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Abstract We study transient ®nite deformations of a
neoHookean beam or plate with piezoelectric (PZT)
patches bonded to its upper and lower surfaces. The
constitutive relations for the PZTs are taken to be linear in
the Green-Lagrange strain tensor but quadratic in the
driving voltage. A ®nite element code using 8-noded brick
elements has been developed and validated by comparing
computed results with either analytical solutions or ex-
perimental observations. For ¯exural waves propagating
through a cantilever beam, the sensor output is in¯uenced
a little by the presence of a defect placed symmetrically
about the centroidal axis. A simple feedback control al-
gorithm is shown to control the motion of a neoHookean
plate subjected to an impulsive load.

1
Introduction
Smart structural elements usually consist of a composite
substrate and piezoelectric (PZT) patches either bonded to
the substrate's outer surfaces or embedded in the struc-
ture. They generally can sense and control their undesired
vibrations. They are used to control vibrations of space
structures (e.g. see Hall and Muller 1995; Dosch et al. 1993;
Won et al. 1994), improve acoustics (e.g. see Johnson and
Elliot 1995; Price and Napoletano 1995; Fuller et al. 1991),
and suppress the ¯utter of aircraft panels (e.g. see Heeg
et al. 1995; Song et al. 1992). Because of the dif®culty in
accurately modeling the interaction between PZTs and the
substrate, analytical solutions of smart structure problems
are limited to their in®nitesimal deformations and simple
geometries (e.g. see Ray et al. 1993; Lagoudas and Bo 1994;
Brooks and Heyliger 1994; Srinivas et al. 1970; Wittrick
1987; Zhou and Tiersten 1994; Batra and Liang 1996).
Numerous authors have used the ®nite element method
(FEM) to analyse smart structural problems by using ei-

ther a beam theory (e.g. see Hanagud et al. 1987; Im and
Atluri 1989; amongst others), a plate theory (Chandra-
shekhara and Agarwal 1993; Batra and Ghosh 1995;
Samanta et al. 1996; Suleman and Venkayya 1995; amongst
others), and a shell theory (Tzou and Gadre 1989; Qiu and
Tami 1996; amongst others). The three-dimensional FEM
has been used by Allik and Hughes (1970), Mollenhauer
and Grif®n (1994), Tzou et al. (1994), Hauch (1995) and
others. Wojicik et al. (1993) have argued that the explicit
algorithm is more appropriate for studying the transient
response of large smart structures.

Whereas foregoing studies have considered in®nitesi-
mal deformations and hence have used linear material
models, Norwood et al. (1991), Kulkarni and Hanagud
(1991), and Pai et al. (1992) have accounted for material
and/or geometric nonlinearities. Crawley and Anderson
(1990) experimentally showed that the normal strain vs.
electric ®eld relation for the G1195 PZT is highly nonlinear
for driving electric ®elds exceeding 100 V/mm. Tiersten
(1993) has successfully modeled these experiments by
using a theory linear in displacement gradients but cubic
in the electric ®eld. Maugin et al. (1992) and Tiersten
(1971, 1975) have developed fully nonlinear material
models that account for both ®nite deformations and large
electric ®elds. Yang and Batra (1995) have derived second-
order form invariant polynomial constitutive relations for
transversely isotropic and orthotropic PZTs. Huang and
Batra (1996) have generalized these to include heat con-
duction and viscous effects.

Here we analyse three-dimensional nonlinear smart
structure problems by the FEM and model the substrate
and the PZT by second-order form invariant polynomial
constitutive relations. The problem formulation accounts
for the bending and stretching deformations of the PZTs
and the substrate. Because of the dif®culty in ascertaining
values of material parameters, results are presented for a
neo-Hookean substrate and the PZT modeled by a con-
stitutive relation linear in the Green-Lagrange strain ten-
sor but quadratic in the electric ®eld. Both Crawley and
Anderson's experiments on a PZT plate and Moetakef
et al.'s (1996) experiments on ¯exural waves in an alumi-
num beam generated by PZT patches bonded near its free
end are simulated. Computed results are found to be in
general agreement with the test observations. The trans-
verse velocity of a point on the surface of a neoHookean
cantilever beam is not affected much by the presence of a
narrow defect near its centroidal axis. A simple feedback
algorithm is shown to control well the vibrations of a
cantilever smart plate.
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2
Formulation of the problem
Consider a smart structure occupying the region X in the
reference con®guration with region Xs occupied by a
substrate and Xp by a piezoelectric material bonded per-
fectly to the substrate at their common interface
oXint � oXs \ oXp. Using rectangular Cartesian coordi-
nates and the referential description of motion, equations
governing ®nite deformations of the structure are

