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Abstract We study thermomechanical deformations of a
viscoplastic body deformed in simple shear. The strain
gradients are taken as independent kinematic variables
and the corresponding higher order stresses are included
in the balance laws, and the equation for the yield surface.
Three different functional relationships, the power law,
and those proposed by Wright and Batra, and Johnson and
Cook are used to relate the effective strain rate to the
effective stress and temperature. Effects of strain harden-
ing of the material and elastic deformations are neglected.
The homogeneous solution of the problem is perturbed
and the stability of the problem linear in the perturbation
variables is studied. Following Wright and Ockendon's
postulate that the wavelength whose initial growth rate is
maximum determines the minimum spacing between ad-
jacent shear bands, the shear band spacing is computed. It
is found that the minimum shear band spacing is very
sensitive to the thermal softening coef®cient/exponent, the
material characteristic length and the nominal strain-rate.
Approximate analytical expressions for the critical wave
length for heat conducting nonpolar materials and locally
adiabatic deformations of gradient dependent materials
are also derived.

Keywords: Material characteristic length, strain-rate
gradient, dominant growth rate, viscoplastic material,
stability

1
Introduction
Most of the analytical, numerical and experimental studies
on adiabatic shear bands have focussed on analyzing the
initiation and growth of a single shear band; e.g. see the
book by Bai and Dodd (1992), the review article by Tomita
(1994), papers in a special issue of Mechanics of Materials
edited by Armstrong et al. (1994), the volume edited by
Batra and Zbib (1994), and the book edited by Perzyna

(1998). Batra (1987), Batra and Kim (1990a), and Kwon
and Batra (1988) have numerically studied the interaction
among shear bands in a thermo-elasto-viscoplastic body
deformed in simple shear. They perturbed the solution of
the nonlinear coupled partial differential equations gov-
erning the deformations of the body by introducing a
temperature perturbation with multiple cusps and nu-
merically solved the resulting nonlinear problem to see if
one or more shear bands formed. Kwon and Batra found
that for a typical steel modeled as a nonpolar (simple)
material, a shear band formed at each trough in the cosine
wave in a specimen deformed at an overall strain-rate of
500/s but at each crest when the nominal strain-rate
equalled 50,000/s. For dipolar materials with material
characteristic length equal to 0.5% of the specimen
thickness, at a nominal strain-rate of 500/s a shear band
formed only at the two bounding surfaces where the ve-
locity was prescribed and at each crest when the nominal
strain-rate was 50,000/s. Both for dipolar and nonpolar
materials deformed at an average strain-rate of 50,000/s,
the distance between adjacent shear bands was found to be
0.258 mm. They did not attempt to ®nd the minimum
spacing between shear bands. Similarly, Batra and Liu
(1990) and Batra and Hwang (1994) studied the interaction
among shear bands formed in a thermoviscoplastic body
deformed in plane strain compression but did not ®nd the
minimum spacing between shear bands.

Grady and Kipp (1987) obtained the minimum shear
band spacing by accounting for momentum diffusion due
to unloading within bands. Wright and Ockendon (1996)
considered simple shearing deformations of a thermo-
viscoplastic block, perturbed the homogeneous solution of
the governing equations, derived equations linear in the
amplitude of the perturbations and thus studied the sta-
bility of the homogeneous solution. They postulated that
perturbations growing simultaneously at different sites will
never merge and thus result in multiple shear bands. Hence
the wavelength of the mode with the maximum initial
growth rate corresponds to the minimum spacing between
shear bands. Wright and Ockendon neglected the effect of
strain hardening of the material, and also of the boundary
conditions imposed at the edges of the block. Molinari
(1997) has generalized Wright and Ockendon's work to
strain hardening materials, has characterized the effect of
strain hardening exponent on the minimum shear band
spacing, and has delineated the error in the minimum shear
band spacing caused by the ®nite thickness of the block.

Nesterenko et al. (1995) observed multiple shear bands
during the radial collapse of an explosively loaded thick-
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walled cylinder. Shear bands were observed to emanate
from the inner boundary of the cylinder with regular
spacing between the bands. For both austenitic stainless
steel and titanium cylinders, the spacing between shear
bands was found to be about 1 mm.

Wright and Batra (1987) observed that strain gradients
across a shear band are extremely high and generalized
Green et al.'s (1968) work for dipolar elastic-plastic ma-
terials to simple shearing deformations of dipolar elastic-
viscoplastic materials. They considered the strain gradient
as a kinematic variable and the corresponding higher-
order stress a kinetic variable. The dipolar (i.e. strain
gradients) effects stabilize deformations of the body, delay
the onset of shear bands, regularize the problem, and
eliminate the dependence of results upon the ®nite ele-
ment mesh used. Batra and Hwang (1993) have generalized
the one-dimensional dipolar theory of Wright and Batra
(1987) to three-dimensional problems. Here we extend
Wright and Ockendon's work on shear band spacing to
gradient-dependent materials deformed in simple shear.
Three different material models, viz., the power law, the
Wright-Batra relation, and the Johnson-Cook expression
are used to represent the thermoviscoplastic response of
the material. For high strain-rates, the power law and the
Wright-Batra relation differ essentially in the way thermal
softening is accounted for, and the Wright-Batra and
Johnson-Cook relations in the way strain-rate hardening is
considered. For each material model, the homogeneous
solution of the governing equations exhibits softening
behavior at time t � 0. That is, the stress is maximum at
t � 0. The initial growth rate of the perturbation depends
upon the wave number and the time t0 when the pertur-
bation is introduced. When thermal softening is modeled
by an af®ne function of temperature, the maximum value
of the wave number of the perturbation corresponding to
the dominant initial growth rate of the perturbation occurs
for a large value of t0. However, for the thermal softening
modeled by the power law, the wave number of the per-
turbation that initially grows fastest is largest for t0 � 0.
For each material model, the minimum shear band spacing
depends strongly upon the strain-rate hardening expo-
nent/parameter, material characteristic length, and the
thermal softening coef®cient/exponent.

