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Analysis of cylindrical bending thermoelastic deformations of functionally
graded plates by a meshless local Petrov—Galerkin method

L. F. Qian, R. C. Batra, L. M. Chen

Abstract We analyze plane strain static thermoelastic
deformations of a simply supported functionally graded
(FG) plate by a meshless local Petrov-Galerkin (MLPG)
method. Material moduli are assumed to vary only in the
thickness direction. The plate material is made of two
isotropic randomly distributed constituents and the
macroscopic response is also modeled as isotropic. Dis-
placements and stresses computed with the MLPG method
are found to agree very well with those obtained from the
analytical solution of the problem. The number of nodes
required to obtain an accurate solution for a FG plate is
considerably more than that needed for a homogeneous
plate.

Keywords Plane strain deformations, Thermoelasticity,
Meshless method, Inhomogeneous material

1

Introduction

Functionally graded materials (FGMs) permit tailoring of
material properties so as to derive maximum benefits from
its inhomogeneity. FGMs have been used for structural
optimization (bamboo is a highly optimized naturally
occuring FGM) [25], increasing electric conductivity
without impairing the thermal insulation of ceramics [28],
enhancing biocompatibility [39], devising new power
generation techniques [44], reducing thermal stresses [36],
and relieving stress intensity factors due to a thermal
shock [17]. An advantage of an FGM over laminated
composites is that material properties vary continuously
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through the thickness rather than being discontinuous
across adjoining layers thereby mitigating the delamina-
tion mode of failure. However, in an FGM made of
particulates, failure may occur due to decohesion at the
particulate/matrix interfaces.

A theoretical framework to analyze and design FG
structures needs (i) the relationship between the micro-
structures and the macroscopic response, and (ii) analyti-
cal/numerical tools to analyse inhomogeneous structures.
Techniques to ascertain the effective elastic moduli of an
FGM include the three-phase model [11], the Mori-Tanaka
method [24], the self-consistent technique [14], a higher-
order unit cell method [1], a fuzzy logic method [15], the
mean field theory [16], the representative volume element
technique and the rule of mixtures. Vel and Batra [40, 43]
have given analytical solutions for thermomechanical
deformations of simply supported FG plates subjected to
either time-independent thermal and mechanical loads or
transient thermal loads. They [41] have also analyzed
natural frequencies of a simply supported FG plate. The
method of asymptotic expansions has been used by Rogers
et al. [34], Tarn and Wang [38] and Cheng and Batra [7]
for studying deformations of a simply supported FG plate.
One could also use the finite element method (FEM) or a
meshless method. Meshless methods such as the element-
free Galerkin [6], the hp-clouds [10], the reproducing
kernel particle [21], the smooth particle hydrodynamics
[22], the diffuse element [26], the partition of unity finite
element [23], the natural element [37], meshless Galerkin
methods using radial basis functions [45], and the meshless
local Petrov-Galerkin (MLPG) [2] for finding an approxi-
mate solution of a given initial-boundary-value problem
have become popular because nodes can be placed at
arbitrary locations. The finite-difference method and the
collocation technique are also meshless methods of finding
an approximate solution of a given boundary-value prob-
lem. These methods and other developments on meshless
methods are discussed in two recent books [3, 20].