TLi;L � q0bi � diMq0 �uM in X �1�
DL;L � 0 in Xp : �2�
Here TLi is the ®rst Piola-Kirchhoff stress tensor, upper
case indices refer to Cartesian coordinates X in the refer-
ence con®guration and lower case indices to those (x) in
the present con®guration, a comma followed by an index
L�i� implies partial differentiation with respect to XL�xi�, a
repeated index implies summation over the range of the
index, diM is the Kronecker delta, b the present body force
per unit mass, q0 the mass density, u the displacement of a
point, a superimposed dot indicates the material time
derivative, and D is the electric displacement. Because of
small permittivity of the free space, the Maxwell electro-
static stress tensor has been neglected. We have also ne-
glected the effect of body charges and inertia associated
with the electric displacement ®eld. The pertinent boun-
dary conditions are

u � û on oXu ; �3:1�
TLiNL � f̂i on oXt ; �3:2�
/ � /̂ on oX/ ; �3:3�
DLNL � D̂ on oXe ; �3:4�
�u� � 0; �TLi�NL � 0 on oXint : �3:5�
That is displacements are prescribed as û on oXu, surface
tractions as f̂ on oXt, the electric potential as /̂ on oX/
and the normal component of electric displacement as D̂
on oXe. Here N is an outward unit normal to oX. In
Eq. (3.5), �u� � uP ÿ uS where uP�uS� denotes the dis-
placements of a piezoelectric (substrate) point on oXint.
Equations (3.5) imply that displacements and surface
tractions are continuous across oXint which is equivalent
to the assumption that the piezoelectric material and the
substrate are perfectly bonded to each other. The electric
displacement D is related to the electric potential /
through

DL � PL � �0JXL;iXK;iWK ; �4:1�
WL � ÿ/;L ; �4:2�
where P is the electric polarization vector, �0 the permit-
tivity of the free space, J � det�FiL�; FiL � xi;L; W is the
material electric ®eld, and / the electric potential.

We assume that the piezoelectric material is trans-
versely isotropic. Because of the dif®culty in determining
from the scant experimental data explicit expressions for
the response functions of a nonlinear transversely isotro-
pic piezoelectric material, we employ a second-order the-
ory for it. With unit vector a pointing in the direction of
transverse isotropy and assuming that the piezoelectric

plate is initially stress free, we postulate the following
(Yang and Batra 1995).

T � �2c1I1 � c3I2 � e1I3 � 3k1I2
1 � 2k3I1I2 � k4I2

2 � k5II1

� k7II2 � 2m1I1I3 � m2I2
3 � m7II3 � m9II4

� m14I2I3�a
 a� �2c2I2 � c3I1 � e2I3 � 3k2I2
2

� k3I2
1 � 2k4I1I2 � k6II1 � k8II2 � 2m3I2I3

� m4I2
3 � m8II3 � m10II4 � m14I1I3�1

� �c4 � k5I1 � k6I2 � m5I3��a
 E � a� a � E
 a�
� 2�c5 � k7I1 � k8I2 � m8I3�E
� �e3 � m9I1 � m10I2 � m11I3��a
W�W
 a�
� 3k9E2 � m12W
W� m13�a
 E �W�W � E
 a

�W
 E � a� a � E
W� ; �5�
ÿP � �2�1I3 � e1I1 � e2I2 � 3l1I2

3 � l2II3 � m1I2
1

� 2m2I3I1 � m3I2
2

� 2m4I3I2 � m5II1 � m6II2 � m11II4 � m14I1I2�a
� 2��2 � l2I3 � m7I1 � m8I2�W
� 2�e3 � m9I1 � m10I2 � m11I3�E � a
� 2m12E �W� 2m13E2 � a : �6�

