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Abstract A modification to the smoothed particle hydro-
dynamics method is proposed that improves the accuracy
of the approximation especially at points near the
boundary of the domain. The modified method is used to
study one-dimensional wave propagation and two-
dimensional transient heat conduction problems.
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1
Introduction
The smoothed particle hydrodynamics (SPH) method is
one of the earliest mesh free methods employing
Lagrangian description of motion. It was proposed by
Lucy (1977) and Gingold and Monaghan (1977) to analyze
astrophysical problems in a three-dimensional space.
Libersky and Petschek (1990) extended it to study the
dynamic response of materials. The method has been
applied to several classes of problems, such as free surface
flows (Monaghan 1994), explosion phenomenon (Liu et al.
2003), impact and penetration (Randles et al. 1995,
Johnson et al. 1996); see Chen et al. (1999) for additional
references. The performance of the method has been
extended by using parallel computing techniques (Medina
and Chen 2000).

As is well known, the SPH method is not even zero-
order consistent near the boundary. Liu et al. (1995a, b)
improved its consistency by introducing a corrective
kernel which is a product of the correction function and
the original kernel; the improved method is called the
reproducing kernel particle method (RKPM). The
correction is a polynomial in the spatial coordinates and

the RKPM can be nth-order consistent. Chen et al. (1999a,
b) proposed a corrective smoothed-particle method
(CSPM) to address the tensile instability and the incon-
sistency problems in the conventional SPH method. Here
we propose a modification to the CSPM that improves its
accuracy especially at points near the boundary of the
domain.

The paper is organized as follows. Section 2 discusses
the conventional SPH method. The modified SPH
(MSPH) method is given in Sect. 3 where numerical
tests to show its superiority over the CSPM are
reviewed. In Sect. 4, the MSPH method is applied to
study wave propagation in an elastic bar, and
2-dimensional transient heat conduction in a plate.
Section 5 summarizes conclusions.

2
Conventional SPH method
In the SPH method, the approximate value ~f ðxÞ of a
function f at a point x in domain X is given by

~f ðxÞ ¼
Z

X

f ðnÞWðx� n; hÞdn ; ð2:1Þ

where Wðx� nÞ is a kernel or a smoothing function. The
approximate value ~f of f depends upon two parameters;
the kernel W and the dilation h which determines the
support of W . The kernel function, W , is required to have
the following properties:

(i) Wðx� n; hÞ ¼ 0 for jx� nj � 2h,

(ii)

Z

X

Wðx� n; hÞdn ¼ 1,

(iii) lim
h!0

Wðx� n; hÞ ¼ dðx� nÞ where d is the Dirac delta

function,
(iv) Wðx� n; hÞ � 0,
(v) Wðx� n; hÞ ¼ Wðn� x; hÞ.
The spatial derivative, rf , at the point x is approximated
by

r ~f ðxÞ ¼
Z

X

rf ðnÞWðx� n; hÞdn

¼ �
Z

X

f ðnÞrWðx� n; hÞdn ; ð2:2Þ

where we have integrated by parts and used property (i) of
the kernel function W .
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For numerical work the integral (2.1) is approximated
by imagining that the mass in X is divided into N particles
of masses m1;m2; . . . ;mN and densities q1; q2; . . . ; qN

respectively. The value fi of the integral (2.1) for the ith
particle is approximated by

fi ¼
XN

j¼1

mjfjWij=qj; Wij ¼ WðxðiÞ � nðjÞÞ : ð2:3Þ

Because of the compact support of the kernel function
W , the number of particles used in the summation
(2.3) is smaller than N . Similarly, Eq. (2.2) is approxi-
mated by

fai �
of

ox
ðiÞ
a

¼ �
XN

j¼1

mjfjWij;a=qj;

Wij;a ¼ �
oW

oxa

����
x¼xðiÞ;n¼nðjÞ

; a ¼ 1; 2; 3 :

ð2:4Þ

The range of index a equals the spatial dimension of
the domain X. For a constant function f ðxÞ ¼ fi Eq. (2.4)
gives