2
Formulation of the problem
We study thermomechanical deformations of a layer of
thickness 2H in the y-direction, extending to in®nity in the
other two directions, and being sheared in the x-direction.
In terms of nondimensional variables (Batra and Kim
(1990a)), the governing equations are

q _v � �sÿ `r;y�;y; �1�
_h � kh;yy � s _c� `r _d; �2�
_c � v;y; _d � v;yy; �3�
s � Kv;y; r � Kv;yy=`; �4�
I � � _c2 � `2 _d2�1=2 � f �s; r; h�: �5�
Here q is the mass density, v the velocity, s the shear
stress, ` a material characteristic length, r the dipolar

stress corresponding to the strain-rate gradient v;yy; h the
temperature rise, k the thermal conductivity, a comma
followed by y signi®es partial differentiation with respect
to y, a superimposed dot indicates the material time
derivative, and K is the plastic multiplier. Equations (1)
and (2) express respectively the balance of linear mo-
mentum and the balance of internal energy, and Eqs. (4)
and (5) are constitutive relations. Here we have neglected
elastic deformations and assumed that all of plastic
working is converted into heating. Equations �4�1 and
�4�2 imply that

sv;yy � r`v;y : �6�
Governing equations for nonpolar materials are obtained
from (1), (2) and (5) by setting ` � 0. The nondimensional
variables are related to their dimensional counterparts,
indicated by a superimposed bar, as follows.

�y � Hy; �̀� H`; �c � c; �d � d=H;

�s � s0s; �r � s0H`r; �t � t= _c0;
�h � hh0;

�qH2 _c2
0=s0 � q; �k=�q�c _c0H2 � k; h0 � s0=�q�c :

�7�

Here s0 is the yield stress in a quasistatic simple shear test,
_c0 the average strain-rate, and �c the speci®c heat.

We presume that overall deformations of the layer are
adiabatic, and deformations are driven by nondimensional
shearing speeds �1�� �v0= _c0H� prescribed at the upper
and lower bounding surfaces. That is,

h;yjy��1
� 0; vjy��1 � �1: �8�

We neglect the effect of strain hardening and consider
three different forms for the function f in Eq. (5); the
Wright-Batra (WB) relation (1987), the power law (e.g. see
Molinari (1997)), and the Johnson-Cook relation (1983).
These may be written as

f �s; r; h� � 1

b

�s2 � r2�1=2

�1ÿ ah�

 !1=m

ÿ1

24 35 �9a�

for the WB relation,

f �s; r; h� � lÿ1=m
0 �s2 � r2�1=2mhÿm=m �9b�

for the power law, and

f �s; r; h� � _c� exp
1

C

�s2 � r2�1=2

�1ÿ ah� ÿ 1

( )
�9c�

for the Johnson-Cook relation. In (9a) a�� �ah0� is the
coef®cient of thermal softening, and parameters b�� �b _c0�
and m characterize the strain-rate hardening of the ma-
terial. For moderate to high strain-rates, bI � 1 and
�1� bI�m ' bmIm with the exponent m� 1. In (9b) m
characterizes the strain-rate hardening of the material,
m�< 0� its thermal softening and l0�� �l0 _cm

0 smÿ1
0 =��q�c�m� is

related to the yield stress of the material. In (9c), a is the
coef®cient of thermal softening, _c��� �_c�= _c0� is a reference
strain-rate, and C characterizes the strain-rate hardening
of the material.

An homogeneous solution of Eqs. (1)±(3), (5), (6), (8)
and (9a) is
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~s0 �
~v0

~s0

~r0

~h
0

8>><>>:
9>>=>>; �

y
�CeÿCt�=a
0
�1ÿ eÿCt�=a

8>><>>:
9>>=>>; �10a�

where C � abm, that of (1)±(3), (5), (6), (8) and (9b) is

~s0 �
y
l0�h0�m
0
�h1ÿm

i � �1ÿ m�l0t�1=�1ÿm�

8>><>>:
9>>=>>; �10b�

where hi is the temperature at time t � 0, and that of
(1)±(3), (5), (6), (8) and (9c) is

~s0 �
y
A exp�ÿAat�
0
�1ÿ exp�ÿAat��=a

8>><>>:
9>>=>>; �10c�

where A � �1ÿ C ln _c��. Note that ~s0 is non-dimensional.

3
Perturbation analysis
We perturb the homogeneous solution at time t0 by an
in®nitesimal amount

ds�y; t; t0� � eg�tÿt0��inyds0 �11�
where

ds�y; t; t0� � dv�y; t�; ds�y; t�; dr�y; t�; dh�y; t�� �T; t � t0;

�12�
ds0 � dv0; ds0; dr0; dh0

� �T
; �13�

ds0 is in®nitesimal amplitude of the perturbation, n the
wave number, and g the initial growth rate of the pertur-
bation. The homogeneous solution ~s0 is stable or unstable
according as Re�g� < 0 or Re�g� > 0.