Here T is the second Piola-Kirchhoff stress tensor, E the
Green-Lagrange strain tensor, c1; c2 . . . ; c5, k1; . . . ; k8,
m1; . . . ; m14, e1; e2; e3, �1; �2; l1 and l2 are material con-
stants, and

I1 � a � Ea; I2 � tr E; I3 � a �W; II1 � a � E2a;

II2 � tr E2; II3 �W �W; II4 � a � EW�W � Ea ;

�7�
and u
 v denotes the tensor product between vectors u
and v. The neo-Hookean model follows from Eqs. (5) and
(6) by keeping only terms linear in E and W, the small
deformation/large driving voltage theory of Tiersten
(1993) follows from Eqs. (5) and (6) when E is replaced by
the in®nitesimal strain tensor, and the conventional linear
piezo-electric constitutive relations are obtained by keep-
ing only terms linear in W and the displacement gradients;
these equations have been derived by Yang and Batra
(1995). The second-order constitutive relation for a
transversely isotropic substrate follows from Eq. (5) by
setting W � 0, and that for a neo-Hookean transversely
isotropic substrate by keeping terms linear in E. For an
orthotropic neo-Hookean substrate

T � CE �8�
where the fourth order elasticity tensor C has the same
form as the one in linear elasticity.

The Green-Lagrange strain tensor is related to dis-
placements u through

EKL � �uK;L � uL;K � uM;KuM;L�=2 ; �9�
and the ®rst and the second Piola-Kirchhoff stress tensors
are related as
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TKi � xi;LTKL : �10�
The Cauchy stress tensor rij can be computed from TKL by
using

rij � Jÿ1xi;Kxj;LTKL : �11�
In order to complete the formulation of the problem, we

need to specify initial displacements and initial velocities;
we take these to be zero.

3
Finite element formulation
Following Hughes (1987) the weak formulation of Eqs. (1)
and (2) can be written as

diMdiN

Z
X

q�uMvNdX

� diN

Z
oXt

f̂ivN dSÿ
Z

X
TLivN;LdX

� �
; �12a�Z

X
DLw;LdX �

Z
oXe

D̂wdS ; �12b�

where vN is a virtual displacement vector that vanishes on
oXu and w is a virtual electric potential that vanishes on
oX/. The left-hand side of Eq. (12a) equals the virtual
work of inertia forces, the ®rst term on its right-hand side
represents the virtual work of externally applied tractions,
and the second term equals the virtual work done by in-
ternal stresses. Note that internal stresses depend upon the
mechanical deformation and the electric charge in piezo-
electric materials. The left-hand side of Eq. (12b) equals
the virtual internal electric energy, and the right-hand side
is the virtual electric energy due to surface charge on the
piezoelectric material. Substitution for TLi from (5) and
(10), and for DL from (4.1), (4.2) and (6) yields equations
for the determination of displacements u and the electric
potential /. We discretize the domain X into the union of
8-noded brick elements and employ a 2� 2� 2 quadra-
ture rule to numerically evaluate various integrals over an
element. Referring the reader to Hughes (1987) for details,
we note that Eqs. (12) yield the following set of coupled
nonlinear ordinary differential-algebraic equations.

M�d � Fext�t� ÿ Fint�t� ; �13�
Pint�d�t�; U�t�� � Pext�t� : �14�
Here M is the mass matrix which we take as lumped, d the
vector of nodal mechanical displacements, U the vector of
nodal electric potential, Fext and Fint are vectors of nodal
forces equivalent to externally applied surface tractions
and internal stresses respectively, Pint is the nodal charge
vector equivalent to internal polarization in piezoelectric
elements, and Pext is the externally applied nodal charge
vector.

