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Abstract We analyze transient heat conduction in a
thick functionally graded plate by using a higher-order
plate theory and a meshless local Petrov-Galerkin
(MLPG) method. The temperature field is expanded in
the thickness direction by using Legendre polynomials
as basis functions. For temperature prescribed on one or
both major surfaces of the plate, modified Lagrange
polynomials are used as basis and additional terms are
added to these expansions to exactly match the given
temperatures. Partial differential equations for the evo-
lution of the coefficients of the Legendre polynomials are
reduced to a set of coupled ordinary differential equa-
tions (ODEs) in time by a MLPG method. The ODEs
are integrated by the central-difference method. The
time history of evolution of the temperature at the plate
centroid and through-the-thickness distribution of the
temperature computed with the fifth-order plate theory
are found to agree very well with those obtained ana-
lytically.

Keywords MLPG method Æ Effective thermal
conductivity Æ Higher order plate theory Æ
Inhomogeneous plate

1 Introduction

Advantages of functionally graded materials (FGMs)
over laminated composites include the smooth variation
of material properties in the body thereby eliminating
the delamination mode of failure. For use in a severe
thermal environment, FGM plates are designed so that

material properties vary continuously through the
thickness from that of a ceramic on the side exposed to
high temperature to that of a metal on the other side.
For infinitesimal deformations of an initially unstressed
elastic body, the balance of linear momentum and the
heat equation governing the temperature distribution
are one-way coupled in the sense that the heat equation
can be solved first and then the computed temperature
field can be used to find the mechanical displacements.
One way to solve the heat equation analytically is to take
the Laplace transform of the transient heat equation,
solve the transformed equation by the series expansion
method, and then take the inverse Laplace transform,
e.g., see Vel and Batra [32]. These authors expanded the
Laplace transformed temperature field and the material
properties as a power series in the thickness coordinate,
obtained a recursive relation for the unknowns which
are solved for from the initial and boundary conditions.
They then took the inverse Laplace transform.
Sutradhar et al. [31] assumed that the thermal conduc-
tivity and the specific heat have the same exponential
variation in one spatial direction, used Green’s function
for the heat equation, took the Laplace transform with
respect to time of the simplified heat equation, solved the
problem by the boundary element method, and finally
took the inverse Laplace transform numerically to
compute the temperature field. Jin and Batra [14]
assumed that heat flows only in the direction in which
material properties vary, the thermal conductivity varies
exponentially and the thermal diffusivity is a constant.
The one-dimensional heat equation then has an analyt-
ical solution. Kim and Noda [15] assumed that a FG
plate with material properties varying in the thickness
direction only can be considered as being made of sev-
eral homogeneous laminae. The transient heat equation
is solved in each lamina by using Green’s function
approach. The continuity conditions at the interfaces
and boundary conditions at the top and the bottom
surfaces are used to find the time dependent temperature
field in the plate. Ootao and Tanigawa [22] also
approximated a FG plate by a laminated one with each
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lamina made of a homogeneous material. Heat con-
duction in each layer was studied by taking the Laplace
transform with respect to time and a double cosine series
expansion in the two in-plane coordinates. Sutradhar
et al. [31] cite other references that have used the Laplace
transform and a numerical method to find an approxi-
mate solution of the transient heat equation. Sladek
et al. [29] have used the meshless local boundary integral
equation method to analyze transient heat conduction in
a FG material.

In the thermomechanical analysis of linear elastic FG
plates, the thermal problem is usually solved first either
analytically or the temperature field is assumed to be
known. The mechanical problem is then solved either
numerically, analytically or by using a plate theory; e.g.,
see [22, 25, 26, 33, 34, 35] and references cited therein.
Coupled nonlinear plane strain thermomechanical
problems for FG bodies have been studied by Batra and
Love [5]. Batra [4] analyzed plane strain static finite
deformations of a FG cylinder made of a Mooney-
Rivlin material.

Here we use a higher-order plate theory to determine
transient thermal fields in a FG plate with material
properties varying only in the thickness direction
thereby setting the thermal problem on the same footing
as the mechanical problem. The effective thermal con-
ductivity is derived from that of the constituents of the
FG plate by using a relation due to Hatta and Taya [13].
We note that Babuska, Lee and Schwab [3] have derived
a posteriori estimates of modeling error for heat-

conduction in a plate. Rössle et al. [28] have employed
the energy projection method to deduce a hierarchy of
models for a linear elastic plate, and have also presented
error estimates for the solution of the plate problem
relative to that of the 3-D problem. These authors have
also provided a historical background of the develop-
ment of plate theories.