Advantages of the MLPG method are that it employs a
weak formulation of the problem and no background
mesh is required to numerically evaluate various integrals
appearing in the local Petrov-Galerkin formulation of the
problem. However, a higher-order integration rule is
generally needed to evaluate these integrals. Ching and
Batra [9] used the MLPG method to ascertain singular
fields near a crack tip by enriching the basis functions and
employing either the visibility [6] or the diffraction crite-
rion [27]. The MLPG method has also been successfully
used to study 2-dimensional elastodynamic problems for
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homogeneous bodies [12, 4]. Qian, Batra and Chen [29-31]
have used the MLPG method in conjunction with a higher-
order shear and normal deformable plate theory (HOS-
NDPT) [46] to analyze static and dynamic deformations of
a homogeneous and a functionally graded plate. It was
found that results could satisfactorily be computed even
when Poisson’s ratio for the plate material equaled 0.499.
Qian and Batra [32, 33] have used the compatible HOS-
NDPT and the MLPG method to analyse transient heat
conduction and transient thermoelastic deformations in a
FG plate. Batra, Porfiri and Spinello [5] have used the
MLPG method to study transient heat conduction in a
bimetallic disk; the discontinuity in the temperature gra-
dient at the common interface is satisfied by using either
the method of Lagrange multipliers or by employing the
jump function proposed by Krongauz and Belytschko [18].
We use the MLPG method here to analyze plane strain
static thermoelastic deformations of an FG plate with
material properties varying smoothly in the thickness
direction. Whereas Qian and Batra [33] used a compatible
HOSNDPT to analyse three-dimensional deformations of a
plate, we employ here the two-dimensional thermoelas-
ticity equations and analyse static plane strain deforma-
tions. With material properties varying only in the
thickness direction, the partial differential equations of the
plate theory have constant coefficients for a plate of uni-
form thickness. However, for the plane strain problem, the
coefficients in the partial differential equations are func-
tions of the thickness coordinate. The present work is a
better test of the applicability of the MLPG method for
analysing deformations of an inhomogeneous body than
that presented in [31].

The paper is organized as follows. Section 2 gives the
formulation of the problem, and Sect. 3 describes briefly
the MLPG method and its implementation for a thermo-
elastic problem. Computed results for an Aluminum/
Silicon Carbide FG plate are compared with the
analytical solution in Sect. 4. Section 5 summarizes
conclusions.

2
Formulation of the problem

2.1

Governing equations

A schematic sketch of the problem studied and the
rectangular Cartesian coordinate axes x;,x;,x; used to

X3

0

Fig. 1. Schematic sketch of the problem studied

describe deformations of the FG plate are shown in Fig. 1.
It is assumed that the plate occupies the region
Q=10,L] x [=h/2,h/2] x (—00,00) in the unstressed
reference configuration. The cross-section of the plate is
denoted by S = [0, L] x [—h/2,h/2], and the boundary of S
by I'. The plate is made of an isotropic material with
material properties varying only in the thickness (x;)
direction.

In the absence of body forces and sources of internal
energy, static thermoelastic deformations of an isotropic
plate are governed by

7ijj = 0,
0jj = Aegk0ij + 2uei; — PoyT,

qii=0, in Q ij=123, (1)

in Q |
(2)

inQ . (3)

q = —«Tj,

&j = (Uij + uji)/2,

Here o is the stress tensor, q the heat flux, ¢ the infini-
tesimal strain tensor, u the displacement, T the change in
temperature from that in the stress-free reference config-
uration, a comma followed by j indicates partial differen-
tiation with respect to x;, a repeated index implies
summation over the range of the index, x gives the posi-
tion of a material particle, 8 is the Kronecker delta, 4 and u
are Lamé constants, f§ = 3Ku is the stress-temperature
coefficient, K is the bulk modulus, o is the coefficient of
thermal expansion, and « is the thermal conductivity.
Material parameters /, y, ff and k are smooth functions of
x,. Equation (1); expresses the balance of linear momen-
tum, and Eq. (1), the balance of internal energy. Equa-
tion (2); is Hooke’s law and Eq. (2), the Fourier law of
heat conduction.

We assume that a plane strain state of deformation
prevails in the plate, and boundary conditions and ther-
momechanical loads applied to it are independent of the
x3-coordinate. Thus u3; = 0, and u;, u, and T are inde-
pendent of x3. Henceforth indices i and j take values 1 and
2. Boundary conditions considered are

aijny = f;*(x1),

gini = h*(x;) on x, = +h/2,

1/12:07 (4)
o1 =0,
T=Ty onx;3 =0,L .

Here n is an outward unit normal to a surface, f* the
prescribed tractions and h* the prescribed heat flux on the
top (x2 = h/2) and the bottom (x, = —h/2) surfaces of the
plate. Boundary conditions (4); 4 imply that the edges
x1 = 0 and x; = L of the plate are simply supported; these
do not simulate well conditions encountered in the labo-
ratory where rollers or sharp edges are used to support a
plate. However, these boundary conditions facilitate the
comparison of the computed solution with the analytical
solution [42]. Other types of boundary conditions can also
be easily considered.