Equation (13) is solved by the central-difference meth-
od. For linear problems, this technique and the lumped
mass matrix yield exact time periods for the waves; it is
hoped that the error, if any, in the time period for non-
linear waves will be small. Thus knowing the nodal me-
chanical displacements at time tn, their values at time
t � tn�1 are given by

d�tn�1� � Dt2Mÿ1 �Fext�tn�1� ÿ Fint�tn�1��Dt1 � Dt2

2

�
� 1

Dt1
� 1

Dt2

� �
d�tn� � d�tnÿ1�

Dt1

�
�15�

where Dt1 � tn ÿ tnÿ1, Dt2 � tn�1 ÿ tn. Recalling that the
central-difference method with the lumped mass matrix is
explicit and conditionally stable, we take

Dt � 1:8=xmax �16�
where xmax is the maximum frequency of free vibration of
the discretized structure. Of course, essential boundary
conditions must be enforced when solving Eqs. (13) or
(15). Because the problem being studied is nonlinear, xmax

needs to be computed after every time step.
We use the Newton-Raphson iterative method to solve

Eq. (14) and write it in the incremental form as

J�U�tn�; d�tn�1��DU�i�n�1

� ÿPint�U�iÿ1��tn�1�; d�tn�1�� � Pext�tn�1� ;
�17�

where

J�U�tn�; d�tn�1�� � oPint

oU

����
�U�tn�; d�tn�1��

;

U�i��tn�1� � U�iÿ1��tn�1� � DU�i��tn�1� ; �18�
U�0��tn�1� � U�tn� :
The iterative process is stopped when

kDU�i��tn�1�k=kU�i��tn�1�k� � ; �19�
� being a preassigned small number; it was set equal to
10ÿ5 for results presented below.

For a smart structure, the number of nodal mechanical
displacements far exceeds the number of nodal electrical
potentials and the aforementioned explicit/implicit tech-
nique of analysing the problem is computationally very
effective.

4
Computation and discussion of results

4.1
Validation of the code
A ®nite element code based on the formulation given
above has been developed and debugged. It was validated
®rst by solving a dynamic problem for a clamped-clamped
square graphite/epoxy plate modeled as a linear elastic
orthotropic lamina. The response of the plate subjected to
a suddenly applied point load at its center computed with
the present code matched very well with that computed
with ABAQUS. We note that ABAQUS ®rst computes the
eigenmodes and thus decouples the mechanical degrees of
freedom. For the quarter of the 200 mm� 200 mm� 1 mm
plate divided into 10� 10� 1 elements, we considered
the ®rst 100 eigenmodes to compute the solution with
ABAQUS.

For the second test problem, we assumed the following
displacement ®elds:
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Case 1 : u1 � 20XLXL sin Xt; u2 � 0; u3 � 0;

Case 2 : u1 � 0; u2 � 20XLXL sin Xt; u3 � 0; �20�
Case 3 : u1 � u2 � 0; u3 � 105X2

2X2
3 sin Xt ;

with X � 1:257� 106=s. For an orthotropic neo-Hookean
plate, we computed the body force required to satisfy the
balance of linear momentum (1), the initial velocity ®eld,
and displacements at the edges of the plate. The developed
code was used to analyse the problem with these initial and
boundary conditions and body forces. In each case, the
computed solution was found to match well with the
corresponding analytical solution of the problem.

A third test problem analysed was an
80 mm � 8 mm � 0:5 mm graphite/epoxy cantilever
lamina with an 8 mm� 8 mm� 0:5 mm piezoelectric
(PZT) actuator af®xed, with its left edge 40 mm from the
clamped edge, to its top surface. Both materials were
modeled as linear elastic with the lamina as orthotropic
and the PZT as transversely isotropic; values of material
parameters given in Batra et al. (1996) were used. A point
load was applied at each corner of the free end; the load
increased linearly from 0 to 1N in 200 ls, was maintained
at 1N for 100 ls and then decreased linearly to 0 in 200 ls.
The time histories of the transverse displacement of the
point of application of the point load and the voltage
output at the top right corner of the PZT patch as com-
puted by ABAQUS (Version 5.2) and the present code are
plotted in Fig. 1; it is clear that the two results agree well.
We note that problems involving nonlinear response of
PZTs can not be analysed with ABAQUS.