We use either orthonormalized Legendre polyno-
mials or modified Legendre polynomials as basis
functions to expand the temperature field in the
thickness direction; the time-dependent coefficients of
these Legendre polynomials are also functions of
coordinates of a point on the midsurface of the plate.
The series expansion for the temperature exactly sat-
isfies the temperature boundary conditions prescribed
on the top and/or the bottom surfaces of the plate.
Partial differential equations for determining the
coefficients of Legendre polynomials are derived by
the principle of ‘‘virtual work’’. The two-dimensional
initial-boundary-value problem is reduced to a system
of coupled ordinary differential equations in time by a
meshless local Petrov-Galerkin method (MLPG) pro-
posed by Atluri and Zhu [1]. Alternatively, one could
have used a finite element (FE) method or another
meshless method such as the element-free Galerkin [9],
the hp-clouds [11], the reproducing kernel particle [18],
the smoothed particle hydrodynamics [19], the modi-
fied smoothed particle hydrodynamics (MSPH) [38]
the diffuse element [21], the partition of unity finite
element [20], the natural element [30], and meshless

Table 1 Comparison of the MLPG and the FE methods for a transient problem

MLPG FEM

Weak form Local Global
Information needed about nodes Locations only Locations and connectivity
Subdomains Circular/rectangular, not necessarily

disjoint
Polygonal and disjoint

Basis functions Complex and difficult to express
in closed form

Simple polynomials

Integration rule Higher order Lower order
Satisfaction of essential boundary
conditions

Requires extra effort Easy to enforce

Mass/stiffness matrices Asymmetric, large band width that
can not be determined apriori,not
necessarily positive semidefinite

Symmetric,banded, mass matrix positive
definite, stiffness matrix positive definite
after imposition of essential boundary
conditions.

Sum of elements of mass matrix Not necessarily equal to the total mass
of the body

Equals total mass of the body

Assembly of equations Not required Required
Stresses/strains/heat flux Smooth everywhere Good at integration points
Locking phenomenon for constrained
problems

No Yes

Addition of nodes Easy Difficult
Determination of time step size for stability
in an explicit algorithm

Difficult, requires determination of the
maximum frequency of the structure

Relatively easy

Computation of the total strain energy
of the body

Difficult Relatively easy

Imposition of continuity conditions at
interfaces between two materials

Requires either consideration in the
generation of basis functions or the
use of Lagrange multipliers

Easy to implement

Data preparation effort Little Extensive
CPU time Considerable Relatively little
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Galerkin method using radial basis functions [37].
Meshless methods have become popular because nodes
can be placed at arbitrary locations. The finite-differ-
ence method and the collocation technique are also
meshless methods of finding an approximate solution
of a given boundary-value problem. These methods
and other developments on meshless methods are
discussed in two recent books [2, 17]. For transient
heat conduction in a bimetallic circular disk, Batra et
al. [6] have used two MLPG formulations coupled
with either the method of Lagrange multipliers or the
method of jump function to account for the discon-
tinuity in the temperature gradient at the interface
between two different materials. Warlock et al. [36]
used the method of Lagrange multipliers to enforce
traction conditions at a rough contact surface during
the analysis of static deformations of a linear elastic
material enclosed in a rectangular cavity.

Advantages of the MLPG method are that it employs
a local weak formulation of the problem and no back-
ground mesh is required to numerically evaluate various
integrals appearing in the local Petrov-Galerkin formu-
lation of the problem. However, a higher-order inte-
gration rule is generally needed to evaluate these
integrals. The Table 1 compares the MLPG and the FE
methods.

As far as we can ascertain, this is the first attempt to
use a plate theory for studying transient heat conduction
in a FG thick plate.

For a thick FG plate, the temperature field computed
with the first six Legendre polynomials as basis functions
(i.e., a 5th-order plate theory) is found to agree very well
with the analytical solution of the problem.

2 Formulation of the problem

2.1 Governing equations and weak formulation

A schematic sketch of the problem studied and the
rectangular Cartesian coordinate axes used to describe

heat conduction in the FG plate are shown in Fig. 1.
S denotes the midsurface of the plate and C its
boundary. It is assumed that the macroscopic response
of the plate can be modeled as isotropic and its
material properties vary smoothly in the thickness
direction only.

The heat conduction in the absence of an internal
heat source is governed by

qc _h ¼ �qi;i; in X� ð0; T Þ;
qi ¼ �jh;i in X� ð0; T Þ;
qini ¼ �q on ðoqX ¼ Sþq [ S�q [ ðCq

� ½�h=2; h=2�ÞÞ � ð0; T Þ;

h ¼ �h on ðohX ¼ Sþh [ S�h [ ðCh

� ½�h=2; h=2�ÞÞ � ð0; T Þ;
hðx1; x2; x3; 0Þ ¼ h0ðx1; x2; x3Þ in X: ð1Þ
Here q, c and j are, respectively, the mass density, the
specific heat and the thermal conductivity of a material
point, X ¼ S � ½�h=2; h=2� is the region occupied by
the body, and Sþq ðSþh Þ and S�q ðS�h Þ are parts of the top
and the bottom surfaces where the heat flux (the tem-
perature) is prescribed respectively. Cq and Ch are parts
of the boundary oS of S where the heat flux and the
temperature are prescribed as �q and �h respectively. The
initial temperature distribution in the body is given by
h0ðx1; x2; x3Þ. A comma followed by i indicates partial
differentiation with respect to xi, and a superimposed
dot indicates partial differentiation with respect to time
t. A repeated index implies summation over the range
of the index, and n is a unit outward normal to the
surface. Equation (1)1 expresses the balance of internal
energy for a rigid body, Eq. (1)2 is the Fourier law of
heat conduction, Eqs. (1)3 and (1)4 are boundary
conditions, and Eq. (1)5 is the initial condition that is
assumed to be consistent with the prescribed boundary
conditions.

