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Abstract

We use the modified smoothed-particle hydrodynamics (MSPH) method to analyze shear strain localization in el-

asto-thermo-viscoplastic materials that exhibit strain- and strain-rate hardening and thermal softening. A homogeneous

solution of simple shearing deformations of the body is perturbed and the resulting initial-boundary-value problem

analyzed by the MSPH method. It is found that the deformation localizes into a narrow region of intense plastic

deformation. In materials exhibiting enhanced thermal softening, an elastic unloading shear wave emanates from this

region and propagates outwards. The time when the deformation localizes decreases exponentially with an increase in

the thermal softening coefficient. Results have been computed without adding an artificial viscosity and compared with

those obtained by the finite element method.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The finite element method (FEM) has often been used to analyze nonlinear initial-boundary-value

problems. For finite deformation problems involving either localization of deformation into thin narrow
regions or failure or both, one needs to adaptively refine the FE mesh since otherwise the solution ceases

because of severe distortion of one or more elements. The transfer of data from the old FE mesh to the
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newly created nodes generally smoothes out the deformation field thereby either delaying the onset of

localization or increasing the width of the localized region or both. One way to overcome these diffi-

culties is to use a meshless method in which no nodal connectivity is needed and there are no elements
that can be severely deformed. Two recent books [1,2] have summarized several meshless methods.

However, these methods have not been widely applied to shear strain localization problems in which

plastic deformations of a small region are significantly more than that of the rest of the material. This

narrow region of intense plastic deformation is called an adiabatic shear band (ASB) since there is

usually not enough time for the heat to be conducted away. However, thermal conductivity plays a

significant role during the post-localization process. The study of ASBs is important because they precede

ductile fracture in many metals deformed at high strain rates. Our ultimate goal is to analyze two- and

three-dimensional shear strain localization problems by a meshless method. Here we use the modified
smoothed-particle hydrodynamics (MSPH) method to analyze simple shearing deformations of an elasto-

thermo-viscoplastic material and show that it captures well the localization of deformation and the

emanation of an elastic unloading wave from the shear banded region. The problem was analyzed earlier

by Batra [3], and Batra and Kim [4] with the FEM. Results computed with the MSPH method without

adding any artificial viscosity are found to agree well with the FE solution and also with those obtained

by the finite-difference method (FDM).

The SPH method is total Lagrangian and is due to Lucy [5] and Gingold and Monaghan [6]. It has been

applied by Libersky and Petschek [7] to analyze finite deformations of an elastoplastic body. However, they
ignored strain- and strain-rate hardening and thermal softening effects and therefore could not consider the

localization of deformation into narrow regions of intense plastic deformation. Also they used the classical

SPH method and we employ the MSPH method described below.

The conventional SPH method has two drawbacks: boundary deficiency and tensile instability. The

boundary deficiency refers to the basis functions not satisfying the consistency condition at points near

the boundaries. Chen et al. [8,9] applied the concept of the kernel estimate to the Taylor series ex-

pansion of a function and named it the corrective smoothed-particle method (CSPM); they have also

summarized other pertinent literature. The CSPM took care of the latter problem but not the former
one. Recently, techniques to further improve the tension instability and the zero energy modes have

been proposed [10,11]. Zhang and Batra [12] modified the CSPM to improve upon the consistency

condition, named it the MSPH and applied it to study one-dimensional wave propagation in an elastic

bar and two-dimensional transient heat conduction in a plate. Here we use it to analyze coupled

thermomechanical deformations of an elasto-thermo-viscoplastic body deformed in simple shear and

delineate the localization of deformation into a narrow region. For materials exhibiting high thermal

softening, the stress drops very rapidly at points within the region of localization and an elastic un-

loading wave emanates outwards and propagates with the speed of the elastic shear wave. The com-
puted shear wave speed matches well with the analytical value. Also, width of the region of localized

deformation agrees well with that found earlier by the FEM and with that observed experimentally

[13].

The paper is organized as follows. The MSPH method is briefly reviewed in Section 2. Equations

governing simple shearing deformations of a thermo-elasto-viscoplastic body, and the pertinent initial and

boundary conditions are described in Section 3.1. A converged solution of these equations obtained by the

FEM is taken as the reference solution. Errors in the numerical solution computed with the MSPH method

are described in Section 3.2, and the decrease in error with an increase in the number of particles is de-
lineated. The effect of the smoothing length in the MSPH kernel is described in Section 3.3. It is stated in

Section 3.4 that the modified quartic spline kernel function did not yield good results. The post-localization

response is discussed in Section 3.5. Section 3.6 compares numerical solutions obtained by the MSPH, FE

and a pseudo-spectral method [15]. The MSPH and the FE methods are compared in Section 3.7, and

conclusions are listed in Section 4.
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2. The MSPH method