Substitution of the perturbed solution

s�y; t; t0� � ~s0�y; t� � ds�y; t; t0� �14�
into the governing Eqs. (1), (2), (5) and (6), and lineari-
zation yields

A�t0; g; n�ds0 � 0 �15�
where

A�t0; g; n� �
qg ÿin ÿ`n2 0
ÿis0n ÿ1 0 g� kn2

ÿ`s0n2 0 ÿ1 0
in ÿf 0

;s ÿf 0
;r ÿf 0

;h

2664
3775; �16�

f 0
;s � �of =os�js � s0 etc. and the superscript zero signi®es

the value of the quantity at time t0. In order for Eq. (15) to
have a nontrivial solution for ds0, det A � 0 which gives

a2g
2 � a1g� a0 � 0 �17�

where

a2�t0� � ÿqf 0
;s ;

a1�n; t0� � ÿ`2s0f 0
;sn

4 ÿ �1� qkf 0
;s�n2 ÿ qf 0

;h; �18�
a0�n; t0� � ÿ`2ks0f 0

;sn
6 ÿ �k� `2s0f 0

;h�n4 � s0f 0
;hn

2 :

For the choice (9a) of the function f and recalling that
bI � 1 so that �1� bI�m ' bmIm, relations (18) simplify to
the following.

a2�t0� � ÿqeCt0=�mbm�;
a1�n; t0� � ÿ`2n4=mÿ �1� qkeCt0=�mbm��n2

ÿ �qaeCt0�=m; �19a�
a0�n; t0� � ÿ`2kn6=mÿ �k� `2abm=m�n4 � abmn2=m :

When the function f is given by (9b), relations (18) be-
come

a2�t0� � ÿ q
ml0

�h0�ÿm;

a1�n; t0� � ÿ`
2

m
n4ÿ 1� qk

ml0

�h0�ÿm
� �

n2� qm

h0m
; �19b�

a0�n; t0� � ÿ`
2k

m
n6 ÿ kÿ `

2ml0

m
�h0�mÿ1

� �
n4

ÿ ml0

m
�h0�mÿ1n2

For the function f given by (9c), relations (18) simplify to

a2�t0� � ÿ q
C

eaAt ;

a1�n; t0� � ÿ `
2A

C
n4ÿ 1� qk

C
eaAt

� �
n2ÿ qaA

C
eaAt; �19c�

a0�n; t0� � ÿ `
2kA

C
n6 ÿ k� `2 aA2

C

� �
n4 � aA2

C
n2

For a wave number n compatible with boundary condi-
tions, equation (17) will have two roots. The instability of
the homogeneous solution is governed by the root with the
larger positive real part; this can be determined numeri-
cally and is hereafter referred to as the initial dominant
growth rate. Results presented below are for a plate of
in®nite thickness; thus the effect of boundary conditions
has been neglected.

Results are computed for the titanium studied by Mo-
linari (1997), SAE4340 steel studied by Batra and Kim
(1990b), and a S-7 tool steel.

3.1
Results for Titanium modeled by the power law
The material was modeled by the power law, and param-
eters were assigned the following values in SI units given
by Molinari (1997).

�q � 4510 kg=m3; �c � 528 J=kg�C; �k � 19 W=m�C;

_c0 � 104=s; s0 � 405 MPa; �hi � 300 K;

H � 2:5 mm; m � 0:033; m � ÿ1:7;

` � 0:001; �l0 � 12� 1012 : �20�
The value of H is used to non-dimensionlize quantities.
With strain-hardening neglected, the stress begins to de-
crease right from the beginning. Figure 1 depicts, for dif-
ferent values of the time t0 when the perturbation is
introduced, the dependence of the initial dominant growth
rate g of the perturbation upon the wave number. It is

10



evident that for a given value of t0, the initial dominant
growth rate of the perturbation depends upon the wave
number; it ®rst increases with an increase in the wave
number n, reaches a maximum and then decreases with an
increase in n. We henceforth denote the maximum domi-
nant initial growth rate by gm, the corresponding wave
number by nm, and call gm and nm the critical growth rate
and the critical wave number respectively; both gm and nm

depend upon t0. Figures 2a and 2b exhibit respectively the
dependence of gm and nm upon t0 for material character-
istic length ` � 0, 0.001, 0.005 and 0.01. For each value of `
considered, gm decreases exponentially with an increase in
t0, and nÿ1

m increases gradually with t0. The gm vs. t0 and nÿ1
m

vs. t0 curves are similar for each value of `. As the value of `
is increased from 0 to 0.01 at a ®xed t0, the critical wave-
length increases and the critical growth rate decreases.
When strain hardening effects are considered, the gm vs. t0

and nÿ1
m vs. t0 curves do not change monotonically but

exhibit a local maxima and minima at possibly different
values of t0 (e.g. see Molinari (1997)). For the problem
studied here with no strain hardening, gm and nÿ1

m assume
their maximum and minimum values at t0 � 0.

Wright and Ockendon (1996) postulated that the min-
imum spacing, Ls, between adjacent shear bands is de-
termined by the critical wave number nm. Thus

Ls � 2p
nm�tg

0�
�21�

gives the minimum shear band spacing, henceforth we
refer to Ls simply as shear band spacing. Here tg

0 corre-
sponds to the time when gm�t0� is maximum. Molinari
(1997) found that for strain hardening materials described
by a power law gm and nm assume their maximum values
at about the same value of time t0, and computed results
by using the following relation

Ls � inf
t0�0

2p
nm�t0� : �22�

For power law type constitutive relation, Eqs. (21) and (22)
give essentially the same value of the shear band spacing.

However, for the thermal softening described by an af®ne
function, results obtained from (21) and (22) are quite
different. Results presented below are computed with
Eq. (22).