Let g be a smooth function defined on X. Multiplying
both sides of Eq. (1)1 with g, integrating the resulting
equation over X, using the divergence theorem for the
term on the right-hand side of the equation and
boundary conditions (1)3 and (1)4, we get

Z
X
qcg _hdXþ

Z
X
jh;ig;idXþ

Z
oqX

�qgdA�
Z

ohX
jh;inigdA¼ 0:

ð2Þ
In the Galerkin FE formulation of the problem, one
usually requires that g ¼ 0 on ohX. However, in the
MLPG formulation, it is not necessary to require that
g ¼ 0 on ohX since essential boundary conditions are
satisfied either by the penalty method or by the
method of Lagrange multipliers or by suitably modi-
fying the stiffness matrix, the mass matrix and the
load vector. Equation (2) is a weak formulation of the
problem.

x2

x1

o 

L2

L1

x3

h 

Fig. 1 Schematic sketch of the problem studied

216



2.2 Higher-order plate theory

For simplicity, we assume that either the heat flux or
the temperature is prescribed on all of Sþ and/or S�.
Also, we do not derive 2-dimensional field equations
and the associated boundary conditions for the tem-
perature. The approach followed here is similar to that
used by Batra and Vidoli [7] and Batra et al. [8] who
derived a higher-order shear and normal deformable
plate theory (HOSNDPT) for piezoelectric and elastic
plates respectively. They used a mixed variational
principle and postulated constitutive relations for
fluxes. Here we derive heat flux from the assumed
temperature field and the Fourier law of heat con-
duction; such a theory is called compatible HOS-
NDPT in [8].

2.2.1 Heat flux prescribed on the top and the bottom
surfaces of the plate

Let Laðx3Þ, a ¼ 0; 1; 2; . . . ;K be Legendre polynomials
defined on ½�h=2; h=2� and orthonormalized according
to the relationZ h=2

�h=2
LaðzÞLbðzÞdz ¼ dab ; ð3Þ

where dab is the Kronecker delta. Expressions for
L0; L1; . . . ; L5 are given below.

L0ðx3Þ ¼
1ffiffiffi
h
p ; L1ðx3Þ ¼ 2

ffiffiffi
3

h

r
x3
h
;

L2ðx3Þ ¼
1

2

ffiffiffi
5

h

r
12

x3
h

� �2
�1

� �
;

L3ðx3Þ ¼
ffiffiffi
7

h

r
�3 x3

h

� �
þ 20

x3
h

� �3� �
;

L4ðx3Þ ¼
3ffiffiffi
h
p 3

8
� 15

x3
h

� �2
þ70 x3

h

� �4� �
;

L5ðx3Þ ¼
ffiffiffiffiffi
11

h

r
15

4

x3
h

� �
� 70

x3
h

� �3
þ252 x3

h

� �5� �
:

ð4Þ

The temperature hðx1; x2; x3; tÞ at any point in the plate is
approximated by

hðx1; x2; x3; tÞ ¼
XK

a¼0
Laðx3Þ~haðx1; x2; tÞ ; ð5Þ

where ~haðx1; x2; tÞ is the temperature at time t at the point
ðx1; x2Þ of the midsurface S of the plate. Thus

oh=ox1

oh=ox2

oh=ox3

8><
>:

9>=
>; ¼

XK

a¼0
Laðx3Þ

o~ha=ox1

o~ha=ox2PK
b¼0 dba

~hb

8>><
>>:

9>>=
>>;
�
XK

a¼0
fkag~ha;

ð6Þ

where

fkag ¼

Laðx3Þ o
ox1

Laðx3Þ o
ox2PK

b¼0 dabLbðx3Þ

8>>>><
>>>>:

9>>>>=
>>>>;

; ð7Þ

dab ¼
Z h=2

�h=2

dLa

dx3
ðx3ÞLbðx3Þdx3 : ð8Þ

Analogous to Eq. (5), we write

gðx1; x2; x3Þ ¼
XK

a¼0
Laðx3Þ~gaðx1; x2Þ : ð9Þ

Substituting from eqs. (5), (6) and (9) into (2) and car-
rying out the integration with respect to x3 from �h=2 to
h=2, we getZ

S
~gaMab

_~hbdAþ
Z

S
~gakab

~hbdA

þ La
h
2

� �Z
Sþ

�q~gadAþ La �
h
2

� �Z
S�

�q~gadA

þ
Z

Cq

~ga‘ads�
Z

Ch

~gbpba
~hads ¼ 0;

ð10Þ

where

Mab ¼
Z h=2

�h=2
qcLaLbdx3;

kab ¼
Z h=2

�h=2
jfkagfkbgT dx3;

‘a ¼
Z h=2

�h=2
�qðs; x3ÞLaðx3Þdx3;

pab ¼
Z h=2

�h=2
jfngT fkagLbðx3Þdx3:

ð11Þ

Here s is the arc length along the boundary oS of S.
In Eq. (10) quantities are defined on the midsurface S
of the plate, and elements of kab and pab involve dif-
ferential operators with respect to in-plane coordi-
nates.