XN

j¼1

mjfiWij;a=qj ¼ 0 : ð2:5Þ

Addition of (2.5) and (2.4)1 gives

fai ¼ �
XN

j¼1

mjðfj � fiÞWij;a=qj : ð2:6Þ

One can similarly deduce the following approximation for
the second-order derivatives:

fabi ¼
XN

j¼1

mjðfj � fiÞWij;ab=qj ; ð2:7Þ

where

fabi ¼
o2f

oxaoxb

����
x¼xðiÞ

;

Wij;ab ¼
o2W

oxaoxb

����
x¼xðiÞ;n¼nðjÞ

:

ð2:8Þ

3
Modified SPH (MSPH) method

3.1
Discretization
Using Taylor series expansion of f ðxÞ about the point
x ¼ xðiÞ and retaining only three terms in the series, we
obtain

f ðnÞ ’ f ðxðiÞÞ þ of

ox
ðiÞ
a

ðna � xðiÞa Þ

þ 1

2

o2f

ox
ðiÞ
a ox

ðiÞ
b

ðna � xðiÞa Þðnb � x
ðiÞ
b Þ ; ð3:1Þ

where summation is implied on repeated indices a and b.
Multiplication of both sides of (3.1) with the kernel
function Wðx� n; hÞ and integration of the resulting
equation over the domain X yieldZ

X

f ðnÞWdn ¼ fi

Z

X

Wdnþ fai

Z

X

ðna � xðiÞa ÞWdn

þ 1

2
fabi

Z

X

ðna � xðiÞa Þðnb � x
ðiÞ
b ÞWdn : ð3:2Þ

Repeating the above procedure with W replaced by
Wc ¼ oW=onc and Wcd ¼ o2W=oncond, we obtainZ

X

f ðnÞWcdn ¼ fi

Z

X

Wcdnþ fai

Z

X

ðna � xðiÞa ÞWcdn

þ 1

2
fabi

Z

X

ðna � xðiÞa Þðnb � x
ðiÞ
b ÞWcdn ; ð3:3Þ

Z

X

f ðnÞWcddn ¼ fi

Z

X

Wcddnþ fai

Z

X

ðna � xðiÞa ÞWcddn

þ 1

2
fabi

Z

X

ðna � xðiÞa Þ ðnb � x
ðiÞ
b ÞWcddn : ð3:4Þ

Equations (3.2), (3.3) and (3.4) for a; b ¼ 1; 2; 3 constitute
ten equations for the ten unknowns fi; fai and fabi at the
point x ¼ xðiÞ. We write these equations as

T ¼ BF or BIJFJ ¼ TI; I ¼ 1; 2; . . . ; 10 ; ð3:5Þ
where

BIJ ¼
Z

X

UðIÞHðJÞdn ¼
XN

j¼1

UðIÞHðJÞmj=qj ; ð3:6Þ

Uð1Þ ¼ Wij; Uð2Þ ¼ Wij;x; Uð3Þ ¼ Wij;y;Uð4Þ ¼ Wij;z ;

Uð5Þ ¼ Wij;xx; Uð6Þ ¼ Wij;yy; Uð7Þ ¼ Wij;zz ; ð3:7Þ
Uð8Þ ¼ Wij;xy; Uð9Þ ¼ Wij;yz; Uð10Þ ¼ Wij;xz ;

Hð1Þ ¼ 1; Hð2Þ ¼ xj � xi; Hð3Þ ¼ yj � yi ;

Hð4Þ ¼ zj � zi; Hð5Þ ¼ 1

2
ðxj � xiÞ2 ;

Hð6Þ ¼ 1

2
ðyj � yiÞ2; Hð7Þ ¼ 1

2
ðzj � ziÞ2 ; ð3:8Þ

Hð8Þ ¼ ðxj � xiÞðyj � yiÞ; Hð9Þ ¼ ðyj � yiÞðzj � ziÞ ;
Hð10Þ ¼ ðxj � xiÞðzj � ziÞ ;

F ¼ ffi; fxi; fyi; fzi; fxxi; fyyi; fzzi; fxyi; fyzi; fzxigT ;

TI ¼
XN

j¼1

fjUðIÞmj=qj :
ð3:9Þ

Equation (3.5) is solved for F1; F2; . . . ; F10 and the result is
substituted in equation (3.1). Retention of third-order
derivatives in the expansion (3.1) will result in a system of
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20 simultaneous equations like (3.5). With (3.1), the error
in the value of f ðnÞ is of the order jn� xðiÞj3.