Substitution from (2) and (3) into (1) yields field
equations for the displacement u and the temperature T.



These equations are one-way coupled in the sense that the
field equation for T does not involve u but that for u
involves T. Thus the temperature field can be found first,
and then displacements can be computed.

2.2

Local weak formulation of the problem

Let S, C S be a smooth closed region, and v and 0 smooth
functions defined on S,. Let I',,, I'ys, I'y; and I';; denote
parts of the boundary 0S, of S, where displacements,
surface tractions, heat flux and temperature are prescribed
respectively. Note that I, and I';; need not be disjoint
since linearly independent components of the displace-
ment and the surface traction may be prescribed at the
same point of the boundary; e.g. see boundary conditions
(4)3 and (4)4. However, for the sake of simplicity, I';,, and

I',s will be treated as disjoint parts of the boundary 0S, in
this section. Let u = @ and T = T be prescribed on I'y,
and I, respectively, and o;n; = f and g;n; = q on L'y
and I',, respectively. One way to impose essential
boundary conditions (i.e. prescribed displacement u on
I',, and prescribed temperature T on I',;) is to use the
penalty method; another technique will be discussed in
Sect. 3.4.

Let v and 0 be smooth functions defined on S,. Taking
the inner product of Eq. (1); with v, of (1), with 6,
integrating the resulting equations on S,, and using the
divergence theorem, we arrive at

/V,'J'O'ijdA— / v,ﬁdF

5, Iy
— / Viojin; dr" + / piuvi(ui — ﬁi) dI' =0,
Tou |
/ 0,q:dA — / 6gdr
5, Loy
— / eqﬂ’li dr + / ptG(T — T) dlr=0 . (5)
rdt rat

Here p;, and p, are penalty functions defined on I',,, and
I'; respectively; p;, assumes values much larger than those
of 4, pt and f3, and values of p, are much greater than those
of k. In practice, p;, and p, are generally taken to be
constants. The dimension of p;, is stress/length, and that
of p; is thermal conductivity/length. In the 4th term on the
left-hand side of Eq. (5);, the index i is summed even
though it appears three times.

3

Meshless local Petrov—Galerkin (MLPG) formulation

of the problem

Let M nodes be placed on S, and S1, S,, .. ., Sy be smooth
two dimensional closed regions, not necessarily disjoint
and of the same shape and size, enclosing nodes

1,2,..., M respectively, such that the union of
S1,82,...,8m covers S. Let ¢;,¢,,..., ¢y and

Vi, ¥y, ..., ¥y with N < M be two sets of linearly inde-
pendent functions defined on one of these regions, say Sy,
1 <I < N. We approximate u, v, T and 0 on S; by

u(xy,x;) :{ majz; }

={¢"}"{5"},
={y"}"{5"},
={¢'}"{0"},

={y'}'{o'} .

v(x1,%2)
T(xl, xz)
9(3(71, XZ)

The length of array {6*} is 2N, and that of array {5‘} is N.
Substitution from (6); into (3)4 yields

€11 (xlyxZ)
822(x1 , xz)

2812(x1; xz)

N
> )
J=1
N
= Z ¢],26}

N

Z ¢]251 "‘45]152)
=
N

PIEA (7)

J=1

e(x1,%) =

Similarly, we get

ZHM
&
=
=

w={£;;ézz:izz§}=

= [Bl{} -
Z $20 |7

(8)
Substitution from (6), (7) and (8) into (2); and (2),, the
result into (5), and requiring that the resulting equations
hold for all choices of 8% and &', we arrive at the following
set of discrete equations.