The Taylor series expansion of a scalar-valued function f ðxÞ about the point xðiÞ ¼ ðxðiÞ1 ; xðiÞ2 ; xðiÞ3 Þ ¼
ðxðiÞ; yðiÞ; zðiÞÞ in a three-dimensional space is

f ðnÞ ¼ f ðxðiÞÞ þ of

oxðiÞa
ðna � xðiÞa Þ þ 1

2

o2f

oxðiÞa oxðiÞb
ðna � xðiÞa Þðnb � xðiÞb Þ þ � � � ; ð2:1Þ

where a repeated index implies summation over the range of the index; however, an index enclosed in

parentheses is not summed. Multiplying both sides of Eq. (2.1) with a kernel function W ðx� n; hÞ, the first
derivative Wc ¼ oW =onc of the kernel function, the second derivative Wcd ¼ o2W =oncond of the kernel
function, neglecting the third and higher derivative terms, and integrating the resulting equations over the

domain X, we obtain

Z
X
f ðnÞW dn ’ fi

Z
X
W dnþ fai

Z
X
ðna � xðiÞa ÞW dnþ 1

2
fabi

Z
X
ðna � xðiÞa Þðnb � xðiÞb ÞW dn; ð2:2Þ
Z
X
f ðnÞWc dn ’ fi

Z
X
Wc dnþ fai

Z
X
ðna � xðiÞa ÞWc dnþ

1

2
fabi

Z
X
ðna � xðiÞa Þðnb � xðiÞb ÞWcdn; ð2:3Þ
Z
X
f ðnÞWcd dn ’ fi

Z
X
Wcd dnþ fai

Z
X
ðna � xðiÞa ÞWcd dnþ

1

2
fabi

Z
X
ðna � xðiÞa Þðnb � xðiÞb ÞWcd dn; ð2:4Þ

where fi ¼ f ðxiÞ, fai ¼ of =oxðiÞa and fabi ¼ o2f =oxðiÞa oxðiÞb . Note that the kernel function involves the

smoothing parameter h whose value affects the accuracy of the approximate solution; h determines the

support of the kernel function. In order to simplify the notation, we use below xðiÞ ¼ ðxðiÞ; yðiÞ; zðiÞÞ. Eqs.
(2.2)–(2.4) are written in matrix form as

T ¼ BF or BIJFJ ¼ TI ; I ¼ 1; 2; . . . ; 10; ð2:5Þ

where

BIJ ¼
Z
X
UðIÞHðJÞdn ¼

XN
j¼1

UðIÞHðJÞmj

qj
; ð2:6Þ
Uð1Þ ¼ Wij; Uð2Þ ¼ Wij;x; Uð3Þ ¼ Wij;y ; Uð4Þ ¼ Wij;z; Uð5Þ ¼ Wij;xx;

Uð6Þ ¼ Wij;yy ; Uð7Þ ¼ Wij;zz; Uð8Þ ¼ Wij;xy ; Uð9Þ ¼ Wij;yz; Uð10Þ ¼ Wij;xz;
ð2:7Þ
Hð1Þ ¼ 1; Hð2Þ ¼ xðjÞ � xðiÞ; Hð3Þ ¼ yðjÞ � yðiÞ; Hð4Þ ¼ zðjÞ � zðiÞ; Hð5Þ ¼ 1

2
ðxðjÞ � xðiÞÞ2;

Hð6Þ ¼ 1

2
ðyðjÞ � yðiÞÞ2; Hð7Þ ¼ 1

2
ðzðjÞ � zðiÞÞ2; Hð8Þ ¼ ðxðjÞ � xðiÞÞðyðjÞ � yðiÞÞ;

Hð9Þ ¼ ðyðjÞ � yðiÞÞðzðjÞ � zðiÞÞ; Hð10Þ ¼ ðxðjÞ � xðiÞÞðzðjÞ � zðiÞÞ;
ð2:8Þ
F ¼ ffi; fxi; fyi; fzi; fxxi; fyyi; fzzi; fxyi; fyzi; fzxigT; ð2:9Þ
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TI ¼
Z
X
f ðnÞUðIÞdn ¼

XN
j¼1

fjUðIÞ
mj

qj
; ð2:10Þ
Wij ¼ W ðxðiÞ � nðjÞ; hÞ; Wij;x ¼
oW
ox

����
x¼xðiÞ;n¼nðjÞ

: ð2:11Þ

Furthermore, mj and qj denote, respectively, the mass and the mass density assigned to the particle
located at the point xðjÞ. Linear equation (2.5) can be solved simultaneously for F1; F2; . . . ; F10. It is obvious
that the truncation error in Eq. (2.1) is of the order jn� xðiÞj3. We named this method of estimating the

value of f at a point as the modified SPH (MSPH) method [12]. The function evaluation is second-order

consistent, and the first and the second derivatives are first-order and zeroth-order consistent, respectively.