2.2.2 Temperature prescribed on the top and the bottom
surfaces of the plate

For plates made of an elastic material, surface trac-
tions are most often prescribed on the top and the
bottom surfaces of a plate. However, in a thermal
problem, it is often assumed that the temperature is
assigned on one or both of the major surfaces of the
plate. One way to incorporate the prescribed temper-
ature field into the problem formulation is to use the
method of Lagrange multipliers and hypothesize an
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augmented functional. An alternative is to consider
trial solutions that identically satisfy the temperature
boundary conditions on the major surfaces of the
plate. The first approach introduces two Lagrange
multiplier functions that need to be determined as a
part of the solution of the problem. This is analogous
to finding pressure field in incompressible materials.
The second approach does not introduce additional
unknowns and is adopted here. Stipulating trial solu-
tions that also identically satisfy prescribed tempera-
tures at the plate edges limits the class of functions in
the space of trial solutions. Hence, essential or Di-
richlet boundary conditions at the plate edges are
satisfied either by the method of Lagrange multipliers,
or the penalty method or by suitably modifying the
heat capacity and the conductivity matrices and the
load vector.

Let ~Laðx3Þ, a ¼ 0; 1; 2; . . . ;K be modified Legendre
polynomials of degree K þ 2 that satisfy the conditionsZ h=2

�h=2

~Laðx3ÞLbðx3Þdx3 ¼ dab; a; b ¼ 0; 1; 2; . . . ;K;

~Laðh=2Þ ¼ 0; ~Lað�h=2Þ ¼ 0:

ð12Þ
That is, ~La is orthogonal to the ðK þ 1Þ Legendre poly-
nomials L0; L1; . . . ; LK , and vanishes at x3 ¼ �h=2. For
K ¼ 3, solutions of Eqs. (12) are

~L0ðx3Þ ¼
ffiffiffi
2
p

16
5þ 120

x3
h

� �2
�560 x3

h

� �4� �
;

~L1ðx3Þ ¼
1

16

ffiffiffi
2

3

r
�42 x3

h
þ 1680

x3
h

� �3
�6048 x3

h

� �5� �
;

~L2ðx3Þ ¼
1

10

ffiffiffi
2

5

r
�35þ 840

x3
h

� �2
�2800 x3

h

� �4� �
;

~L3ðx3Þ ¼
1

16

ffiffiffi
2

7

r
�374 x3

h

� �
þ 5040

x3
h

� �3
�14176 x3

h

� �5� �
:

ð13Þ
The temperature distribution in the plate is assumed to
be given by

hðx1; x2; x3; tÞ ¼
XK

a¼0

~Laðx3Þ~haðx1; x2; tÞ

þ 1

2
½hþðx1; x2; tÞ þ h�ðx1; x2; tÞ�

þ x3
h
½hþðx1; x2; tÞ � h�ðx1; x2; tÞ�:

ð14Þ

Note that (14) satisfies the prescribed temperature
boundary conditions on the top and the bottom surfaces
of the plate. Recalling (6), we obtain from (14)

oh=ox1
oh=ox2
oh=ox3

8<
:

9=
; ¼

XK

a¼0
f~kag~ha þ ½l� hþ

h�

� 	
; ð15Þ

where

½l� ¼

1
2þ

x3
h


 �
o

ox1
1
2�

x3
h


 �
o

ox1
1
2þ

x3
h


 �
o

ox2
1
2�

x3
h


 �
o

ox2
1
h � 1

h

2
664

3
775 ; ð16Þ

and f~kag is given by (7) with Laðx3Þ replaced by ~Laðx3Þ.
Substituting for h from (14) and for g from (9) into

(2), carrying out the integration with respect to x3 from
�h=2 to h=2, we obtain the following equation for the
determination of ~ha.Z

S
~ga

~Mab
_~hbdAþ

Z
S

~ga
~N adAþ

Z
S

~ga
~kab

~hbdAþ
Z

S
~ga

~P adA

þ
Z

Cq

~ga
~‘ads�

Z
Ch

~ga~pab
~hbdsþ

Z
Ch

~gaRads ¼ 0;

ð17Þ
where

~Na ¼
Z h=2

�h=2

qc
2

~Ladx3

 !
ð _h
þ þ _h

�Þ;

~P a ¼
Z h=2

�h=2
jf~kag½l�dx3

 !
hþ

h�

( )
;

Ra ¼
Z h=2

�h=2
j½n�T ½l�dx3

 !
hþ

h�

( )
;

ð18Þ

~Mab, ~kab, ~‘a and ~pab are given by (11) with Laðx3Þ
replaced by ~Laðx3Þ. Note that ~N a, ~P a and Ra depend
upon the temperature prescribed on the top and the
bottom surfaces of the plate.

2.2.3 Heat flux prescribed on the top and the temperature
prescribed on the bottom surface of the plate.

In this case we require that the modified Legendre
polynomials satisfy Eqs. (12)1 and (12)2 but not (12)3.
The temperature variation within the plate is given by
(14) with h�ðx1; x2; tÞ omitted. The rest of the analysis is
similar to that of Sect. 2.2.2.

3 Meshless local Petrov-Galerkin formulation
of the problem

Let M nodes be suitably placed on S, and S1; S2; . . . ; SM
be smooth two dimensional closed regions, not neces-
sarily disjoint and of the same shape and size, enclosing
nodes 1; 2; . . . ;M respectively. Let /1;/2; . . . ;/N and
w1;w2; . . . ;wN with N � M be two sets of linearly inde-
pendent functions defined on one of these regions, say
SI , 1 � I � M . We approximate ~hðx1; x2; tÞ and ~gðx1; x2Þ
by
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~haðx1; x2; tÞ ¼
XN

J¼1
/J ðx1; x2ÞdJaðtÞ ¼ f/gT fdag;

a ¼ 0; 1; 2; . . . ;K;

~gaðx1; x2Þ ¼
XN

J¼1
wJ ðx1; x2Þd̂Ja ¼ fwgT fd̂ag;

a ¼ 0; 1; 2; . . . ;K;

ð19Þ

where dJ0; dJ1; . . . ; dJK , J ¼ 1; 2; . . . ;N are ficticious val-
ues of nodal temperatures, and d̂J0; d̂J1; . . . ; d̂JK ,
J ¼ 1; 2; . . . ;N are arbitrary constants. We first derive
below the semidiscrete formulation (or the ‘coupled
ordinary differential equations for the ‘‘nodal’’ temper-
atures dJa) for the case of the heat flux prescribed on the
top and/or the bottom surfaces of the plate.