Crawley and Anderson (1990) applied large driving
voltages that increased linearly with time to the two sides
of an unconstrained 20 mm � 10 mm� 0:25 mm PZT-
G1195 plate and found its response to be highly nonlinear.
Tiersten (1993) modeled the experiment as a plane-stress
problem and used a theory linear in displacement gradi-
ents but cubic in the driving electric ®eld. He determined
the material constants for the PZT by the least squares
method and found that the computed response matched
very well with the observed one. Here we simulate Crawley

and Anderson's experiment by using our code. The edges
of the unconstrained PZT plate are taken to be stress free,
and points on the bottom surface are constrained from
moving in the thickness direction. A uniform voltage in-
creasing linearly at 100 V/ls is applied to the top surface
with the bottom surface grounded. Because of the
symmetry of the problem about the two centroidal axes,
only a quarter of the plate is modeled by a 20� 10� 2
uniform mesh. To study the small deformation/large
electric ®eld problem, it is reasonable to model the PZT
by the following constitutive relation, obtained from
(5) and (6) by retaining terms, linear in E but quadratic
in W

T � �2c1I1 � c3I2 � e1I3 � m2I2
3 � m7II3�a
 a

� �2c2I2 � c3I1 � e2I3 � m4I2
3 � m8II3�1

� c4�a
 E � a� a � E
 a� � 2c5E

� �e3 � m11I3��a
W�W
 a� � m12W
W;

ÿ P � �2�1I3 � e1I1 � e2I2 � l2II3 � 2m2I1I3

� 2m4I2I3 � m11II4�a
� 2��2 � l2I3 � m7I1 � m8I2�W
� 2�e3 � m11I3�E � a� 2m12E �W : �21�

We assigned following values to material parameters (see
Tiersten 1993).

c1 � 29 GPa, c2 � 38:1 GPa, c3 � ÿ2 GPa ,

c4 � ÿ21 GPa, c5 � 35:9 GPa ,

e1 � 13:4757 C=m2; e2 � ÿ39:8583 C=m2 ;

e3 � 0; q � 7; 500 kg=m3 ;

m4 � ÿ90:3� 10ÿ6 Pa m2=V2 ;

m12 � 30:54� 10ÿ6 Pa m2=V2 ;

�0 � 8:8419� 10ÿ12 N/V2 ;

�1 � 1:081� 10ÿ9 N=V2 ;

�2 � ÿ2:22558�ÿ10ÿ9 N/V2 : �22�

Fig. 1a, b. A comparison of the time histories, as computed by ABAQUS and the present code, of a the transverse displacement under
the point load applied to a composite plate, and b the voltage output at the top right corner of the PZT patch
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The computed variation at the PZT centroid of the lateral
tensile strain with the transverse electric ®eld is compared
in Fig. 2 with the test results and also with that given by
Tiersten. It is clear that our result is in close agreement
with Tiersten's analytical result, and in good agreement
with Crawley and Anderson's experimental result. Tiersten
incorporated a third-order term in the electric ®eld, and
obtained results very close to the test values.

4.2
Flexural waves in a cantilever beam
We now simulate experiments of Moetakef et al. (1996) on
wave propagation in a beam and delineate the effects of the
nonlinear response of PZTs. Their experimental set up,
consists of a 1500 mm� 25.4 mm� 3.175 mm cantilever
6061-T65 aluminum beam with two 25.4 mm� 25.4 mm
� 1.3716 mm PZT-850 patches bonded to its upper and
lower surfaces abutting the free edge. A single sinusoidal
pulse of 250 V amplitude and 500 ls time period is applied
to the PZT surfaces. The transverse velocity at six points A
through F on the top surface of the beam was measured by

a ®ber optic interferometer. With the origin of the rect-
angular Cartesian coordinate system at the centroid of the
free end, x3-axis pointing upwards and x1-axis into the
beam (cf. Fig. 3), coordinates (in mm) of points A through
F are (0, 12.7, 2.9591), (6.35, 12.7, 2.9591), (19.05, 12.7,
2.9591), (101.6, 12.7 1.5875), (152.4, 12.7, 1.5875), (203.2,
12.7, 1.5875). Thus points A;B and C are on the longitu-
dinal edge of the top surface of the PZT patch, and D;E
and F are on the longitudinal edge of the top surface of the
aluminum beam. Due to the symmetry about the x1-x3