> K8} = Fy, ZKfS’_Ff (9)

N
J=1
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where

KY = / (BY)'DB¥dA — / (y¥)'nDBY dI

o FXM
+ [ patoptar,
Fqu
K}, = / (B)'D'Bj dA — / y{nD'B} dT
Sy o
+ [ patiigiyar,
rvt

- (10)
B— [wi'tars [ patadr

rzf ro{u

+ / (B¥)'Co}8; dA
N

- [ wh'ncgaar,
l—‘xu
t T = t
F = /(%) qdl’ + /ptanle".
Iy To

Here

A+2u A 0

D: ;u }.,—’_Z,LL 0 5
0 0 7
p -k 0
cC=<{ B, Df:[ } , (11)
0 0 —K

are respectively the matrices of elastic constants, stress—
temperature coefficients and thermal conductivities. A
superimposed bar denotes a quantity derived from the test
functions v and 0 corresponding to those for the trial
solutions u and T. Equations (9) are written for each §j,
1 < I < N. There is no assembly of equations required in
the MLPG method.

The basis functions {¢}} and {¢}} are found by the
moving least squares (MLS) method of Lancaster and
Salkauskas [19]; it is discussed below.

3.1

Brief description of the MLS basis functions

Let f(x;,x,) be a scalar valued function defined on Sy; f
can be identified with one of the three fields u;(x1, x;),
uy(x1,x;) and T(xy,x,). The approximation f”(x;,x,) of
f(x1,x;) is assumed to be given by

m

%) = prlx,x)ay(x,x2)

J=1

(12)

fh(xl,xz) = Zd)](xuxz)f; )
J=1

where

PT(xlvxZ) == {17x17x27 (x1)2>x1x27 (x2)27 .. } ) (13)

is a complete monomial in x; and x, having m terms. For
example, p! = {1,x;,x,} with m =3 and

pT = {1,x1,%, (x1)% x1%2, (x2)*} with m = 6 are respec-
tively complete monomials of degree 1 and 2. The coeffi-
cients a;(x1,%;), az(x1,%2), - . ., am(x1,x,) are found by
minimizing R defined by

n

R(x) = S Wix—x)p (x)alx) — £ | (14)

=1
where £, is the ficticious value of f"(x) at x = x;, x; gives
the location of node I, and » is the number of nodes
(m < n < N) whose weight functions W(x — x;) have
positive values at the point x. Thus the weight function
W (x — x;) is taken to be associated with the node I located
at x;. Here we take

4\ o o(d\ s (4
W<x—xI>—{1‘6(a) +(2) 3 () o<di<n,
0, dr>ry,
(15)
where d; = |x — x;] is the distance between points x and x;
and r,, is the radius of the circle outside which W vanishes.
1y is called the support of the weight function W.
Setting OR/0a; =0, I = 1,2,...,m gives the following
system of m linear algebraic equations for the determi-
nation of a;(x), a2(x), ..., an(x):

A(x)a(x) = P(x)f ,

where
A = Wix - x)p" (x)p(x),

P(x) =[W(x —x1)p(x1), W(x—x)p(x2),. .,

W(x —x)p(Xn)] (17)
are m x m and m X n matrices. Note that elements of these
matrices depend upon the choice of the weight functions.

Solving equations (16) for a and substituting the result
into (12) give

(16)

(18)

where

m

$(x) = pAT OBk K=12....n,

J=1
(19)

are the basis functions of the MLS approximation. Note
that ¢;(xx) # Jjx; thus f; # f"(x;). For the matrix A to be
invertible, n > m. Equation (18) gives the value of f"(x) in
terms of the ficticious values f; of f(x) at n nodes whose
weight functions are positive at the point x. The value of n
will vary with x and the radius, r,,, of the compact support
of W(x — x;). Here we take



ry = bhy | (20)

where h; = min{|x; — x;|, 1 <] < N} is the distance from
the node at x; to the node nearest to it and b is a scaling
parameter.

3.2

Basis functions for the test function

The choice ¥;(x) = ¢;(x) in Eq. (6) will give a Galerkin
formulation of the problem. However, it requires consid-
erable computational resources to numerically evaluate
integrals appearing in Egs. (10). Here we take

V;(x) = W(x — x7) with r,, = h;. Taking S; also equal to a
circle of radius hj centered at the node at x; simplifies the
evaluation of integrals appearing in Egs. (10) and pre-
serves the local character of the MLPG formulation. For S;
completely inside S, boundary or line integrals in Eqgs. (10)
identically vanish. When §; intersects the boundary 0S of
S, then integrals in Eqs. (10) are evaluated on S; NS and
the line integrals need not vanish.

