temperature rise and its rate
of increase are higher for the adaptively refined mesh than those for either of the other two fixed
meshes. For the solution with the adaptively refined mesh, I at the block center increases from 10
at Yavg = 0.035 to nearly 52 at Yavg = 0.045, giving a rate of increase of strain-rate of 1011 sec- 2. If
one assumes that the deformation begins to localize earnestly at Yavg = 0.035, then the generalized
strain, defined as J I dt, at the block center increases by 0.3 in two microseconds. The larger drop
in Se in spite of the sharp increase in the value of I indicates that thermal softening dominates over
the strain-rate hardening effects. It is due to the rather high value of the thermal softening
coefficient v used here. Note that increasing the value of non dimensional I from 10 to 100 changes
the value of (1 + bI)m from 1.65 to 1.75.

We now investigate the change, if any, in the approximate solution caused by refining the mesh.
This task would be easy if the analytical solution of the problem were known. Since such is not
the case and there is little hope of finding an analytical solution of the problem in the near future,
we compare our approximate solution with a higher-order approximate solution (Hinton and
Campbell, 1974) obtained by smoothening out the computed solution. Let g be one of the solution
variables to be smoothened. For the three-noded triangular element, we write

g(C;, 17) = ac; + b17 + c, (23)
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Figs. 7 and 8. Distribution 7 of the velocity field at t = 0.04 7, and 8 of the effective stress at t = 0.04 7
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Fig. 9 a-c. Comparison of the evolution of the a second invariant
of the deviatoric strain-rate tensor, b effective stress, and c tem-
perature rise at the block center computed with three different
meshes, namely, a fixed mesh with 441 nodes, a fixed mesh with
841 nodes, and an adaptively r::fined mesh with uniform elements
and 441 nodes at t = 0 and non-uniform elements with 1200 nodes
at t = 0.047

( lIell2 )1/2 17 = jj-;"r+"D~ x 100, (25)

where C; and '1 are area coordinates of a point, and constants a, b, and c are determined from the
values of g at three quadrature points located within the triangular element. From (23) we can
evaluate g at the vertices of the triangle. Then the value g: of the smoothened solution at a node
n is given by

1 Neg: =- L gn, (24)
N e n= 1

where N e equals the number of elements sharing the node n, and the summation sign on the
right-hand side implies the sum of the values of g at node n evaluated for each element meeting
at that node. Knowing g* at each node, we can interpolate its value at any other point by using
the finite element basis functions. We define the percentage error '1 in the deviatoric strain-rate
tensor fi by the relation
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where

N.I
e=D-D*, lIell~= L S eTed.Q, (26.1,26.2)

e= 1 n.
and N el equals the number of elements in the mesh. The plot of the percentage error '1 in Fig. 10
for the three meshes shows that the error is lower for the approximate solution obtained by using
the adaptively refined mesh as compared to the other two meshes. That the error measure is rather
crude is indicated by the slightly larger errors obtained with a fixed mesh of 841 nodes as compared
to that with 441 nodes. It could be due to the larger errors caused by smoothening out of the
approximate solution with 841 nodes since the band in this case is more intense than that for the
mesh with 441 nodes.

5 Conclusions

We have used adaptively refined meshes to study the initiation and growth of shear bands in a
square block made of a viscoplastic material. The mesh is refined at various times to ensure that
the integral of the second invariant of the deviatoric strain-rate tensor over each element is nearly
the same for all elements in the mesh. It generates a non-uniform mesh with small elements in
regions where the strain-rate is high and large elements elsewhere. It is shown that such meshes
are quite effective in analyzing problems in which the deformation localizes into narrow bands of
intense plastic deformation. A comparison of the computed solution with a higher-order approxi-
mate solution reveals that the use of the adaptively refined meshes leads to lower error in the
approximate solution as compared to that obtained with a fixed mesh. For the problem studied
herein, the band forms in about two microseconds, and at a homologous temperature of 0.99 at the
specimen center, the maximum strain-rate there equals 4.65 x 105 sec-1.
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