Replacing the domain S of integration in (10) by SI ,
and substituting for ~h and ~g from (19), recalling that the
resulting equation must hold for all choices of ~ga and
hence fd̂ag, we obtain the following set of coupled
ordinary differential equations (ODEs) for the determi-
nation of fdag.
XN

J¼1
HIJ

_dJa þ
XN

J¼1
Kq

IJdJa þ F q
Ia ¼ 0;

I ¼ 1; 2; . . . ;N ; a ¼ 0; 1; 2; . . . ;K;

ð20Þ

where

HIJ ¼
Z

SI

fwIg½M �f/JgT dA;

Kq
IJ ¼

Z
SI

fwIg½k�f/JgT dA�
Z

Ch

fwIg½p�f/JgT ds;

F q
Ia ¼ La

h
2

� �Z
Sþ

�qfwIgdA

þ La �
h
2

� �Z
S�

�qfwIgdAþ
Z

Cq

fwIg‘ads:

ð21Þ

Equation (20) is obtained for each SI . There is no
assembly of equations required in the MLPG method.
Note that for each value of a in the range 0; 1; . . . ;K, a
set of coupled ODEs needs to be integrated with respect
to time t. Equations (20) and (21) are valid when the heat
flux is prescribed on the top and the bottom surfaces of
the plate.

For the case of the temperature prescribed on the top
and the bottom surfaces of the plate, we substitute from
(19) into (17) to arrive at the following set of coupled
ordinary differential equations:

XN

J¼1
HIJ

_dJa þ
XN

J¼1
Kh

IJdJa þ F h
Ia ¼ 0;

I ¼ 1; 2; . . . ;N ; a ¼ 0; 1; 2; . . . ;K;

ð22Þ

where

Kh
IJ ¼

Z
SI

fwIg½k�f/JgT dAþ
Z

Ch

fwIg½p�f/JgT ds;

F h
Ia ¼

Z
SI

fwIgNadAþ
Z

SI

fwIgPadA

þ
Z

Cq

fwIg‘adsþ
Z

Ch

fwIgRads:

ð23Þ

The basis functions f/Ig are found by the moving least
squares (MLS) method of Lancaster and Salkauskas
[16]; it is described below briefly.

3.1 Brief description of the MLS basis functions

Let f ðx1; x2; tÞ be a scalar valued function defined on
SI ; f can be identified with the temperature field
~haðx1; x2; tÞ. The approximation f hðx1; x2; tÞ is assumed
to be given by

f hðx1; x2; tÞ ¼
Xm

J¼1
pJ ðx1; x2ÞaJ ðx1; x2; tÞ; ð24Þ

where

pT ðx1; x2Þ ¼ f1; x1; x2; ðx1Þ2; x1x2; ðx2Þ2; . . .g; ð25Þ
is a complete monomial in x1 and x2 having m terms. For
example, pT ¼ f1; x1; x2g with m ¼ 3 and
pT ¼ f1; x1; x2; ðx1Þ2; x1x2; ðx2Þ2g with m ¼ 6 are,
respectively, complete monomials of degree 1 and 2. The
coefficients a1ðx1; x2Þ; a2ðx1; x2Þ; . . . ; amðx1; x2Þ are found
by minimizing R defined by

RðxÞ ¼
Xn

I¼1
W ðx� xIÞ½pT ðxIÞaðx; tÞ � f̂IðtÞ�

2; ð26Þ

where f̂IðtÞ is the ficticious value of f hðx; tÞ at x ¼ xI ,
xI gives the location of node I , and n is the number of
nodes ðm � n � NÞ whose weight functions W ðx� xIÞ
have positive values at the point x. Thus the weight
function W ðx� xIÞ is taken to be associated with the
node I located at xI . Here we take

W ðx�xIÞ¼ 1�6 dI

rw

� �2

þ8 dI

rw

� �3

�3 dI

rw

� �4

; 0�dI�rw;

0;dI >rw;

8<
:

ð27Þ
where dI ¼ jx� xI j is the distance between points x and
xI and rw is the radius of the circle outside which W
vanishes. rw is called the support of the weight function
W .