Figures 3, 4, 5, 6 and 7 respectively exhibit the depen-
dence of Ls and the maximum critical growth rate upon
the material characteristic length `, thermal conductivity k,
strain-rate hardening exponent m, thermal softening ex-
ponent m, and the nominal strain-rate _c0. In each case,
except for the one parameter varied, other parameters are
kept ®xed. Whereas the shear band spacing increases
rapidly with an increase in the value of the material
characteristic length `, the maximum critical growth rate
decreases implying thereby that the consideration of
dipolar effects has a stabilizing effect. The shear band
spacing for the titanium �Ti� alloy increases from 0.4 mm
to 2.50 mm when ` is increased from 0 to 0.01. Nesterenko
et al. (1995) have measured the spacing between adja-
cent shear bands formed due to the radial collapse of a
thick-walled cylinder at a strain-rate of about 104=s. They
reported Ls � 1 mm, and values computed with the
Wright-Ockendon, Grady-Kipp, and Molinari models are
LWO � 0:3 mm, LGK � 1:8 mm, LM � 0:75 mm (see Nest-
erenko et al. (1995)). We note that Molinari (1997) ex-

Fig. 1. Variation of the initial dominant growth rate vs. the wave
number of the perturbation for six different values of the time t0

when the perturbation is introduced. Results are for a titanium
alloy modeled by the power law

Fig. 2. Critical growth rate gm and the critical wavelength Lm vs.
t0 for four different values of the material characteristic length `.
Results are for a titanium alloy modeled by the power law
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tended Wright and Ockendon's (1996) work for non-strain
hardening materials to strain hardening materials. When
strain hardening effects are neglected in Molinari's work,
his value of 0.4 mm for Ls agrees with that obtained here.
The value LWO � 0:3 mm is computed from the approxi-
mate analytical expression (e.g. see (38)1 below) derived by
Wright and Ockendon. Assuming that values (20) of all

material parameters except for ` are correct, then the value
of ` can be ascertained by matching the computed shear
band spacing with the observed value. A real test of the
dipolar theory will then be to compare its predictions with
the test values for a different con®guration; this is not
pursued here. Out of the ®ve parameters varied, the
maximum critical growth rate is very sensitive to the
thermal softening exponent m and the strain-rate harden-
ing exponent m, and the shear band spacing to the ma-
terial characteristic length ` and the nominal strain-rate _c0.
The shear band spacing decreases from 4.2 mm to about
0.3 mm when _c0 is increased from 500/s to 105=s; for larger
values of _c0, the shear band spacing is essentially unaf-
fected. When thermal conductivity is varied in SI units
from 10 to 220, the shear band spacing increases from
0.76 mm to 0.86 mm.

3.2
Results for SAE 4340 steel modeled
by the Wright-Batra relation
We model the thermoviscoplastic response of the material
by the Wright-Batra relation, and assign following values,
which are typical for a hard steel, to various material and
geometric parameters; see Batra and Kim (1990b).

Fig. 3. Dependence of the shear band spacing and the maximum
critical growth rate upon the material characteristic length `.
Results are for a titanium alloy modeled by the power law

Fig. 4. Variation of the shear band spacing and the maximum
critical growth rate with the thermal conductivity for a material
modeled by the power law

Fig. 5. Shear band spacing and the maximum critical growth rate
vs. the strain-rate hardening exponent m for a power-law material

Fig. 6. Shear band spacing and the maximum critical growth rate
vs. the thermal softening exponent m for a power-law material

Fig. 7. Shear band spacing and the maximum critical growth rate
vs. the nominal strain rate for a power law material
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H � 2:5 mm; _c0 � 3300=s; �q � 7860 kg=m3;

�k � 50 W/mK; �a � 0:00185=K; �c � 473 J/kgK;

s0 � 405 MPa; m � 0:0117; �b � 104s; ` � 0:001 :

�23�
They determined these values by solving numerically an
initial-boundary-value problem so that the computed
stress-strain curve essentially matched the experimental
curve of Marchand and Duffy (1988). They also pointed
out that these values are not uniquely determined. Figure 8
shows the initial dominant growth rate vs. the wave
number for three different values of t0, and Fig. 9 depicts
the critical growth rate gm and the critical wavelength Lm

as a function of t0 for four different values of the material
characteristic length `. Whereas for the previous case, the
critical wavelength has a minimum value at t0 � 0, for the
present case the minima of 1=nm occurs for a rather large
value of t0. In both cases, the effective stress for the ho-
mogeneous solution is maximum at t0 � 0. As for the
power law material model (9b) considered above, the
critical wavelength Lm increases with an increase in the
value of `. For the material model (9b), Lm takes on a
minimum value at t0 � 0 for all four values of ` consid-
ered, but for the material model (9a), the value of t0 when
Lm becomes minimum is different for each value of `
considered. Results plotted in Figs. 10 and 11 evince that
the shear band spacing and the corresponding time tn

0 (the
de®nition of tn

0 is illustrated in Fig. 9a) increase with an
increase in the value of `, and they decrease with an in-
crease in the value of the thermal softening coef®cient, a. A
higher value of a will enhance the thermal softening effect
which should result in the formation of shear bands at
earlier times. The present computations suggest that the
shear band spacing decreases for higher values of a. We
note that for many materials, for example a tungsten heavy
alloy, a is greater than the reciprocal of their melting
temperatures.

Figures 12 and 13 exhibit the in¯uence of the strain-rate
hardening exponent m and the thermal conductivity k
upon the shear band spacing and the corresponding initial
time, tn

0 . The shear band spacing is maximum for m ' 0:05

Fig. 8. Variation of the initial dominant growth rate vs. the wave
number of the perturbation for three different values of the time
t0 when the perturbation is introduced. Results are for a typical
hard steel modeled by the Wright-Batra relation with af®ne
thermal softening

Fig. 9. Critical growth rate and the critical wavelength vs. t0 for
four different values of the material characteristic length `. Re-
sults are for a typical hard steel modeled by the Wright-Batra
relation with af®ne thermal softening

Fig. 10. Dependence of the shear band spacing and the corre-
sponding initial time tn

0 upon the material characteristic length `
for a typical hard steel modeled by the Wright-Batra relation
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and equals 0.27 mm. However, the initial time when the
perturbation is introduced which leads to the shear band
spacing decreases rapidly and monotonically with an in-
crease in the value of m. Higher values of the thermal

conductivity increase the shear band spacing but decrease

the value of the corresponding initial time tn
0 . An increase

in the value of the thermal conductivity by a factor of 10
increases the shear band spacing by a factor of nearly 2.5.