3.3

Evaluation of integrals

For §; a circle of radius hy, the area integrals in Egs. (10)
are to be evaluated on a circle, and the line integrals on a
part of the boundary of a circle. The circular region is
mapped onto a [—1,1] x [—1, 1] square region, and

N, x Ng Gauss integration points with the corresponding
weights are used to numerically evaluate the integrals. In
order to evaluate line integrals, the circular arc is mapped
onto [—1,1] and N, Gauss points with the appropriate
weights are used to evaluate the integrals.

34

Imposition of essential boundary conditions

Whereas the penalty method of satisfying essential
boundary conditions works well for static problems, for
dynamic problems it may significantly reduce the time
step size [4]. Also a very large value of the penalty
parameter can result in ill-conditioning of the stiffness
matrices K* and/or K'. If a displacement component (or
temperature) is prescribed at a node, we replace equation
(9); for that node by an equation analogous to Eq. (18)
with u(x;,x;) (or TH(x,,x;)) set equal to the prescribed
value.

4
Estimation of effective elastic moduli

We assume that inclusions are spherical and are randomly
distributed in the matrix. Furthermore both constituents
are made of isotropic materials and the macroscopic re-
sponse of the composite can be regarded as isotropic. Vel
and Batra [43] have shown that the Mori-Tanaka [24] and
the self-consistent [14] techniques give different results for
a simply supported functionally graded plate loaded only
on the top surface. The emphasis here is to demonstrate
the applicability of the MLPG method to thermoelastic
problems for inhomogeneous bodies. Thus the use of a
particular homogenization technique for deducing effec-
tive properties of the composite is less critical. We use the
Mori-Tanaka method for its simplicity. It accounts

approximately for the interaction among neighboring
inclusions and is generally applicable to regions of the
graded microstructure that have a well-defined continuous
matrix and a discontinuous particulate phase.

According to the Mori-Tanaka method, the effective
shear modulus, y, and the effective bulk modulus, K, of the
two-phase composite are given by
K—-K; Va2

K —Ki 14 (1—Vy) (K —Ki)/(3Ky + 4u)’

(21)

H—=H _ (,“2 - ,ul)
Hy — Iy _V2/<1 =) (14 "‘fl)> ’
where

fi = 1 (9K + 8py) /(6(Ky + 21)) (22)

subscripts 1 and 2 denote quantities for phases 1 and 2
respectively, V; equals the volume fraction of phase 1,
and V, =1 — V; the volume fraction of phase 2. The
Lamé constant A is related to u and K by A = K — 2u/3.
The effective thermal conductivity x [13] and the
effective coefficient of thermal expansion « [35] are
given by

K— K1 _ Vz (23)
Ky — Kj 1+(1—V2)(K2—K1)/3K1 ’
«—o  1/K—1/K (24)

Oy — 0 o 1/K2 — I/Kl

The through-the-thickness variation of V, is assumed to

be given by
1 x)\’

V2=V2+(V2+—V2)<2+hz> : (25)
where superscripts + and — signify respectively values of
the quantity on the top and the bottom surfaces of the
plate, and the parameter p describes the variation of phase
2. p =0 and oo correspond to uniform distributions of
phase 2 with volume fractions V," and V, respectively.

5

Computation and discussion of results

Because of the availability of analytical results [42], we
analyse thermomechanical deformations of a simply
supported Aluminum/Silicon Carbide (Al/SiC) rectangular
plate and assign following values to various material and
geometric parameters.

L=250mm, h=50mm, T,=0,
b=13, M=1207, m=3, Ng=09;
Al: E; =70GPa, v, = 0.3,
i (26)
o =234 x107°/K, Kk; =233W/mK,
SiC: E, = 427GPa, v, = 0.17,
0 =43x10°/K, Kk, =65W/mK .