Setting oR=oaI ¼ 0; I ¼ 1; 2; . . . ;m gives the follow-
ing system of m linear algebraic equations for the
determination of a1ðxÞ; a2ðxÞ; . . . ; amðxÞ:
AðxÞaðx; tÞ ¼ PðxÞ̂fðtÞ; ð28Þ
where
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AðxÞ ¼
Xn

I¼1
W ðx� xIÞpT ðxIÞpðxIÞ;

PðxÞ ¼½W ðx� x1Þpðx1Þ;
W ðx� x2Þpðx2Þ; . . . ; W ðx� xnÞpðxnÞ�;

ð29Þ

are m� m and m� n matrices. Note that elements of
these matrices depend upon the choice of the weight
functions. Solving Eq. (28) for a and substituting the
result into (24) give

f hðx1; x2; tÞ ¼
Xn

J¼1
/J ðx1; x2Þf̂J ðtÞ; ð30Þ

where

/KðxÞ ¼
Xm

J¼1
pJ ðxÞ½A�1ðxÞPðxÞ�JK ; K ¼ 1; 2; . . . ; n;

ð31Þ
are the basis functions of the MLS approximation. Note
that /J ðxKÞ 6¼ dJK ; thus f̂J ðtÞ 6¼ f hðxJ ; tÞ. For the matrix
A to be invertible, n � m. Equation (30) gives the value
of f hðx; tÞ in terms of the ficticious values f̂J ðtÞ of f hðx; tÞ
at n nodes whose weight functions are positive at the
point x. The value of n will vary with x and the radius,
rw, of the compact support of W ðx� xIÞ. Here we take

rw ¼ bhI ; ð32Þ
where hI ¼ minfjxJ � xI j; 1 � J � Ng is the distance
from the node at xI to the node nearest to it and b is a
scaling parameter.

3.2. Basis functions for the test function

The choice wIðxÞ ¼ /IðxÞ in Eq. (19)2 will give a
Galerkin formulation of the problem. However, it
requires considerable computational resources to
numerically evaluate integrals appearing in (21) or (23).
Here we take wIðxÞ ¼ W ðx� xIÞ with rw ¼ hI . Taking SI
also equal to a circle of radius hI centered at the node at
xI simplifies the evaluation of integrals appearing in Eq.
(21) and (23) and preserves the local character of the
MLPG formulation. For SI completely inside S,
boundary or line integrals in Eq. (21) and (23) identically
vanish. When SI intersects the boundary oS of S, then
integrals in equations (21) and (23) are evaluated on
oSI \ oS and the line integrals need not vanish.

3.3. Evaluation of integrals

For SI a circle of radius hI , the area integrals in (21) and
(23) are to be evaluated on a circular domain, and the
line integrals on a part of the boundary of a circle. The
circular region is mapped onto a ½�1; 1� � ½�1; 1� square
region, and Ng � Ng Gauss integration points with the
corresponding weights are used to numerically evaluate
the integrals. In order to evaluate line integrals, the

circular arc is mapped onto ½�1; 1� and Ng Gauss points
with the appropriate weights are used to evaluate the
integrals.

3.4. Time integration of coupled ODEs

Equations (20) or (22) are integrated with respect to time
t by the Crank-Nicolson method. That is, dt

Ja ’ dJaðtÞ is
evaluated from

dtþDt
Ja ¼ dt

Ja þ
Dt
2
½ _dt

Ja þ _dtþDt
Ja �: ð33Þ

Equation (20) is written at time t þ Dt, and the value of
_dtþDt
Ja from (33) in terms of dtþDt

Ja , dt
Ja and _dJa is substi-

tuted in it. The result is the following algebraic equation
for dtþDt

Ja .

2

Dt

XN

J¼1
HIJd

tþDt
Ja þ

XN

J¼1
KIJd

tþDt
Ja ¼ �F q

Iaðt þ DtÞ

� 2

Dt

XN

J¼1
HIJd

t
Ja �

XN

J¼1
HIJ

_dt
Ja ð34Þ

In order to use the recursive formula (34), we need _d0Ja.
Equations (1)5, (5) and (19)1 give

h0ðx1; x2; x3Þ ¼
XK

a¼0
Laðx3Þ

XN

J¼1
/J ðx1; x2ÞdJað0Þ: ð35Þ

Thus

XN

J¼1
/J ðx1;x2Þd0Ja¼

Z h=2

�h=2
h0ðx1;x2;x3ÞLaðx3Þdx3� ĥ0ðx1;x2Þ;

ð36Þ
andZ

SI

/I/J dA
� �

d0Ja ¼
Z

SI

/I ĥ0ðx1; x2ÞdA; ð37Þ

which can be solved for d0Ja after they have been written
for all of the subdomains S1; S2; . . . ; SN . Values of _d0Ja are
computed from Eq. (20) written at time t ¼ 0.

We note that the Crank-Nicolson method is uncon-
ditionally stable; thus the time step is determined by the
accuracy desired in the computed solution.

3.5. Imposition of essential boundary conditions

Whereas the penalty method of satisfying essential
boundary conditions works well for static problems, for
dynamic transient problems it may significantly reduce
the time step size. Also a very large value of the penalty
parameter can result in ill-conditioning of the stiffness
matrices Kh, Kq and/or H. Here we use the matrix
transformation technique to satisfy essential (or
Dirichlet) boundary conditions. Let D and I denote,
respectively, the set of nodes where temperature is and is
not prescribed. Temporarily, we suppress the depen-
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dence of temperature upon time. Writing the ficticious
nodal temperatures as f~dg, we rewrite Eq. (34) as

~H~d ¼ ~F; ð38Þ
and

fhg ¼ hD

hI

� 	
¼ /DD /DI

/ID /II

� �
~dD
~dI

� 	
: ð39Þ

Solving the first of these equations for ~dD, we get

f~dg ¼
~dD
~dI

� 	
¼ /�1DDhD

0

� 	
þ �/�1DD/DI

I

� 	
f~dIg ð40Þ

where 0 and I are null and the identity matrices
respectively. Substitution from (40) into (38) and the
premultiplication of the resulting equation by