For a one-dimensional problem, Eq. (2.5) reduces to

B11 B12 B13

B21 B22 B23

B31 B32 B33

2
4

3
5 fi

fxi
fxxi

8<
:

9=
; ¼

T1
T2
T3

8<
:

9=
;; ð2:12Þ

where

B11 ¼
XN
j¼1

Wij
mj

qj
; B12 ¼

XN
j¼1

ðxðjÞ � xðiÞÞWij
mj

qj
; B13 ¼

1

2

XN
j¼1

ðxðjÞ � xðiÞÞ2Wij
mj

qj
;

B21 ¼
XN
j¼1

Wij;x
mj

qj
; B22 ¼

XN
j¼1

ðxðjÞ � xðiÞÞWij;x
mj

qj
; B23 ¼

1

2

XN
j¼1

ðxðjÞ � xðiÞÞ2Wij;x
mj

qj
;

B31 ¼
XN
j¼1

Wij;xx
mj

qj
; B32 ¼

XN
j¼1

ðxðjÞ � xðiÞÞWij;xx
mj

qj
; B33 ¼

1

2

XN
j¼1

ðxðjÞ � xðiÞÞ2Wij;xx
mj

qj
;

ð2:13Þ
T1 ¼
XN
j¼1

fjWij
mj

qj
; T2 ¼

XN
j¼1

fjWij;x
mj

qj
; T3 ¼

XN
j¼1

fjWij;xx
mj

qj
; ð2:14Þ

N equals the number of particles in the neighborhood of xðiÞ where the kernel function is positive.

For a one-dimensional problem, we use the kernel function W ðx� n; hÞ given by

W ðx� n; hÞ ¼ 1:35744 1
h
ffiffi
p

p ½1� ððx� nÞ=2hÞ2�3e�ðx�nÞ2=h2 ; jx� nj6 2h;
0; jx� nj > 2h:

�
ð2:15Þ

The function W ðx� n; hÞ and its first two derivatives are continuous at jx� nj ¼ 2h. It has a compact

support of length 4h and the area under the curve W ðx; hÞ vs. x equals 1.
3. Analysis of ASBs

3.1. Problem formulation

We consider simple shearing deformations of a block of an elasto-thermo-viscoplastic material that lies

between the planes y ¼ �H . Thus only the x-velocity is non-zero. Equations governing deformations of the

body are [3,4]
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q _v ¼ s;y ; ð3:1Þ
q _e ¼ �q;y þ sv;y ; ð3:2Þ
_c ¼ v;y ; ð3:3Þ
_c ¼ _ce þ _cp; ð3:4Þ
q ¼ �jh;y ; ð3:5Þ
_s ¼ l _ce; ð3:6Þ
q _e ¼ qc _hþ s _ce; ð3:7Þ
_cp ¼ Ks; ð3:8Þ
k _w ¼ s _cp; k ¼ k0 1

�
þ w
w0

�n

; ð3:9Þ
K ¼ max 0;
s

k0ð1� ahÞ 1þ w
w0

� �n

0
B@

1
CA

1=m0
B@

8><
>: � 1

1
CA
,

bs

9>=
>;: ð3:10Þ
Here a superimposed dot indicates the material time derivative, q is the mass density, v the particle x-
velocity, s the shear stress, q the heat flux, c the shear strain, ce the elastic shear strain, cp the plastic

shear strain, h the temperature rise, e the specific internal energy, j the thermal conductivity, c the

specific heat, w an internal variable, l the shear modulus, k describes the work hardening of the

material, a is the thermal softening parameter, b and m are the strain-rate hardening parameters, w0

and n are the work hardening parameters, and k0 is the yield stress in a quasi-static isothermal

simple shear test. The plastic multiplier K is zero for elastic deformations and positive for plastic

deformations.

Eqs. (3.1) and (3.2) express, respectively, the balance of linear momentum and the balance of
internal energy. Eq. (3.3) defines the shear strain rate, (3.4) states the additive decomposition of

the total shear strain rate into elastic and plastic parts, (3.5) is Fourier’s law of heat conduction,

and Eqs. (3.6) and (3.7) are constitutive relations. Eq. (3.8) is the flow rule where the plastic

multiplier is given by Eq. (3.10). The work hardening of the material due to plastic deformations

is described by Eq. (3.9). When the material is deforming plastically, the yield surface defined by

Eq. (3.10) is
s ¼ k0ð1� ahÞ 1

�
þ w
w0

�n

ð1þ b _cpÞ
m
: ð3:11Þ
Thus the radius of the yield surface increases due to strain- and strain-rate hardening and decreases due to

thermal softening.
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We nondimensionalize variables as follows:

y ¼ H�y; c ¼ �c; w ¼ �w; v ¼ H _c0�v; t ¼
�t
_c0
;

s ¼ k0�s; k ¼ k0�k; K ¼ _c0
k0

�K; b ¼
�b
_c0
; l ¼ k0�l;

h ¼ k0
qc

�h; q ¼ k0
H 2 _c20

�q; j ¼ qc _c0H
2�j; a ¼ qc

k0
�a:

ð3:12Þ

Here variables with an overbar are nondimensional, 2H is the height of the specimen, and _c0 is the average
strain rate.