That is, we use a uniform mesh of 1207 nodes with 71

nodes in the x;-direction and 17 in the x,-direction; see
Fig. 2. Thus §; is a circle of radius 2.94 mm. Eighty-one
quadrature points are used to evaluate integrals over ;.
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Fig. 2. Locations of 1207 uniformly distributed nodes on the
cross section of the plate (nodes on the boundaries have been
masked by the solid lines)
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The aspect ratio, L/h, equals 5 and the plate will be
considered as being thick. In Egs. (26), E = 2u(1 +v) is
Young’s modulus and v Poisson’s ratio. Because a load (or
temperature) prescribed on the surface x, = h/2 can be
expanded in terms of Fourier series in x;, it suffices to
consider the following loads.

[Gzz(xl, h/Z), T(xl, h/Z)] = [p+, T+] sin(nxl/L),
O'lz(xl, —h/Z) = 0, T(xl, —h/Z) = TO . (27)
Boundary conditions imposed at the simply supported
edges are listed in Eq. (4),. Thus the two edges and the

bottom surface of the plate are kept at a uniform tem-
perature Ty. The top surface of the plate is subjected to a
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sinusoidal pressure load with amplitude p*, and the
thermal load on the top surface also varies sinusoidally
with amplitude T+. Either a mechanical or a thermal load
is applied on the top surface of the plate. The problem for
the combined loading can be solved by superposing
solutions for the mechanical and the thermal problems.

For the mechanical load, results are presented in terms
of the following non-dimensional variables
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For the thermal load, quantities are nondimensionalized as

i, — 100]’1 U G — 100'11
2T OClTJrLZ’ u _E1061T+7
_ 100L 012
Op=—— 29
12 E10C1 T+h ( )
Unless otherwise noted, we have set
v, =0, V,,=1 p=2, (30)
in Eq. (25).
5.1

Results for the pressure load

Figures 3a and 3b respectively compare through-the-
thickness variations of the transverse displacement, i,
and the transverse shear stress ¢;, from the MLPG
solution with those from the analytical solution of Vel
and Batra [42]. Note the expanded vertical scale in

Fig. 3a; thus small differences in the two values of i, are
exaggerated. The maximum difference in the two values
of i1, is only 0.39%. The two values of the transverse
shear stress essentially coincide with each other at every
point in the plate. Thus the MLPG method yields accu-
rate values of the displacements and stresses for a FG
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plate. Note that the transverse deflection is not uniform
through the plate thickness implying thereby the exis-
tence of the transverse normal strain. The transverse
normal strain is positive for x,/h < 0.2 and negative for
x3/h > 0.2. The maximum value of the transverse shear
stress occurs at x,/h ~ 0.15. Figure 4a, b, ¢ depicts the
influence of the variation of the volume fraction of SiC
on the through-the-thickness distribution of the trans-
verse deflection, the axial stress, and the transverse shear
stress. For fixed values of V; and V;, a higher value of p
gives a lower value of V, and thus a lower value of the
bending stiffness which in turn results in a higher value
of the transverse deflection of the plate. The smooth slow
variation of the transverse deflection implies that the
transverse normal strain also changes gradually through
the plate thickness. A higher value of p gives an increased
value of the magnitude of the axial stress at points
adjacent to the top and the bottom surfaces of the plate.
As expected, the neutral surface does not pass through
the horizontal centroidal axis of the plate. The axial
stress on the top surface is considerably higher than
the magnitude of the axial stress on the bottom surface.
The maximum value of the transverse shear stress and
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Non-dimensional Thickness

Non-dimensional Shear Stress

3 1 1
0.5 -0.25 0 0.25 0.5

Non-dimensional Thickness

Fig. 8. For the thermal loading, comparison of through-the-
thickness variation of a the transverse deflection and b the
transverse shear stress at x; = L/2 mm computed by the MLPG
method with the analytical solution of Vel and Batra [42]

where it occurs are not affected that much by the
value of p.