plane, only one-half of the structure is modeled. Since the
generated disturbance is a plane wave perpendicular to the
direction of propagation, one element in the x2-direction
should suf®ce. In the region with x1 < 476:25 mm, wherein
points A through F are located, a ®ne mesh with element
size (in mm) 1:5875� 1:5875� 0:79375 is used; elsewhere
the element size equals 3:175� 1:5875� 0:79375: The el-
ement size in the PZT actuators (in mm) is 1:5875 �
1:5875� 0:6858: The values of material constants for the
PZT-850 are taken to be the same as those for the PZT-2
(the two are equivalent according to the American Piezo-
ceramics Inc.). These and material parameters for alumi-
num modeled as an isotropic material are listed below.
Piezoelectric material:

c1 � 23:1 GPa, c2 � 33:944 GPa, c3 � 199:6 MPa,

c4 � ÿ22:535 GPa, c5 � 33:49 GPa,

e1 � 8:67544 C/m2; e2 � 1:85657 C/m2;

e3 � ÿ9:77768 C/m2;

�0 � 8:8419� 10ÿ12 N/V2;

�1 � 1:08� 10ÿ9 N/V2; �2 � ÿ2:22558� 10ÿ9 N/V2;

q � 7; 600 kg=m3 �23�
Aluminum:

q � 2; 700 kg=m3, Young's modulus � 68:965 GPa,

Poisson's ratio � 0:3269.

Time histories of the transverse velocity of points A;C
and E, as computed by the present code using the in-
®nitesimal theory, observed experimentally, and computed
by Moetakef et al. (1996) by the ®nite element method are
plotted in Figs. 4a through 4c; Moetakef et al. used tetra-
hedral elements, modeled a quarter of the structure, and
employed a Newmark-Wilson time integration scheme;
their ®nite element mesh had one element in the thickness
direction in the PZT and in the aluminum beam. Results
for other three points are given in Liang (1997). The two
sets of computed results agree well for points A;B and C
on the top PZT patch. However, they differ noticeably
from the test values at points A and B. At point C, our
computed results are in better agreement with the ob-
served values than those of Moetakef et al. For points D
and E on the aluminum beam, our computed results are
closer to the experimental results than those of Moetakef
et al., and for point F, the two sets of computed results
differ noticeably from the test data. Except for points A
and F, the ®nite element results at other points are in good
agreement with those observed experimentally. Moetakef
et al. noted that the agreement between the computed and

Fig. 2. A comparison of Crawley and Anderson's test data and
Tiersten's results of the lateral tensile strain at the centroid of the
PZT-plate vs. the transverse electric ®eld with that computed by
using the present code

Fig. 3. A sketch of the setup of Moetakef et al.'s experiment on
wave propagation in a cantilever aluminum beam (not to scale)
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observed values of the transverse velocity at points A
through F was not improved by using a ®ner ®nite element
mesh. Factors for the difference between the computed
and experimental results include the higher stiffness of the
discrete model, neglecting in the FE model the effect of the
adhesive layer between the PZT patch and the aluminum
beam, differences between the values of material constants
for the PZT-850 and the PZT-2, ignoring hysteresis in the
PZT, collecting every eighth data point in the experiment,
smoothening of the test data, and the generated wave be-
ing not a plane wave.

We now model the aluminum as an isotropic neo-
Hookean material, and the PZT as a transversely isotropic
neo-Hookean material. For results presented in Fig. 4,
only terms linear in W are retained in (21). Time histories
of the axial and lateral strains and the axial and lateral
normal stresses at four points, P;Q;R and S on the vertical
line through the point (6.685 mm, 0.335 mm, 0) are ex-
hibited in Fig. 5; time histories of the other components of
strain and stress are omitted for brevity. Note that points P
and Q are in the beam, and R and S are in the PZT patch.
The inplane shear strain E12 was found to be two orders of
magnitude smaller than the axial strain, and the transverse
shear strains and the transverse normal strain an order of
magnitude smaller than the axial strain. However, the
normal strains in the x1- and x2-directions are of the same
order of magnitude, and are in phase with each other; E33

was found to be 180� out of phase with E11. Each curve is a
sine wave of 500 ls duration implying that a sinusoidal
impulse generates sinusoidal strains and stresses. We re-
call that the vertical line under consideration passes
through the PZT patch and the computed results indicate
that the axial and lateral normal stresses at points R and S
in the PZT patch are compressive but those at points P and
Q are tensile. Thus the distribution of the axial stress on a
vertical line passing through points P;Q;R and S in the
portion of the aluminum beam with the PZT patches is
quite different from that on a vertical line in a monolithic
beam.