In order for the matrix B defined by (3.6) to be
nonsingular, N must be at least 3, 6 and 10 for one-,
two- and three-dimensional problems respectively.

3.2
Consistency
For the MSPH method proposed in Sect. 3.1, the kernel
estimate of a function is clearly mth order consistent if
ðmþ 1Þ terms are retained in the Taylor series expansion
(3.1) since the function and its first m derivatives are
exactly reproduced by the approximation scheme. How-
ever, the kernel estimates of the first- and the second-order
derivatives have consistencies of orders ðm� 1Þ and
ðm� 2Þ respectively. The number of simultaneous alge-
braic equations (3.5) to be solved increases rapidly with an
increase in the value of m.

3.3
Comparison with the corrective SPH method
If the first-order and the second-order derivative terms in
Eq. (3.1) are neglected, then the kernel estimate of f ðxÞ is
given by

fi ¼
Z

X

f ðnÞWðxðiÞ � nÞdn=

Z

X

WðxðiÞ � nÞdn ; ð3:10Þ

or in particle summation form by

fi ¼
XN

j¼1

ðfjWijmj=qjÞ=
XN

j¼1

ðWijmj=qjÞ : ð3:11Þ

Because of the property ðvÞ of the kernel,R
Xðx� nÞWðx� nÞdn ¼ 0. Thus the error in (3.10) is of

the order jx� xðiÞj2 for interior particles, and of order
jx� xðiÞj for particles on or near the boundaries. The
property (ii) of the kernel implies that for particles away
from the boundaries, Eqs. (3.10) and (3.11) reduce to (2.1)
and (2.3) respectively. However, for particles near the
boundary, Eq. (3.11) gives better results than those
obtained from (2.3).

The present method differs from the CSPM of Chen
et al. (1999a, b) in the following two respects. Chen et
al. (1999a, b) solve the system of Eq. (3.5) by splitting it
into three sets of equations: T1 ¼ B11F1; TI ¼ BIJFJ ,
I; J ¼ 2; 3; 4; TI ¼ BIJFJ ; I; J ¼ 5; 6; . . . ; 10. However, we
solve (3.5) simultaneously for the ten variables
F1; F2; . . . ; F10. Since values of F2; F3; F4 depend upon
that of F1, and of F5 through F10 upon the values of
F1; F2; F3 and F4, an error in finding F1 through F4 at
particles near the boundary will adversely affect values
of F5 through F10. Whereas we use the kernel estimate
value of fi in Eq. (3.5), in the CSPM fi equals the value
of f at the particle i. The CSPM requires less CPU time
than the present method since it solves three smaller
sets of equations than the present method in which ten
equations are solved simultaneously for the ten
unknowns.

In the following discussion, we designate the present
method as the modified SPH (MSPH) method. The kernel
is taken to be the Gauss function, i.e.,

Wðx� nÞ¼
A

ðh
ffiffi
p
p
Þn e�ðjx�nj2=h2Þ � e�4
� �

; jx� nj � 2h ;

0; jx� nj � 2h ;

(

ð3:12Þ
where n equals the dimensionality of the space, and the
normalization parameter A equals 1.04823, 1.10081 and
1.18516 for n ¼ 1; 2 and 3 respectively.