Keeping V5 = 0 and p = 2 fixed, Fig. 5a, b, ¢ shows the
effect of varying V, on the through-the-thickness varia-
tions of the transverse deflection, the axial stress, and the
transverse shear stress. The qualitative nature of results is
unaffected by the value of V,'; however, a higher value of
V, gives lower deflection of points on the top and the
bottom surfaces, a higher value of the axial stress at points
on the top surface, and a slightly higher value of the
maximum transverse shear stress. The point where the
maximum transverse shear stress occurs moves towards
the top surface with an increase in the value of V.

5.2

Variation of parameters of the MLPG method

We have plotted in Fig. 6a the variation of the transverse
deflection at the point (L/2,0) and the transverse shear
stress at the point (0, 0) with the number of nodes in the
x,-direction. The ordinate equals the value of a quantity
normalized by its value for the 17 node case. It is clear that
we need a minimum of 16 uniformly spaced nodes in the
x,-direction. For a homogeneous cantilever beam loaded
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Fig. 9. Effect of the exponent p on the through-the-thickness
variation of a the transverse deflection, and b the transverse shear
stress on the section x; = 125 mm

on the unclamped edge by a tangential force, 72 uniformly
spaced nodes with 4 nodes in the thickness direction gave
a solution that matched the analytical solution of the
problem (Ching [8]). Results plotted in Fig. 6b reveal that
a 7 x 7 Gauss quadrature rule would have been sufficient.
Figure 7a, b exhibits the influence of the scaling parameter
b defined in Eq. (20) on the transverse deflection and the
transverse shear stress; N, equals the number of nodes in
the x,-direction. Irrespective of the value of N, in the
range of 14 to 17, b > 8 should give acceptable results.

5.3

Results for the thermal load

We have compared in Fig. 8a, b the computed transverse
deflection and the transverse shear stress with the ana-
lytical solution of Vel and Batra [42]. As for the pressure
loading, the MLPG solution matches very well with the
analytical solution. Whereas for the pressure load applied
only on the top surface of the plate, the maximum
deflection occurs at the point x,/h = 0.2, for the thermal
loading the transverse deflection monotonically increases
with x, in the range —0.25 < x,/h < 0.5. Thus the trans-
verse normal strain is positive at most points in the
transverse direction. The through-the-thickness variation
of the transverse shear stress consists of two half sine
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Fig. 10. Effect of V;” (volume fraction of SiC at the top surface)
on the through-the-thickness variation of a the transverse
deflection, and b the transverse shear stress on the section

x; = L/2mm

waves of different amplitudes and wavelengths. Results
plotted in Fig. 9a, b exhibit that the qualitative variation of
the through-the-thickness nature of the transverse deflec-
tion and the transverse shear stress is unaffected by the
value assigned to the exponent p giving the change in the
volume fraction of SiC. For a given thermal loading, results
plotted in Figs. 9 and 10 evince that the transverse
deflection of a point on the top surface increases with an
increase in the value of p or a decrease in the value of V;,
and the maximum transverse shear stress increases with
an increase in the value of p and/or V.

6

Conclusions

We have extended the meshless local Petrov-Galerkin
(MLPG) formulation to analyse static thermomechanical
deformations of a thick functionally graded thermoelastic
plate. The effective properties at a point in the plate are
obtained by the Mori-Tanaka method. The volume fraction
of the two constituents, and hence the effective moduli are
assumed to vary only in the thickness direction. Streses and
displacements computed with the MLPG method are found
to agree very well with those obtained from the analytical
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solution of the corresponding problems. The number of
uniformly spaced nodes in the direction of variation of
material properties is significantly more than that needed
to analyze deformations of a similarly loaded homogeneous
thick plate. For several variations of the material proper-
ties, seventeen nodes in the thickness direction anda 7 x 7
quadrature rule for evaluating integrals over local circular
subdomains yielded stresses and displacements in close
agreement with their analytical values. An advantage of the
MLPG method is that neither nodal connectivity nor a
background mesh is needed for solving numerically a
boundary-value problem. The collocation method, the fi-
nite-difference method and the smoothed-particle hydro-
dynamics also do not require a background mesh. These
methods employ the strong form of a boundary-value
problem and the MLPG method uses a weak form.
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