Substituting the nondimensional variables in Eqs. (3.1)–(3.10), and dropping the overbars, we get

_v ¼ 1

q
s;y ; ð3:13Þ
_h ¼ jh;yy þ Ks2; ð3:14Þ
_s ¼ lðv;y � KsÞ; ð3:15Þ
_w ¼ Ks2

1þ w
w0

� �n ; ð3:16Þ
K ¼ max 0;
s

ð1� ahÞ 1þ w
w0

� �n

0
B@

1
CA

1=m0
B@

8><
>: � 1

1
CA
,

bs

9>=
>;: ð3:17Þ

We assume that a homogeneous solution of Eqs. (3.13)–(3.17) under boundary conditions

vð�1; tÞ ¼ �1; vð1; tÞ ¼ 1; h;yð�1; tÞ ¼ 0; ð3:18Þ

is perturbed when w ¼ 0:1, h ¼ 0:1003 and c ¼ 0:0692, and seek a solution of the resulting initial-boundary-
value problem under boundary conditions (3.18) and initial conditions

vðy; 0Þ ¼ y; wðy; 0Þ ¼ 0:1;

hðy; 0Þ ¼ 0:1003þ 0:1ð1� y2Þ9e�5y2 ;

sðy; 0Þ ¼ 1

�
þ 0:1

w0

�n

ð1� ahðy; 0ÞÞð1þ bÞm;
ð3:19Þ

where the second term on the right-hand side of the expression for the temperature h represents a per-

turbation. The amplitude of the perturbation is large to reduce the computational time required for the

deformation to localize at y ¼ 0. The peak in the shear stress–shear strain curve occurs at c ¼ 0:093.
Boundary conditions (3.18)3 imply that the surfaces y ¼ �1 are thermally insulated. It is clear that the time

is reckoned from the instant of perturbation. Perturbation of the homogeneous solution at different instants

only affects the computational time and other aspects of the computed solution remain unchanged.

Because of boundary conditions (3.18) and initial conditions (3.19), we assume that the solution exhibits

following properties:
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vð�y; tÞ ¼ �vðy; tÞ; hð�y; tÞ ¼ hðy; tÞ;
wð�y; tÞ ¼ wðy; tÞ; sð�y; tÞ ¼ sðy; tÞ:

ð3:20Þ

Accordingly, we solve the problem on the domain ½0; 1� and replace boundary conditions (3.18) by

vð0; tÞ ¼ 0; vð1; tÞ ¼ 1; h;yð0; tÞ ¼ 0; h;yð1; tÞ ¼ 0: ð3:21Þ
3.2. Application of the MSPH Method

Particles are located on the domain ½0; 1�. Eqs. (3.13)–(3.17) are written at each particle, and quantities

on the right-hand sides are replaced by their kernel estimates derived from Eq. (2.12). The result is a system

of coupled nonlinear ordinary differential equations (ODEs) which are integrated with respect to time t with
subroutine LSODE taken from the package ODEPACK developed by Hindmarsh [14].

In order to satisfy symmetry conditions (3.20) and boundary conditions (3.21), we placed several ghost

particles with index I ¼ �1;�2;�3; . . . and y�1 ¼ �y1, y�2 ¼ �y2, etc. During each time step, the physical

quantities at these ghost particles were not computed but were set according to Eq. (3.20). When computing

the kernel estimates of derivatives at particles 1; 2; . . ., we should consider also particles in the domain y < 0

because some of them lie in the support of the kernel for particles 1; 2; . . . Boundary conditions (3.21)1 and

(3.21)2 are satisfied by setting _v ¼ 0 for particles located at y ¼ 0 and y ¼ 1.

Results presented below were obtained by setting MF¼ 20, ATOL ¼ 1� 10�7 and RTOL ¼ 1� 10�7 in

LSODE. The parameter MF determines whether the Gear or the Adams–Moulton method is used, and
ATOL and RTOL equal, respectively, the absolute and the relative tolerances in the solution. The sub-

routine adjusts the time step size and the order of the method in order to compute the solution within the

prescribed accuracy.