�wDDwDI
I

� �T

give

�Hd ¼ �F ð41Þ
where

½ �H � ¼ �w�1DDwDI

I

� �T

½ ~H � �/�1DD/DI

I

� �

½ �F � ¼ �w�1DDwDI

I

� �T

½ ~F � � �wI�1DDwDI

I

� �
½ ~H � /�1DDhD

0

� 	

ð42Þ

4. Estimation of the effective heat capacity and thermal
conductivity

We assume that inclusions are spherical and are ran-
domly distributed in the matrix. Furthermore they are
made of isotropic materials and the macroscopic
response of the composite can be regarded as isotropic.

The effective heat capacity, qðx3Þcðx3Þ, of the com-
posite is computed from the rule of mixtures:

qðx3Þcðx3Þ ¼ q1c1V1ðx3Þ þ q2c2V2ðx3Þ ð43Þ
where subscripts 1 and 2 denote values of a quantity for
constituents 1 and 2 respectively, V1 is the volume frac-
tion of constituent 1, and V2 ¼ 1� V1. The effective
thermal conductivity, j, is computed from the following
relation proposed by Hatta and Taya [9].

j� j1

j2 � j1
¼ V2

1þ ð1� V2Þðj2 � j1Þ=3j1
: ð44Þ

The through-the-thickness variation of V2 is assumed
to be given by

V2 ¼ V �2 þ ðV þ2 � V �2 Þ
1

2
þ x3

h

� �p

; ð45Þ

where superscriptsþ and� signify, respectively, values of
the quantity on the top and the bottom surfaces of the
plate, and the parameter p describes the variation of phase
2. p ¼ 0 and 1 correspond to uniform distributions of
phase 2 with volume fractions V þ2 and V �2 respectively.

5. Computation and discussion of results

Because of the availability of analytical results [32], we
analyze heat conduction in an Aluminum/Silicon Car-
bide (Al/SiC) rectangular plate and assign following
values to various material, geometric and computational
parameters.

L1 ¼ L2 ¼ 250mm; h ¼ 50mm;

K ¼ 5;m ¼ 15; b ¼ 15;N ¼ 13� 13 ¼ 169;

NQ ¼ 9� 9 ¼ 81;

Al :q1 ¼ 2707kg=m3; c1 ¼ 896J=kgK; j ¼ 233W =mK;

SiC :q2 ¼ 3100kg=m3; c2 ¼ 670J=kgK; j ¼ 65W =mK:

ð46Þ
Our previous experience [8, 23, 24, 26, 27] with the
analysis of thick plates has revealed that a 5th order
plate theory is adequate. Furthermore, the analysis of
deformations of thick plates by the MLPG method has
suggested that the use of fourth degree complete
monomials in (25) to generate the MLS basis functions,
13 equally spaced nodes in the x1- and the x2-directions
as shown in Fig. 2, and the 9� 9 Gauss quadrature rule
should give very good results. Thus for the case of the
heat flux prescribed on all bounding surfaces, there are
6� 169 ¼ 1014 unknowns.

Since the heat flux or the temperature prescribed on
the top ðx3 ¼ h=2Þ or the bottom ðx3 ¼ �h=2Þ surface
can be expanded in terms of Fourier series in x1 and x2, it
suffices to consider the prescribed heat flux or the pre-
scribed temperature that varies sinusoidally in the x1-
and the x2-directions. Results have been computed for
the following two sets of boundary conditions.

Fig. 2 Thirteen uniformly spaced nodes in the x1- and the
x2-directions
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(a) Heat flux prescribed on the top and the bottom
surfaces.

qþ x1; x2;
h
2
; t

� �
¼ qþ0 ð1� e�ctÞ sin px1

L1
sin

px2
L2

;

q� x1; x2;�
h
2
; t

� �
¼ 0;

hð0; x2; x3; tÞ ¼ hðL1; x2; x3; tÞ ¼ 0;

hðx1; 0; x3; tÞ ¼ hðx1; L2; x3; tÞ ¼ 0:

ð47Þ

The heat flux prescribed at a point on the top surface
of the plate reaches its equilibrium value asymptotically.
The bottom surface of the plate is thermally insulated.

Results in figs. are presented in terms of following
variables.

ĥ ¼ hj1

qþ0 h
; q̂ ¼ q=qþ0 : ð48Þ

(b) Temperature prescribed on all bounding surfaces

hþ x1; x2;
h
2
; t

� �
¼ hþ0 ð1� e�ctÞ sin px1

L1
sin

px2
L2

;

h� x1; x2;�
h
2
; t

� �
¼ 0;

hð0; x2; x3; tÞ ¼ hðL1; x2; x3; tÞ ¼ 0;

hðx1; 0; x3; tÞ ¼ hðx1; L2; x3; tÞ ¼ 0:

ð49Þ

Results are presented in terms of the following nondi-
mensional variables.

ĥ ¼ h=hþ0 ; q̂ ¼ �
qh

j1h
þ
0

: ð50Þ

Unless otherwise specified, results presented below are
for V �2 ¼ 0, V þ2 ¼ 1:0, p ¼ 2:0 and c ¼ 10:0=s with Sili-
con Carbide as phase 2.