3.4
Numerical tests

3.4.1
One-dimensional domain
Consider the function

f ðxÞ ¼ ðx� 0:5Þ4; x 2 ½0; 1� :
The domain is discretized into 21 equally spaced particles
with one particle at each end point, and h is set equal to
0.1. Figure 1a–c compares the kernel estimate of the
function and of its first and the second derivatives as
computed by the SPH, the CSPM and the MSPH methods
with the exact solution. It is clear that the MSPH gives
better results than the other two methods. Henceforth, we
do not give results for the SPH method since the
CSPM gives superior results than the SPH method.
The effect of increasing the number of particles from
21 to 51 is exhibited in Fig. 2a–c. As expected, the
accuracy of the CSPM and the MSPH method is enhanced
with the increase in the number of particles. However,
the difference in the values of 2nd order derivatives
computed by the CSPM and the exact solution is still large
at particles near the boundaries. When third-order
derivatives are retained in the expansion (3.1), the
MSPH reproduces second-order derivatives of f at the end
points but the CSPM does not; see Fig. 3a–c. For non-
uniformly spaced 21 particles, Fig. 4a–c depicts a com-
parison of the kernel estimates of the function and its first
two derivatives with their exact values. Particles are sym-
metrically located about x ¼ 0:5 with Dxi ¼ 1:2Dxi�1;
i ¼ 11; 12;. . . ; 21. The smoothing length h is set equal to
1:5Dxi. The errors in the kernel estimates of the first and
the second derivatives near the end points of the domain
are a little higher than those for the uniformly distributed
particles. These errors can be reduced by increasing the
number of particles.

3.4.2
Two-dimensional domain
For the function

f ðx; yÞ ¼ sin px sin py; x 2 ½0; 1�; y 2 ½0; 1� ;
we have plotted in Fig. 5a–f the exact solution and the
kernel estimates of the function and its first-order deriv-
ative, f;x, computed with the CSPM and the MSPH method
employing 21 equally spaced particles in each direction
and h ¼ 0:1. It is evident that the MSPH method yields a
better estimate of the function f and of f;x than the CSPM.
In each case, 2nd-order derivatives were retained in the
expansion (3.1).
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4
Application of the MSPH to two transient problems

4.1
Wave propagation in an elastic bar
We use the MSPH method to study wave propagation in an
elastic bar. The governing equations are

Fig. 1. Kernel estimates of a the function ðx� 0:5Þ4, b its first
derivative, and c its second derivative with 21 equally spaced
particles on ½0; 1�

b

Fig. 2. Kernel estimates of a the function ðx� 0:5Þ4, b its first
derivative and c its second derivative with 51 equally spaced
particles on ½0; 1�
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Fig. 3. Kernel estimates of a the function ðx� 0:5Þ4, b its first
derivative, and c its second derivative with 51 equally spaced
particles on ½0; 1� and the retention of 3rd-order derivatives in
Eq. (3.1)

Fig. 4. Kernel estimates of a the function ðx� 0:5Þ4, b its first
derivative, and c its second derivative computed with 21 irregu-
larly spaced particles on [0,1]
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_v ¼ 1

q
r;x;

_r ¼ Ev;x;

rð0; tÞ ¼ 0; rð0:1; tÞ ¼ �½Hðt � 5lsÞ � Hðt � 0Þ�GPa;

vðx; 0Þ ¼ 0; rðx; 0Þ ¼ 0 ; ð4:1Þ

where v is the velocity of a material particle, r the
axial stress, r;x ¼ or=ox, E Young’s modulus, t time,
and H the Heaviside step function. A rectangular
compressive pulse of 5 ls duration and 1 GPa amplitude is
applied at the end x ¼ 0:1 m of the bar while the left end
x ¼ 0 of the bar is kept traction free. An artificial viscosity

Fig. 5. a Plot of the function
f ðx; yÞ ¼ sin px sin py, and kernel esti-
mate of the function by b the CSPM, and
c the MSPH methods; d–f: plot of f;x�d
exact solution, kernel estimate by e the
CSPM,and f the MSPH methods
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is introduced in order to diminish oscillations. Accord-
ingly, Eq. (4.1)1 is modified to

_v ¼ 1

q
ðr� pÞ;x ; ð4:2Þ

where

p ¼ �0:2qchv;x þ 4qh2ðv;xÞ2; v;x < 0 ; ð4:3Þ
where c ¼

ffiffiffiffiffiffiffiffi
E=q

p
is the wave speed.