In the numerical solution of the problem, we assigned following values to nondimensional parameters:

q ¼ 3:928� 10�5; l ¼ 240:3; a ¼ 0:4973; n ¼ 0:09;

k ¼ 3:978� 10�3; w0 ¼ 0:017; m ¼ 0:025; b ¼ 5� 106:
ð3:22Þ

Except for the thermal softening coefficient a, these values are for a typical steel when the average strain

rate is 500 s�1 and the value of a is enhanced to reduce the computational time; however, we will conduct

parametric studies to delineate the effect of a. The temperature rise in �C is obtained by multiplying the
corresponding nondimensional value by 89.6. We have set H ¼ 2:58 mm.

In the absence of an analytical solution of the problem defined by Eqs. (3.13)–(3.19) a reference nu-

merical solution was computed by the FE code developed by Batra and Kim [4]. Three nonuniform meshes

with nodal coordinates given by

yn ¼
n� 1

200

� �p

; n ¼ 1; 2; . . . ; 201; p ¼ 3; 4; 5; ð3:23Þ

were employed and the following error measure, g, was computed.

gðy; tÞ ¼ sðy; tÞ � �sðy; tÞ
�sðy; tÞ ; g0 ¼ sup

06 y6 1
06 t6 T

jgðy; tÞj; ð3:24Þ

where �s is the FE solution computed with p ¼ 5 in Eq. (3.23), and T ¼ 61 ls. For p ¼ 3, 4 and 5, the ASB

initiated at t ¼ 60:55 ls, as indicated by a catastrophic drop in the shear stress at y ¼ 0. Thus T equals the

time after the shear band has initiated. Values of g0 for p ¼ 3 and 4 equalled 0.00887 and 0.00607,
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respectively, signifying the convergence of the numerical solution. Henceforth, the numerical solution

obtained with p ¼ 5 is taken as the reference solution against which solutions computed with the MSPH

method are compared.
For the MSPH method, the following four distributions of particles were considered:

198 particles : DyI ¼
6:0� 10�5; 16 I 6 50;

1:05DyI�1; 50 < I < 170;

2:0� 10�2; 1706 I 6 198:

8><
>:

267 particles : DyI ¼
4:0� 10�5; 16 I 6 75;

1:05DyI�1; 75 < I < 190;

1:0� 10�2; 1906 I 6 267:

8><
>:

354 particles : DyI ¼
3:0� 10�5; 16 I 6 100;

1:05DyI�1; 100 < I < 210;

6:0� 10�3; 2106 I 6 354:

8><
>:

442 particles : DyI ¼
2:0� 10�5; 16 I 6 150;

1:05DyI�1; 150 < I < 264;

5:0� 10�3; 2646 I 6 442:

8><
>:

ð3:25Þ

In each case, the region near y ¼ 0 is finely discretized as was also the case for the solution by the FEM.

Table 1 lists the ASB initiation time and the error in the solution for the four particle distributions and

smoothing length h ¼ 1:5D where D is the larger of the distance between two particles adjacent to the one

located at yI .
It is clear that with an increase in the number of particles the MSPH solution converges to the reference

FE solution.

Fig. 1(a)–(d) gives the spatial distribution of the error in the MSPH solutions at t ¼ 60:5, 60.6, 60.7, 60.8,
60.9 and 61 ls. The spatial location of the point of the maximum error g0 shifts to the right with an increase

in the value of time t. It is because the shear stress at y ¼ 0 begins to drop rapidly at t ¼ 60:55 ls and an

unloading elastic wave emanates from y ¼ 0 and propagates outwards as shown in Fig. 2(a)–(d). This and

results in remaining Figs. discussed in this section have been computed with the MSPH method and 442

particles.

Fig. 2(b) depicts the time history of the evolution of the shear stress s at y ¼ 0; the insert in the

Fig. shows results for 60:4 ls6 t6 61:1 ls. These plots reveal that the collapse in the shear stress at y ¼ 0

occurs during the 0.1 ls time interval starting at 60.56 ls. The beginning of the collapse of the shear stress at
t ¼ 60:56 ls signifies the initiation of an ASB at that instant. The sudden drop in the shear stress at y ¼ 0

results in an elastic unloading (shock) wave that propagates outwards from y ¼ 0; this is illustrated by the

spatial variations of the shear stress and the particle velocity plotted in Fig. 2(c) and (d). Curves 1; 2; . . . are
at 0.1 ls interval beginning at t ¼ 60:5 ls. The nondimensional wave speed computed from either of these
Table 1

Error measure and the ASB initiation time for four particle distributions in the MSPH method

Number of particles ASB initiation time (ls) g0

198 60.88 4.31

267 60.68 1.73

354 60.60 0.468

442 60.56 0.0590

Reference FEM solution 60.55 –
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two plots is 2473 which is very close to
ffiffiffiffiffiffiffiffi
l=q

p
. Furthermore, the change Dv in the particle velocity is related

to the jump Ds in the shear stress by

Dv ¼ Ds
qC

;

where C is the elastic wave speed. Setting Ds ¼ 1:3, q ¼ 3:928� 10�5 and C ¼ 2473, we get Dv ¼ 13:38
which agrees with the change in the particle speed computed from results of Fig. 2(d). It takes about 0.81 ls
for the wave to travel from y ¼ 0 to y ¼ 1 from where it is reflected back with a negative value of the shear

stress; the reflected wave is labeled as number 11 in these two plots.