In Eq. (21) terms multiplying m2; m4 and m12 are qua-
dratic in W. With the PZT poled in the x3-direction and
the voltage difference also applied in the x3-direction,
terms multiplying m2 and m12 can be added together, or
equivalently only one of them can be considered. Since
values of m4 and m12 for PZT-850 are unknown, we assume
that they are in the same range as those for PZT-G1195
tested by Crawley and Anderson (1990) and examined
above. Figures 6a±6d depict, for three different values of
m4, with m12 � 0, the time-history of the transverse velocity
and displacement of point B, and of the axial strain and
stress at the point (6.685, 0.335, 2.418) mm in the top PZT
patch; results for other points are omitted. It was found
that m4 has a small effect on the transverse velocity and
de¯ection of point A, and has no effect on the transverse
velocity and displacement of points D;E; and F. However,
m4 affects noticeably the transverse velocity and displace-
ment of points B and C. As for results computed with the

Fig. 4a±c. A comparison of the test data of Moetakef et al. and
their computed results of the time histories of the transverse
velocities of points A, C and E on a cantilever beam actuated by
two PZT patches bonded near its free edge with the corre-
sponding results computed by using the present code
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linear theory, axial stress and axial strain at the point
(6.685, 0.335, 2.418) mm in the PZT are nearly 180� out of
phase with each other. Also E22 and T22 were found to be
about 180� out of phase with each other but the remaining
components of stress were in phase with the correspond-
ing components of strain. The overall agreement between
the computed and observed transverse velocities at the six
points A through F, described above, is not greatly im-
proved by considering the term with m4. We notice,
however, that the agreement between the computed
and observed velocities at point B is better for m4 �
ÿ1� 10ÿ4 Pa m2=V2 than that for m4 � 0. Figures 7a
through 7d depict, for three different values of m12, with
m4 � 0, the time histories of the transverse velocity and
displacement of point B, and of the axial strain and stress
at the point (6.685, 0.335, 2.418) mm in the top PZT patch;
results for other points are omitted. As was the case for
m4; m12 has a small effect on the transverse velocity and
displacement of point A, has essentially no effect on the
transverse velocity and displacement of points D;E and F,
but has noticeable effect on transverse velocity and dis-
placements of at points B and C.

Every component of strain and stress tensors at the
point (6.685, 0.335, 2.418) mm in the top PZT is signi®-
cantly in¯uenced by m4 and m12. The longitudinal strain and
stress are no longer a sinusoidal function of time for the
PZTs with nonzero values of m4 and/or m12. Also, the
magnitude of T11 is higher for the PZT with nonzero m4

and/or m12 as compared to that for m4 � m12 � 0. The re-
sponse for the positive applied voltage is quite different
from that for the negative applied voltage.

4.3
Flexural waves in a defective cantilever beam
In an attempt to see if the propagation of ¯exural waves in
a cantilever beam can be used to delineate a defect in it, we
use Moetakef et al.'s (1996) set up discussed above but
introduce a 9:525 mm� 1:5875 mm� 1:5875 mm weak
region located at 184:15 mm from the free edge; one sur-
face of the weak region abuts the midsurface of the beam.
The elastic constants for the material in the weak region
equalled 10ÿ5 of those in the remainder of the beam.
Figures 8 and 9 depict the time histories of the transverse
velocity and the voltage output from the PZT sensor

Fig. 5. Time histories of the axial and lateral strains, and axial and lateral stresses at four points on a vertical line in Moetakef et al.'s
experiment on ¯exural vibrations of a beam
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bonded to the upper surface of the beam at a distance of
233:36 mm from the free edge. The results exhibited are for
a neoHookean beam, but similar results were obtained for
a linear elastic beam. The differences in the time-histories
of the transverse velocities for beams with and without
defects is not large enough for the technique to be of
practical use.