Nesterenko et al. (1995) measured the shear band
spacing in an austenitic stainless steel to be 0.85 mm. For
their material parameters, our analysis gives �Ls � 0:05 mm
for ` � 0 and �Ls � 0:08 mm when ` � 0:001. For material
parameters (23), and ` � 0, we get �Ls � 0:18 mm. Values
of shear band spacing obtained from the work of Wright
and Ockendon, and Grady and Kip equal 0.314 mm and
5.1 mm respectively. A limitation of Wright and Ocken-
don's, Molinari's and the present work is that the thickness
of the layer is taken to be very large. In a layer of ®nite
thickness, the only admissible instability modes are
nn � np=H; n � 1; 2; . . .. Molinari (1997) estimated the
relative error in values of the shear band spacing obtained
with an in®nite layer thickness to be �Ls=2H. For our
problem, for ` � 0:0, Ls=2H � 0:036. Molinari used a
power-law model with strain hardening to characterize the
thermoviscoplastic response of the material and obtained
Ls � 1:4 mm for a hard steel. His value of shear band
spacing is quoted for reference only, and does not cor-
respond to material parameters (23). The other two values
for the shear band spacing are derived from the approxi-
mate expressions given by the authors.

As for the power law model, the shear band spacing de-
creases rapidly (cf. Fig. 14) with an increase in the value of _c0

from 500=s to 105=s and is unaffected for higher values of _c0.
Kwon and Batra (1988) assumed that the initial tem-

perature in the block was given by a cosine function with
n � 10p=H, numerically solved the full nonlinear set of
equations with appropriate boundary conditions and also
included the effects of strain hardening and material
elasticity. For ` � 0, _c0 � 500=s or 50,000=s and
a � 0:4973, they found the spacing between adjacent shear
bands to be 0.258 mm. They did not investigate the effect
of different amplitudes of the perturbation, the wave
number n, and the spatial discretization used to numeri-
cally solve the problem. A high value of the thermal soft-
ening coef®cient, a, should result in a smaller value of the

Fig. 11. Shear band spacing and the corresponding initial time tn
0

vs. the thermal softening coef®cient a for the Wright-Batra
relation with af®ne thermal softening

Fig. 12. Shear band spacing and the corresponding initial time tn
0

vs. the strain-rate hardening exponent m for the Wright-Batra
relation with af®ne thermal softening

Fig. 13. Variation of the shear band spacing and the corre-
sponding initial time tn

0 with the thermal conductivity for a ma-
terial modeled by the Wright-Batra relation with af®ne thermal
softening

Fig. 14. Shear band spacing and the corresponding initial time tn
0

vs. the nominal strain rate for the Wright-Batra material with
af®ne thermal sofetning
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shear band spacing, but the consideration of strain-hard-
ening should increase the shear band spacing. As stated in
the Introduction, the shear bands developed at the troughs
of the perturbation for _c0 � 500=s and at the crests for
_c0 � 50; 000=s. Thus the shear band spacing was the same
at these two values of the nominal strain-rate. For ` � 0:01
shear bands formed at the boundaries y � �1 for
_c0 � 500=s but at each peak in the perturbation for
_c0 � 50; 000=s; thus �Ls � 5:16 mm for _c0 � 500=s and
0.258 mm for _c0 � 50; 000=s; this agrees qualitatively with
the present results. We note that in Kwon and Batra's
work, the shear band spacing is governed by the mo-
mentum diffusion during unloading within the shear
banded region, the growth of perturbations, the amplitude
of initial perturbations, and the effect of boundary con-
ditions. Batra and Kim (1990c) noted that for large values
of the thermal softening coef®cient, a, an unloading elastic
wave emanated from the shear banded region and prop-
agated outwards with the speed of the shear wave for
` � 0, but no such unloading wave originated for ` > 0.
Results plotted in Fig. 8 indicate that the perturbation
introduced at t0 ' 0 with wave number
n � 10p=2:5 ' 12:6 mmÿ1 does not have the dominant
initial growth rate.

Batra and Kim (1990a) introduced a ®nite amplitude
perturbation with peaks of different magnitudes centered
at y � �0:02 and y � �0:06, numerically solved the full
nonlinear set of equations, and also accounted for material
elasticity and strain-rate hardening. For ` � 0 and
_c0 � 500=s, the shear band spacing was found to be
0.18 mm when the peaks of higher amplitude were cen-
tered at y � �0:06, and only one shear band with center at
y � 0 formed when the peaks of higher amplitude were
centered at y � �0:02. However, when _c0 � 50; 000=s, the
shear band spacing equalled 0.31 mm in each case. For
` � 0:01, only one shear band centered at y � 0 formed for
each perturbation and for both values of _c0. These per-
turbations when expressed as a Fourier series will equal
the sum of several perturbations of different wave num-
bers and amplitudes. The shear band spacing will be de-
termined by the boundary conditions, the growth rate and
the amplitudes of various perturbations, and the interac-
tion amongst them. Results from the present linear anal-
ysis will not apply to such a case. Also, Batra and Kim
(1990a) did not investigate the effect of spatial and tem-
poral discretization upon the shear band spacing.

In the numerial solution of the complete set of non-
linear equations, the boundary conditions at y � �1 and
the discretization of the spatial and temporal domains
in¯uence the accuracy of the solution. The stability anal-
ysis of the linearized equations indicates that for the af®ne
thermal softening, the shear band spacing is determined
by the wavelength of the dominant mode of the pertur-
bation introduced at a large value of t0 when the stress has
dropped signi®cantly from its peak value. However, in the
numerical work of Kwon and Batra, and Batra and Kim,
the perturbations of ®nite amplitude were introduced es-
sentially at t0 � 0. Also, the consideration of material
elasticity allows for unloading of a material point and the
transfer of energy from the unloading region to other parts
of the body; this effect is not included in the present work.