The speeds of the unloading elastic wave computed from the MSPH solutions with 198, 267 and 354

particles are 2535, 2502 and 2476, respectively.

Fig. 3(a) shows the spatial distribution of the temperature h at five different times: t ¼ 0, 20, 40, 60.5 and

60.8 ls. For t6 60:5 ls, the temperature rises slowly, and the rate of temperature increase is higher at

particles situated near y ¼ 0 than at those located away from y ¼ 0; a magnified view of the temperature
rise near y ¼ 0 is given in the insert of Fig. 3(a). It is clear that during the 0.3 ls between t ¼ 60:5 ls and
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t ¼ 60:8 ls, the temperature at y ¼ 0 has risen sharply. During the same time interval, the shear stress that

was essentially uniform till t ¼ 60:5 ls has dropped precipitously at points close to y ¼ 0. Recall that the

temperature is high at points where plastic deformations are large. From the plot of the temperature

distribution in Fig. 3(a) insert, the width of a shear band is determined to be 2� 0:002� 2580 ¼ 10:32 lm
which is close to the experimentally determined values of 1–10 lm. There is no unique way of finding the

band width either from the experimental or the numerical data. Experimentalists usually determine it from
the postmortem data and rarely state how an ASB edge is delineated. Here, the edge of an ASB is assumed

to be located at a point where the temperature rise is 40% of the peak value. Identical solutions obtained

with p ¼ 3, 4 and 5 in (3.23) suggest that 10.32 lm is the converged value of the ASB width.

At first sight it appears that the boundary condition h;yð0; tÞ ¼ 0 is not well satisfied by the computed

solution. However, magnified plots of the temperature distribution given in Fig. 6(g) suggest that this

boundary condition is well satisfied.

Fig. 3(b) evinces the time history of the evolution of the temperature rise at y ¼ 0; the insert shows

results for 60:4 ls6 t6 61:1 ls. The sudden jump in the rate of increase of temperature at t ¼ 60:56 ls can
also be taken as a criterion for the ASB initiation.
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3.3. Effect of the smoothing length h

Fig. 4 exhibits the spatial distribution of the error at six times for h ¼ D. A comparison of results plotted

in Figs. 4 and 1(d) suggests that h ¼ 1:0D gives lower values of g and hence better numerical solution. For

the matrix B in Eq. (2.12) to be invertible, a minimum of three particles must lie in the support of a particle.

For h ¼ 0:75D, the boundary particle has only two particles in its support. Thus h < D was not attempted.
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These numerical experiments suggest that h ¼ 1:5D gives acceptable results but h ¼ 1:0D yields a slightly

lower error g in the numerical solution.

3.4. Choice of the kernel function

We note that the modified quartic spline kernel function

W ðd; hÞ ¼ ð1� d2Þ3ð1� 6d2 þ 8d3 � 3d4Þ; d 6 1;
0; d > 1;

�

where

d ¼ jx� nj
2h

did not give satisfactory results. It thus is not clear if a kernel function other than that given by (2.15) will

yield a good solution.

For the kernel function
W ðx� n; hÞ ¼ 1:04823 1
h
ffiffi
p

p eðx�nÞ2=h2 � e�4
� �

; jx� nj6 2h;

0; jx� nj > 2h;

(
ð3:26Þ
h ¼ 1:5D, and 442 particles, Fig. 5 exhibits the spatial distribution of the error function g at the same times

as in Fig. 1(d). The comparison of plots in Figs. 5 and 1(d) suggests that the two kernel functions (3.26) and

(2.15) give essentially identical results. Furthermore, the shear band initiation times computed with the two

kernels are also the same. Whereas the derivatives of the kernel function (3.26) at jx� nj ¼ 2h are dis-

continuous, those of (2.15) are continuous.
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3.5. Post-localization response

Fig. 6(a)–(g) evinces at different times the spatial distribution of the particle velocity v, the work

hardening parameter w, the plastic strain rate _cp, the plastic strain cp, the shear stress s, and the temperature
rise h within the region where the deformation has localized. The curve 1 is at t ¼ 60:5 ls, and curves

2; 3; . . . are at 60.6, 60.7, . . . ls, respectively. Marchand and Duffy [13] performed high strain rate torsional

tests on thin-walled tubes and observed that the shear stress collapsed and the plastic strain reached almost