Five hundred and one equally spaced particles are
located on the 0.1 m long bar, and h is set equal to 0.3 mm
or 1.5 times the distance, D, between two adjacent parti-
cles. In the MSPH method, the left-hand sides of eqns.
(4.2)1 and (4.1)2 are evaluated at a particle and kernel
estimates of ðr� pÞ;x and v;x are substituted on the right-
hand sides. The value of v;x at time ðn� 1=2Þ is used to
compute p. Recall that q and E are constants. The field
variables in the MSPH equations are updated in time by
using the leap-frog time integration scheme. That is,

vðnþ1=2Þ ¼ vðn�1=2Þ þ 1

2
ðDtn þ Dtn�1Þ _vn ; ð4:4Þ

where vnþ1=2 is the value of v at time tnþ1=2, and
Dtn ¼ tn � tn�1. The time step Dt is determined from

Dt ¼ 0:3D

ffiffiffi
q
E

r
: ð4:5Þ

For E ¼ 227 GPa and q ¼ 7800 kg/m3, c ¼ 5:393 mm/ls is
the speed of the elastic wave in the bar. It takes 18.5 ls for
the wave to traverse the bar. The problem is analyzed by
using the CSPM and the MSPH method. Figure 6a–d
exhibits the distribution of the axial stress in the bar at t ¼ 4
and 16 ls for the MSPH method, and at t ¼ 4 ls and 10 ls
for the CSPM. In both cases, results have been computed for
h ¼ 1:0D, 1:5D, 2:0D and 5:0D. With h ¼ 1:0D and
t ¼ 30 ls, the CPU time for the CSPM and the MSPH
methods equalled 7.2 and 11.2 seconds respectively. Results
plotted in Fig. 6 reveal that the amplitude of oscillations in

Fig. 6. Distribution of axial stress in the bar computed with
h ¼ 1:0D; 1:5D; 2:0D and 5:0D; a, b the MSPH method,
c, d computed with the CSPM
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the shock wave increases with an increase in the value of h.
The speed of the shock wave computed with the two tech-
niques is close to the analytical value of 5.395 mm/ls. For
the CSPM and h ¼ 0:4 mm, the solution exhibits oscilla-
tions at the right end x ¼ 0:1 m where tractions are
prescribed but no such oscillations are seen in the solution
computed with the MSPH method. For the CSPM, the stress
profile at the right end x ¼ 0:1 m begins to become unstable
at t ’ 3:2 ls for h ¼ 1:8D but the computation is stable at
t ¼ 4 ls for h � 1:7D. For h ¼ 1:7D, the instability occurs at
t ’ 10:0 ls. The time history of the speed of the particle at
x ¼ 0:1 m computed with the CSPM and h ¼ 1:7D and 1:8D
is plotted in Fig. 7. We note that for h ¼ 1:5D, computa-
tions stay stable till t ¼ 30 ls and possibly for longer times.
However, the MSPH stays stable even when h ¼ 5D as seen
from the plots of Fig. 6a, b. Figure 8 compares stress dis-
tribution in the bar at t ¼ 30 ls computed with the MSPH
method and D ¼ 0:2 mm and 0:1 mm with the analytical
solution of the problem. The compressive wave is reflected
from the left free end as a tensile wave of amplitude 1 GPa.

The rectangular shape of the wave is distorted because of
numerical dissipation and the introduction of artificial
viscosity. Results computed with 1001 equally spaced
particles show improvement in the profile of the wave over
that computed with 501 equally spaced particles. Figure 9
evinces that oscillations in the wave profile are diminished
when third-order derivatives are retained in Eq. (3.1) and
the solution computed with h ¼ 5D is also quite smooth.
We note that a larger value of h may be necessary in theories
involving strain gradient as an independent variable, e.g.
see Batra (1987) and Batra and Kim (1990).

4.2
Two-dimensional transient heat conduction
We use the MSPH method to solve

oT

ot
¼ k

qc
ðT;xx þ T;yyÞ; ðx; yÞ

2 ½0; 0:1 m� � ½0; 0:1 m� ; ð4:6Þ
Tðx; y; 0Þ ¼ 0 ; ð4:7Þ
Tð0; y; tÞ ¼ Tð0:1; y; tÞ ¼ Tðx; 0; tÞ ¼ Tðx; 0:1; tÞ

¼ 1 : ð4:8Þ

Fig. 7. Time history of the speed of the material particle at
x ¼ 0:1 m computed with the CSPM and h ¼ 1:7D; 1:8D

Fig. 8. Comparison of the axial stress distribution in the bar
computed with the MSPH method using 501 and 1001 equally
spaced particles with the analytical solution of the problem