3.3
Results for a S-7 tool steel modeled
by the Johnson-Cook relation
The tool steel is modeled by the Johnson-Cook relation
with

s0 � 1539 MPa; C � 0:012; �q � 7750 kg/m3;

�a � 6:8� 10ÿ4=K; �c � 477 J/kg K; �k � 50 W/mK;

H � 2:5 mm; _c0 � 3300=s; ` � 0:001 :

Figures 15a and 15b exhibit for four values of ` the de-
pendence of the critical wavelength and the critical
growth rate upon the time t0 when the homogeneous
solution is perturbed. The results are qualitatively similar
to those obtained with the Wright-Batra relation even
though strain-rate hardening is now modeled by a dif-
ferent function. For each value of `, the critical wave-
length that determines the shear band spacing
corresponds to the perturbation given at a rather large
value t0 of time t. The dependence of the shear band
spacing and the time tn

0 of the perturbation that deter-

Fig. 15. Dependence of a the critical growth rate and b the
critical wavelength upon the time t0 when the initial perturbation
is introduced for four different values of the material character-
istic length `. Results are for a typical hard steel modeled by the
Johnson-Cook relation
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mines the shear band spacing upon the material charac-
teristic length `, thermal softening parameter a, strain-
rate hardening parameter C, the thermal conductivity k,
and the nominal strain-rate _c0 is similar to that for the
Wright-Batra relation. For ` � 0, the shear band spacing,
�Ls, equals 0.15 mm, and it monotonically increases to
0.57 mm for ` � 0:01. When the thermal softening pa-
rameter �a is increased from 0.0005/K to 0.005/K, �Ls de-
creases from 0.23 mm to 0.11 mm. A change in the value
of C from 0.01 to 0.05 increases the shear band spacing
from 0.196 mm to 0.26 mm. A ten-fold increase in �k from
50 W/mK to 500 W/mK increases the shear band spacing
from 0.21 mm to 0.5 mm. When the nominal strain-rate is
increased from 2000/s to 50,000/s, the shear band spacing
decreases from 0.24 mm to 0.03 mm.

4
Approximate analytical expressions
for shear band spacing
In the previous section we have numerically evaluated the
shear band spacing. It was found that for t0 � 0 and a
given wave number n, there always exists a root of (17)
with a positive real part. Also, the root gm of (17) with the
maximum positive real part was found to be a function of
the wave number nm�t0� and the initial time t0 when the
perturbation was introduced. Thus gm should satisfy

og�n; t0�
on

����
n�nm

� 0 : �24�

Differentiating (17) with respect to n, evaluating the result
at n � nm, and substituting (24) we arrive at

�a1mgm � �a0m � 0 �25�
where

�abm � oabm�n; t0�
on

����
n�nm

; b � 0; 1: �26�

Evaluating (17) at �n; g� � �nm; gm� and eliminating gm
from it and (25), we obtain

a2��a0m�2 ÿ a1m �a0m�a1m � a0m��a1m�2 � 0 �27�
where

abm � ab�nm; t0�; b � 0; 1: �28�
Substitution from (18) into (26) and (28), and the results
into (27) yields

b10n
10
m � b8n

8
m � b6n

6
m � b4n

4
m � b2n

2
m � b0 � 0 �29�

where

b10 � 8k�`2s0f 0
;s�3;

b8 � �`2s0f 0
;s�2�ÿ36qk2f 0

;s � 20k�1� qkf 0
;s��;

b6 � ÿ24q`2ks0�f 0
;s�2�k� `2s0f 0

;h�
� 8`2s0f 0

;s�1� qkf 0
;s��k� `2s0f 0

;h�
� 24qkf 0

;h�`2s0f 0
;s�2 � 8`2ks0f 0

;s�1� qkf 0
;s�2

� 16s0f 0
;h�`2s0f 0

;h�2;

b4 � 24qkf 0
;h�`s0f 0

;s�2 ÿ 16qf 0
;s�k� `2s0f 0

;h�2

� 8`2�s0�2f 0
;s f 0
;h�1� qkf 0

;s�
� 16q`2s0f 0

;s f 0
;h�k� `2s0f 0

;h� �30�
� 12q`2ks0f 0

;s f 0
;h�1� qkf 0

;s�
� 8�k� `2s0f 0

;h��1� qkf 0
;s�2;

b2 � 16qs0f 0
;s f 0
;h�k� `2s0f 0

;h� ÿ 8s0f 0
;h�`2s0f 0

;s�2

ÿ 8qf 0
;s�`s0f 0

;h�2 � 8qf 0
;h�1� qkf 0

;s��k� `2s0f 0
;h�;

b0 � ÿ4qf 0
;s�s0f 0

;h�2 ÿ 4�`s0�2f 0
;s f 0
;h�1� qkf 0

;s�
ÿ 4qs0�f 0

;h�2�1� qkf 0
;s�

Equation (29) determines the critical wave number nm as a
function of the time t0 when the perturbation is in-
troduced; it has been assumed here that the root gm of (25)
corresponds to a maxima. Setting the derivative of (29)
with respect to t0 equal to zero determines tn

0 corre-
sponding to an extreme value nmm of nm, which we assume
to be maximum. The maximum value nmm of nm de-
termines the shear band spacing corresponding to the time
tn

0 . Because of the complicated algebraic manipulations
involved, an analytical expression for nmm is not found
here.