20 in a shear band. Also, a shear band was followed by a crack. In the absence of a fracture criterion, it is

hard to ascertain when the material in our computations will fail. In the plots of the particle velocity and

the effective plastic strain, curve 8 is different from the remaining 10 curves. The spatial distributions of the

shear stress and the temperature rise suggest that computations are stable and numerical results are rea-

sonable. To understand the solution depicted by curve 8, we note that Eqs. (3.8) and (3.10) give

d _cp ¼
ð1=bþ _cpÞ

m
ds
s

�
þ dh
ð1=aÞ � h

� dw
ðw0 þ wÞ=n

�
: ð3:27Þ

For t ’ 61 ls, ð1=aÞ � h ’ 0:1, s ’ 0:2, ðw0 þ wÞ=n ’ 250, so there is a competition between the first two

terms. Since at y ¼ 0, ds < 0 and dh > 0, d _cp can become negative. Note that the code correctly gives _cp ¼ 0

at y ¼ 0 and t ¼ 61:2 ls, implying thereby that the particle at y ¼ 0 is momentarily deforming elastically.
With no heat generated at y ¼ 0 but heat conducted away from it, dh < 0 at y ¼ 0 when t is increased from

60:2 to 60:3 ls. _cp ¼ 0 instantaneously eliminates the effect of strain-rate hardening and reduces the radius

of the yield surface to the extent that the material particle deforms plastically at the next instant. For the

next two time increments of 0.1 ls each, there is no elastic unloading. When _cp at y ¼ 0 equals zero,
_cp ’ 3:6� 105 at y ¼ 6� 10�5 since this point is still deforming plastically.

Parametric studies were conducted to delineate the effect of the thermal softening parameter a in Eq.

(3.11). Results computed for a ¼ 0:1, 0.15, 0.2 and 0.25 indicated that for a ¼ 0:25 and 0.2, the drop in the

shear stress was catastrophic enough for the elastic unloading wave to emanate from the center of the ASB
and propagate outwards with the elastic shear wave speed. However, for a ¼ 0:15 and 0.1 the shear stress
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did not decrease rapidly enough for an elastic unloading wave to emanate from y ¼ 0. For a ¼ 0:1, all
curves in Fig. 6(c) looked alike. Results plotted in Fig. 7 reveal that the initiation time of an ASB decreases

exponentially with an increase in the value of a. A least squares fit to the computed values is

tASB ¼ 10a ls; a ¼ 3:4e�1:27a; ð3:28Þ

where tASB is the ASB initiation time.

3.6. Comparison of results from the MSPH, FE and pseudo-spectral methods

Bayliss et al. [15] have analyzed a one-dimensional ASB problem, similar to the one studied herein, by a

pseudo-spectral method. Whereas we have modeled thermal softening by an affine function of temperature

rise, they used an exponential function. We have incorporated the exponential thermal softening function in

our FE and MSPH codes. The FE and the MSPH results are compared with those of Bayliss et al. [15] in

Table 2 and Fig. 8. In each case the defect is modeled by a slightly weaker material near y ¼ 0. Values of

material and geometric parameters, and the defect size and type are given in [15]. Times t1, t2, t3 and t4
equal, respectively, when _cp at y ¼ 0 is maximum, _cp at y ¼ 0 has dropped to approximately 40% of its peak

value, the shear stress at y ¼ 0 is maximum, and the temperature at y ¼ 0 attains a minimum after having
a

l
o
g
 
(
T
i
m
e
 
/

µs
)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

Fig. 7. Variation of the shear band initiation time with the non-dimensional thermal softening coefficient a. Centers of squares are data
points and the solid curve is the least squares fit.

Table 2

Comparison of results from the pseudo-spectral, MSPH and FEM methods

Time Pseudo-spectral MSPH FEM

t1 0.7239 0.9445 0.9446

t2 0.7252 0.9455 0.9456

t3 0.7268 0.9505 0.9507

t4 0.7248 0.9474 0.9475
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R.C. Batra, G.M. Zhang / Journal of Computational Physics 201 (2004) 172–190 187
peaked. Fig. 8 depicts the time histories of s, h, cp and _cp at y ¼ 0. Solutions computed with the MSPH and

the FE methods were virtually identical; thus only the MSPH solution is shown. A comparison of these

plots with those in Fig. 1 of [15] reveals that all three methods give results very close to one another. The

intermediate peak values, at y ¼ 0 and t ’ 0:94, of the temperature rise, the plastic strain and the plastic

strain rate computed with the MSPH (the pseudo-spectral) method equal respectively 11 (9), 24 (13) and

11,500 (5300). Whereas peak values of h, cp and _cp obtained with the MSPH method are higher than those

with the pseudospectral method, that of the shear stress is ’ 1:84 for the two methods. Differences in the
values of t2 � t1, t3 � t1 and t4 � t1 could be due to the different peak values attained by s, h, cp and _cp. It is
not clear why the value of t1 for the MSPH and the FE solutions is higher than that for the solution by the

pseudo-spectral method.