Fig. 9. Distribution of the axial stress in the bar at t ¼ 4 ls
computed with the MSPH method, and 501 and 1001 equally
spaced particles; a h ¼ 1:5D, b h ¼ 5:0D
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Here T is the temperature, t the time, k the thermal con-
ductivity, q the mass density, c the specific heat, and x and
y are the spatial coordinates that vary between 0 and 0:1.
The initial temperature of the plate is zero, and all edges
are kept at a uniform temperature of 1 K. Because of the
symmetry of the problem about the lines x ¼ 0:05 m and
y ¼ 0:05 m, temperature distribution in the region
½0:05; 0:1� � ½0:05; 0:1� is computed with boundary condi-
tions T;x ¼ 0 on x ¼ 0:05 m and T;y ¼ 0 on y ¼ 0:05 m.
These boundary conditions are satisfied by including ghost
particles in the region x < 0:05 m and y < 0:05 m. The
temperature at a ghost particle is set equal to that of its
mirror image about the lines x ¼ 0:05 m and y ¼ 0:05 m.
Values of material parameters chosen are such that
k=ðqcÞ ¼ 1.

The solution of the problem by the finite difference
method (FDM) with 201� 201 nodes is taken as the
reference solution. For the CSPM and the MSPH method,
21� 21 uniformly distributed particles and h ¼ 1:0D are
employed; D equals the distance between two neighboring
particles. In each case (FDM, CSPM and the MSPH) the
solution is marched forward in time by the conditionally
stable forward-difference scheme. For the MSPH method,
Eq. (4.6) is written at particle i and values of Txxi and Tyyi

are determined by solving linear simultaneous equations

(3.5). The time increment employed is 1 ls. The temper-
ature distribution along the line x ¼ 0:5 m at three times,
t ¼ 150; 300 and 450 ms, computed with the three meth-
ods is depicted in Fig. 10a. The temperature found with
the CSPM and the MSPH methods is a little higher than
that with the FDM; this difference is due to the coarse
distribution of particles. For h ¼ 1:2D, the CSPM solution
exhibits oscillations near y ¼ 0:1 m but the MSPH solution
does not; cf. Fig. 10b. This may explain why h ¼ D was
used by Chen et al. (1999c). Figure 10c evinces MSPH
results computed by taking h ¼ 2D and 3D. The solution
stays stable and agrees with that obtained by the FDM; the
deviation between the two solutions can be diminished by
employing more particles as shown in Fig. 10d where the
MSPH solution computed with 51� 51 uniformly spaced
particles and h ¼ 1:5D is exhibited. The temperature dis-
tribution computed with the MSPH method agrees well
with the FDM solution.

In Fig. 11a–c, we present the locations of 21� 21
unevenly spaced particles, and the spatial distribution of
temperature on lines x ¼ 0:05 m and y ¼ 0:05 m. The
distances between adjacent particles along the x-and
y-axes are given by

DxI ¼ DxI�1=1:05; DyI ¼ DyI�1=1:03 :

Fig. 10. Temperature distribution along the line x ¼ 0:05 m;
a 21� 21 particles and h ¼ 1D, b 21� 21 particles, h ¼ 1:2D,
c 21� 21 particles, h ¼ 2D; 3D, d 51� 51 particles, h ¼ 1:5D

145



Thus particles are closely packed near the boundaries
x ¼ 0:1 m and y ¼ 0:1 m. The smoothing length h is taken
to equal 1:5maxðDxI ;DyIÞ. Because of unequal values of

DxI and DyI , different number of particles in the x- and the
y-directions lie in the support of the kernel function. For
the particle located at the top left corner, as many as four
particles in the y-direction may lie in the support of its
kernel. The temperature variations along the lines
x ¼ 0:05 m and y ¼ 0:05 m plotted in Fig. 11b, c reveal that
the nonuniform distribution of particles gives good
results. The differences between the MSPH and the FDM
results are a little higher for unequally spaced particles
than those with equally spaced particles.

5
Conclusions
A modification to the CSPM method is proposed that
improves the accuracy of the approximation at points near
the boundaries of the domain. The superiority of the
method has been established by approximating analytical
functions defined on one- and two-dimensional domains.
The method has been successfully applied to study wave
propagation in an elastic bar and transient heat conduc-
tion in a plate.
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