From (25) we can ascertain the critical growth rate, gm,
as

gm �
ÿ3`2ks0f 0

;sn
4
m ÿ 2�k� `2s0f 0

;h�n2
m � s0f 0

;h

2`2s0f 0
;sn

2
m � �1� qkf 0

;s�
�31�

Using the constitutive relation (9a), the homogeneous
solution (10a), noting that `� 1, determining the mag-
nitudes of different terms, and keeping only dominant
terms, we obtain the following explicit expressions for the
critical wave number nm and the critical growth rate gm of
the dominant instability mode.

nm � ��ÿP�
���������������������
P2 ÿ 4QR�

p
=2Q�1=2; �32�

gm � �ÿ2�k� a`2bm=m�n2
m � abm=m�=

�1� qkeCt0=mbm�; �33�
where

Q�t0� � ÿ
�

k� a`2bm

m

��
4qa`2eCt0

m2
ÿ
�

1ÿ qkeCt0

mbm

�2�
� a`2bm

m2
;

P�t0� � 2qa
m2

�
2� qkeCt0

bm

��
k� a`2bm

m

�
eCt0 ; �34�

R�t0� � ÿ qa2bm

m3

�
1� qkeCt0

bm

�
eCt0 :

For the constitutive relation (9b) and the homogeneous
solution (10b), expressions analogous to (31) and (34)
are
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gm �
ÿ3

`2kn4
m

m ÿ 2

�
kÿ `2ml0

m �h0�mÿ1

�
n2

m ÿ ml0

m �h0�mÿ1

2`2

m n2
m �

�
1� qk

ml0
�h0�ÿm

� ;

�35�

Q�t0� � kÿ `
2l0m
m
�h0�mÿ1

� �
�
�

4`2qm
m2l0

�h0�ÿ�1�m� � 1ÿ qk

ml0

�h0�ÿm
� �2�

ÿ `
2l0m
m2
�h0�mÿ1;

P�t0� � ÿ 2qm
m2l0

�h0�ÿ�1�m�
�

kÿ `
2l0m
m
�h0�mÿ1

�
� �2l0�h0�m � qk�; �36�

R�t0� � ÿ ql0m
2

m3
�h0�mÿ2

�
1� qk

l0

�h0�ÿm
�
:

For the Johnson-Cook model (9c) and the homogeneous
solution (10c), equations (33) and (34) become

gm �
ÿ3`2kAn4

m ÿ 2�kC � a`2A2�n2
m � aA2

2`2An2
m � �C � qkeaAt0� ; �37�

Q�t0� �
�

k

C2
� a`2A2

C3

�
� �ÿ4q`2aAe2aAt0 � �C ÿ qkeaAt0�2� � a`2A3

C4
;

P�t0� � 2qaA

C3
e2aAt0�Ck� `2aA2��qk� 2AeÿaAt0�; �38�

R�t0� � ÿ qa2A3

C3
eaAt0 �C � A� qkeaAt0 � :

Figures 16a, 16b and 16c exhibit the variation with t0 of the
critical wavelength and the critical growth rate as com-
puted from (32)±(34), (32), (35) and (36), and (32), (37)
and (38), which correspond to the Wright-Batra relation,
the power law, and the Johnson-Cook relation, respec-
tively. Also included are numerical results from the pre-
vious section. It is clear that the two sets of results are
close to each other signifying that the approximate ex-
pressions (32)±(34), (32), (35) and (36), and (32), (37) and
(38) can be used with reasonable certainty. The shear band
spacing can be computed from (32).

For nonpolar �` � 0� materials, the (dimensional) crit-
ical wavelength computed from 2p=nm is given by

�Lm=2p�

�
m3�k�c�1ÿ�a�hi�
�1�m� _c3

0 �a2�s0

�1=4

for the Wright-Batra

relation,�
m3��h�i�2�c�k

�1�m� _c3
0�s

0m2

�1=4

for the power law, (39)�
C3�k�c�1ÿ�a�hi�

�a2 _c3
0�1�C ln _c0�3�s0

�1=4

for the Johnson-Cook

relation

8>>>>>>>>>>><>>>>>>>>>>>:
where we have assumed that qk� ms0, set ~s0 � s0��b _c0�m
for the Wright-Batra relation, and ~s0 � s0�1� C ln _c0�
for the Johnson-Cook relation, and �hi equals the value of
�h

0
at time t0. Expression �39�1 for the critical wavelength

differs from that derived by Wright and Ockendon in the
factor �1ÿ �a�hi� in the numerator. Wright and Ockendon

Fig. 16. Dependence of the critical wavelength and the critical
growth rate upon the time t0 when the perturbation is introduced;
a power law, b Wright-Batra relation with af®ne thermal soften-
ing, and c Johnson-Cook model
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used a different method to derive their approximate ex-
pression for �Ls. However, our results �39�1 and �39�2
agree with those of Molinari (1997). As also pointed out
by Molinari, �1ÿ �a�hi� can be quite different from 1.0. For
an af®ne thermal softening, it is likely that the condition
qk� ms0 will be violated for t0 corresponding to the
supremum of nm�t0�. Nevertheless, (39) gives the critical
wavelength whenever qk� ms0 holds. A comparison of
�39�1 and �39�3 suggests that C=�1� C ln _c0� plays the
same role as the strain- rate hardening exponent m. For
each material model, the approximate value of the critical
wavelength is independent of the mass density of the
material, increases rapidly with an increase in the strain-
rate hardening exponent m, decreases fast with an in-
crease in the average strain-rate, and decreases with a rise
in the thermal softening coef®cient a or exponent m. In
determining the shear band spacing, the thermal soften-
ing exponent m in the power law plays the same role as
the thermal softening coef®cient a in the other two con-
stitutive relations.

The minimum value of �Lm in (39) will give the shear
band spacing. When thermal softening is modeled by an
af®ne function of temperature, �hi will be maximum for a
large value of the time t0 when a perturbation is intro-
duced, and �1ÿ �a�hi� may equal zero. In this case, the
minimum shear band spacing equals zero. Of course, the
numerical solution of the complete set of equations gives
a ®nite value of the shear band spacing. For the power
law model, the minimum shear band spacing occurs
when the homogeneous solution of the governing equa-
tions is perturbed at time t0 � 0. These observations are
in conformity with the numerical experiments described
above.