3.7. Remarks

For the simple shearing problem, the FEM gives good results since the Lagrangian FE mesh is

not distorted and the smallest element size of 10�7 enables one to capture strains of 10 and higher. For
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two-dimensional problems, one can still use a Lagrange FE mesh but not so small elements. Furthermore,

the mapping from an element in the reference configuration to that in the present configuration can become

singular or the element can get extremely distorted and the time step for stable integration of the ODEs is
diminished to so small a value that computations cannot be performed in a reasonable CPU time. For the

simple shearing problem, the distance between two nodes stays fixed so computations proceed at a rea-

sonable pace even when strains become large. In the MSPH, no nodal connectivity is needed. The ex-

pectation is that satisfactory results can be computed with the MSPH for two- and three-dimensional

problems.

Table 3 compares the FE and the MSPH methods.

For the one-dimensional ASB problem studied herein the manual time required to prepare the input file

is the same for the FE and the MSPH methods. Since the FEM requires considerably less CPU time than
the MSPH method, it should be used. However, for the two-dimensional shear band problem in an in-

homogeneous body with the point where an ASB initiates unknown a priori, a satisfactory resolution of the

ASB will require that the FE mesh be refined adaptively; e.g. see [16]. However, each refinement of the

mesh smoothens out deformation fields and tends to delay the ASB initiation time. Also intense plastic

deformations within the shear banded region will significantly distort the Lagrangean mesh. For such

problems, the MSPH method may be advantageous over the FEM. One will gain accuracy at the cost of

CPU time.

In the solution of Eq. (3.14) by the MSPH method, h;yy at a particle is approximated by Eq. (2.12) which
may not be very good because only three terms are retained in the Taylor series expansion (2.1). The sit-

uation is similar to that in the FEM employing polynomial basis functions of degree one. For the present

problem, the effect of thermal conductivity prior to the initiation of an ASB is negligible (e.g. see [17]).
Table 3

Comparison of the MSPH and the FE methods for an elastodynamic problem

MSPH FE

Nodal connectivity Not required Required

Assembly of equations Not required Required

Weak form None Global

Subdomains (two-dimensional problem) None Polygonal and disjoint

Basis functions Complex and difficult to express in closed

form

Simple polynomials

Satisfaction of essential boundary conditions Requires extra effort Easy to enforce

Satisfaction of natural boundary conditions Requires additional effort Included in the weak formulation

Stiffness matrix Asymmetric, large band width that cannot

be determined a priori, not necessarily

positive semidefinite

Symmetric, banded, stiffness matrix

positive definite after imposition of

essential boundary conditions

Mass matrix Diagonal, positive-definite Symmetric, banded, positive definite

Sum of elements of mass matrix Not necessarily equal to the total mass of

the body

Equals total mass of the body

Stresses/strains Smooth everywhere Good at integration points

Addition of nodes Easy Difficult

Determination of time step size for stability in

an explicit algorithm

Difficult, requires determination of the

maximum frequency of the structure

Relatively easy

Computation of the total strain energy of the

body

Difficult Relatively easy

Data preparation effort Little Extensive

CPU time for the ASB problem (201 nodes for

FEM, 442 particles for MSPH)

’6 h ’0.5 h
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4. Conclusions

We have used the MSPH method to analyze simple shearing deformations of an elasto-thermo-visco-
plastic body. The effects of elastic unloading, strain-hardening, strain-rate hardening, thermal softening,

heat conduction and inertia forces are considered. Equal and opposite velocity is prescribed on the two

thermally insulated bounding surfaces of the block. When a perturbation near the center of the block is

introduced in the homogeneous solution of the governing equations, the deformation localizes into a

narrow region of intense plastic deformation with peak plastic strains of 20. The width of the intensely

deformed region is only 10.3 lm. Computed results agree well with those obtained by the finite element

method. In all three cases particles or nodes are placed nonuniformly with the distance between adjacent

nodes increasing gradually as one moves away from the center of the block.
For the one-dimensional wave propagation in a bar, two-dimensional transient heat conduction, and the

one-dimensional transient thermo-elasto-viscoplastic problem, the MSPH method with the exponential

kernel function and the smoothing length equal to the distance between two adjacent particles gives results

that agree well with either the analytical solution or the converged FE solution.

In view of the noticeably more CPU time needed for the MSPH method than that for the FE solution, it

is recommended that one use the FEM to analyze one-dimensional ASB problem. The data preparation

time is virtually the same for the two methods.
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