4.4
Active control of a nonlinear cantilever plate
We now consider a three-layer �0=90=0� 60 mm� 40 mm
�3 mm graphite/epoxy cantilever plate with three
4 mm� 12 mm� 1mm PZT-G1195 sensors bonded to its
top surface and three 4 mm� 8 mm � 1mm PZT-G1195
actuators af®xed to its bottom surface as shown in Fig. 10.
Each PZT patch is prepoled in the x3-direction. The goal is
to annul vibrations of the plate when a sinusoidal impact
force of amplitude 20 N and time period 2 ms is applied
for 1 ms at each node on the free edge.

In order to actively control the structure, each sensor is
connected to a corresponding actuator to form a closed-
loop system. A simple constant-gain position feedback

control algorithm (Ha et al. 1992) is employed. The ith
sensor output is multiplied by a gainfactor, Gi, and the
resulting voltage is uniformly applied to the ith actuator.
Generally, the voltage induced in a sensor does not affect
much its mechanical response through the converse pi-
ezoelectric effect. Hence we presume that the dynamic
output from a sensor is due to its mechanical deformations
only. We assume that the gain factor, Gi � 107 V/m, is the
same for each sensor-actuator pair. The open-loop re-
sponses of the structure using both linear elastic and neo-
Hookean material models were found to be virtually in-
distinguishable because of the in®nitesimal strains induced.
Results presented herein are for the neo-Hookean material
and the response of the piezoelectric material represented
by Eq. (21) with material parameters given by (24).

We focus on minimizing the vibrations of points A
through F shown in Fig. 10, and accomplish this by using
®rst the sets of sensors and actuators nearest to the ®xed
support, then by using this and also the adjoining sets, and
®nally all three sets. Figures 11a±11f depict the time his-
tories of the transverse displacement of points AÿF for
these three cases, and also for the uncontrolled case. It is

Fig. 6a±d. Time histories of the transverse velocity and displacement of point B, and of the axial strain and stress at the point (7.02,
9.36, 2.418) mm in the PZT for three different values of m4 with m12 � 0
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Fig. 7a±d. Time histories of the transverse velocity and displacement of point B, and of the axial strain and stress at the point (7.02,
9.36, 2.418) mm in the PZT for three different values of m12 and m4 � 0

Fig. 8. Time history of the transverse velocity of a top right
corner of the PZT sensor on the cantilever beam, used in Moe-
takef et al.'s experiment, with and without a defect in it.

Fig. 9. Time history of the sensor voltage with and without a
defect in the Moetakef et al.'s cantilever beam
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Fig. 10. A set up of the smart plate

Fig. 11 Time histories of the transverse displacements of points A
through F when a no sensors and actuators b sensors and actu-
ators in Column I closest to the ®xed support, or c sensors and
actuators in Columns I and II, or d all sensors and actuators are
activated

.
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clear that the actuators placed near the free end are more
effective in diminishing the vibrations of points AÿF, and
the sensor/actuator pair located closest to the ®xed end of
the plate slightly reduces the amplitude of vibrations of
points AÿF.

5
Conclusions
We have developed and validated a ®nite element code to
analyse 3-dimensional transient deformations of a neo-
Hookean body with piezoelectric patches either af®xed to
its bounding surfaces or embedded in it. The code has
been used to analyse Crawley and Anderson's experiment
on ascertaining the response of an unconstrained PZT
plate to large driving voltages, and Moetakef et al.'s ex-
periment on the propagation of ¯exural waves in a canti-
lever beam. In each case the computed and observed
results are found to agree with each other within accept-
able limits. The code is then used to study the propagation
of ¯exural waves in a defective neoHookean cantilever
beam, and the sensor output is found to be essentially
insensitive to the defect considered. It is found that a
simple feedback control algorithm in which the actuator
input voltage is proportional to the transverse displace-
ment of the sensor effectively annuls the vibrations of a
neoHookean cantilever plate subjected to an impulsive
load.
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