We note that even the trends predicted by (39) need not
agree with those obtained from a solution of (17). For
example, the shear band spacing plotted in Fig. 12 for the
Wright-Batra relation is maximum at m ' 0:05 and then
monotonically decreases with an increase in the value of
m. However, �39�1 indicates that it is a monotonically in-
creasing function of m since 1�m ' 1.

A reasonable postulate is that for Ls > 0, the band-
width is a fraction of the shear band spacing. Dodd and Bai
(1985) assumed that in a fully developed band, heat gen-
erated due to plastic working is balanced by that con-
ducted out of the band. They showed that the band-width
is proportional to the square-root of the thermal con-
ductivity and is independent of the speci®c heat of the
material. However, the shear band spacing given by (39)
depends upon ��k�c�1=4. Numerical experiments of Batra and
Kim (1991) suggest that the band-width is not propor-
tional to

���
�k
p

. Batra and Kim (1992) also obtained different
band-widths for three steels with the same thermal con-
ductivity suggesting that other material parameters
strongly in¯uence the band-width.

Within a shear band, plastic strain-rates are usually
very high and because heat conduction is a slow process,
there may not be enough time available for the heat to be
conducted out of the bands. The process of shear band
formation is often regarded as locally adiabatic. For k � 0,
the critical wave number, nm, and the critical wavelength,
�Lm, are given by

n2
m �

�������
qf 0
;h

q
=` ; �40�

�Lm=2p �

�̀
_c0

� �1
2 m�1ÿ�a�h0��c

�a

� �1
4

for the Wright-

Batra relation,
�̀

_c0

� �1
2 ÿ �c�him

m

� �1
4

for the

power law,
�̀
_c0

� �1
2 �cC�1ÿ�a�h0�

�a�1�C ln _c0�
h i1

4
for the

Johnson-Cook law .

8>>>>>>>>>><>>>>>>>>>>:
�41�

Thus for each one of the three constitutive relations, �Lm is
proportional to the square-root of the material charac-
teristic length, �̀, the fourth-root of the strain-rate sensi-
tivity parameter, m or C=�1� C ln _c0�, and inversely
proportional to the square-root of the nominal strain-rate,
_c0. For heat conducting nonpolar materials, �Lm is pro-
portional to �m= _c0�3=4.

5
Conclusions
We have ascertained shear band spacing in a the-
rmoviscoplastic body deformed in simple shear, have de-
lineated the effect of different material parameters on the
shear band spacing, and have generalized Wright and
Ockendon's work on nonpolar (simple) materials to
dipolar materials. It entails perturbing the homogeneous
solution of the governing equations, linearizing the gov-
erning equations in the perturbed variables, and studying
the stability of the linearized problem. For a ®xed value of
the time t0 when the perturbation is introduced, the
maximum wave number and maximum initial growth rate
of the perturbation are found. The shear band spacing is
assumed to equal the in®mum of 2p=nm�t0� for t0 � 0.
Three constitutive relations, namely, the Wright-Batra
relation, the power law, and the Johnson-Cook law are
used to model the thermoviscoplastic response of the
material. The Wright-Batra and the Johnson-Cook models
differ in the way strain-rate hardening of the material is
accounted for. The Wright-Batra and the power law
models characterize the thermal softening of the material
by different functions of temperature. It is found that for
the power law, perturbations introduced just after the
stress becomes maximum determine the shear band
spacing. However, for the Wright-Batra and the Johnson-
Cook relations in which thermal softening is modeled by
an af®ne function of temperature, the critical wave number
increases rather slowly with an increase in the value of the
time t0 when the perturbation is introduced. Thus per-
turbations introduced at a rather large value of t0 deter-
mine the shear band spacing. The thermal softening
exponent/coef®cient, the material characteristic length,
and the nominal strain-rate noticeably in¯uence the shear
band spacing. The shear band spacing so obtained does
not agree with that computed from a numerical solution of
the complete set of nonlinear equations in which the ef-
fects of material elasticity, strain hardening, boundary
conditions and perturbations of ®nite amplitude intro-
duced at time t0 are considered. In the later case, the wave
number of the perturbation was kept ®xed.
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For locally adiabatic deformations of a nonpolar the-
rmoviscoplastic material, k � 0; ` � 0. Equations (17) and
(18) imply that the initial growth rate, g, is a monotoni-
cally increasing function of the wavenumber, n. According
to the de®nition (22), the shear band spacing equals zero
irrespective of the constitutive relation used to model the
thermoviscoplastic response of a non-strain-hardening
material.

Approximate expressions are derived for the critical
wavelength and the critical growth rate of the perturba-
tion. Results computed from these approximate expres-
sions are in reasonable agreement with those obtained
from the numerical solution of the complete set of equa-
tions linearized in perturbation variables about an ho-
mogeneous solution. These approximate expressions for
the shear band spacing reveal that the strain-rate hard-
ening exponent, m, in the power law plays the same role as
C=�1� C ln _c0� in the Johnson-Cook relation. Also, the
thermal softening exponent m in the power law and the
thermal softening coef®cient �a in the Wright-Batra and
Johnson-Cook relations play analogous roles. For each one
of the three constitutive relations, the approximate shear
band spacing for nonpolar materials is found to be pro-

portional to m3 �k�c
_c3
0
�a2

� �1=4
where �k; �c and _c0 are the thermal

conductivity, speci®c heat and the nominal strain-rate.
However, for locally adiabatic deformations of dipolar
materials, the shear band spacing is proportional to

�̀
_c0

� �1=2
m�c
�a

ÿ �1=4
where �̀ is the material characteristic length.

For a nominal strain-rate of 105=s, the shear band
spacing in Titanium, SAE4340 steel and S-7 tool steel
equals respectively 0.25 mm, 0.086 mm, and 0.1 mm. The
shear band spacing should serve as an upper limit on the
band width. Thus the width of shear bands in Titanium,
SAE4340 steel and the S-7 tool steel is likely to be less than
250 lm, 86 lm, and 100 lm respectively.
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