For the heat flux prescribed on the major surfaces of
the plate, Fig. 3a, b depicts the temperature distribution
through the plate thickness at t ¼ 1:3012; 13:0122 and
131:1218s, and the time histories of the temperature at
the plate centroid for c ¼ 0:1 and 10:0=s. It is clear
that the presently computed solution matches very well
with the analytical solution. Thus the order of the plate
theory and values assigned to other variables are ade-
quate to accurately compute the temperature at any
point in the plate. As expected, the temperature at the
plate centroid rises slowly for c ¼ 10=s as compared to
that for c ¼ 0:1=s. At 150s, the temperature at the plate
centroid is nearly the same for the two values of c since a
steady state has reached. For V �2 ¼ 0:2, p ¼ 4:0 and
c ¼ 1=s, Fig. 4a exhibits the influence of V þ2 on the time
history of the temperature at the plate centroid. The
effect of increasing V þ2 , i.e., the volume fraction of SiC
on the top surface of the plate exposed to the heat flux, is
to decrease the temperature at the plate centroid. This is
because the thermal conductivity of SiC is about one-
fourth that of Al and the heat capacity of SiC is nearly
0.87 times that of Al. For c ¼ 1:0=s, V þ2 ¼ 0:8, V �2 ¼ 0:2;
and p ¼ 2; 4 and 10, Fig. 4b evinces the evolution of the
temperature at the plate centroid. Note that a higher
value of p implies a lower value of V2 at a point which in
turn slows down the heat conduction process. Thus the
temperature at the plate centroid is higher for the lower
value of p. For V þ2 ¼ 0:8, V �2 ¼ 0:2 and p ¼ 4, Fig. 4c
shows the influence of c on the time history of the
temperature rise at the plate centroid. The time histories
of the temperature rise for c ¼ 1:0 and 10:0=s are vir-
tually indistinguishable. The temperature rise is lower
for c ¼ 0:1=s than that for c ¼ 1:0=s because the heat
flux increases slowly for c ¼ 0:1=s. We have plotted in
Fig. 5a, b through-the-thickness variations of the steady
state temperature for five values of V þ2 and four values
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Fig. 3a, b Comparison of the computed solution with the analytical
solution [32] for the case of the heat flux prescribed on the top surface;
a through-the-thickness variation of the temperature at times
t ¼ 1:3012; 13:0122 and 130:1218s, b time history of the temperature
at the plate centroid for c ¼ 0:1 and 10:0=s

222



of p. The temperature gradient at points near the top
surface of the plate increases with an increase in the
value of V þ2 , but that near the bottom surface of the
plate is essentially unaffected by the value of V þ2 .

For time-dependent temperature field prescribed on
the top surface of the FG plate, Fig. 6 compares the
presently computed through-the-thickness temperature
distribution with the analytical solution [32]. It is clear
that for each one of the three values of the time, the two
solutions overlap thereby establishing the validity of the
present approach. For V �2 ¼ 0:2; p ¼ 2:0; c ¼ 1:0=s and
V þ2 ¼ 0; 0:5 and 0.8, Fig. 7a exhibits the evolution of the
temperature at the plate centroid. The time elapsed for
the temperature at the plate centroid to reach a steady
state value is essentially independent of the value as-
signed to V þ2 , even though the rate of increase of tem-
perature decreases with an increase in V þ2 . The effect of
increasing p with c ¼ 1:0=s, V þ2 ¼ 0:8 and V �2 ¼ 0:2 kept
fixed is opposite of that of increasing V þ2 with p held
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Fig. 4a For heat flux prescribed on the top surface, time histories of
the temperature at the plate centroid for three values of a the volume
fraction of SiC on the top surface, b the exponent p in Eq. (45), and c
the time rise constant c in Eq. (47)1
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Fig. 5a Through-the-thickness variation of the temperature for heat
flux prescribed on the top surface and for several values of a the
volume fraction of SiC on the top surface, and b the exponent p in eq.
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constant. The steady state value of the temperature at
the plate centroid is lower for a smaller value of p or a
larger values of V þ2 . As depicted in Fig. 7c, the temper-
ature at the plate centroid rises very slowly for c ¼ 0:1=s
but the rates of increase of temperature for c ¼ 1:0 and
10:0=s are essentially the same. Note that for c ¼ 0:1=s,
the temperature at the plate centroid has not reached the
steady state value at t ¼ 40s because the prescribed
temperature on the top surface of the plate is still
increasing. For c ¼ 1:0 and 10:0=s, the centroidal tem-
perature becomes steady at t ’ 15=s. Results plotted in
Fig. 7c are for p ¼ 4:0; V �2 ¼ 0:2 and V þ2 ¼ 0:8. The
steady state through-the-thickness variation of the tem-
perature is plotted in Fig. 8a, b for five values of V þ2 and
four values of p. The temperature gradient at the bottom
surface of the plate decreases with an increase in V þ2 and
that at the top surface increases. Note that the temper-
ature distribution is not linear in a homogeneous plate
because heat is conducted in x1- and x2- directions as the
prescribed temperature on the top surface has a sinu-
soidal variation in the x1- and x2-directions. The effect of
increasing p is to increase the temperature gradient near
the top surface and decrease near the bottom surface.
For p ¼ 2; 4 and 10, the temperature gradient at points
adjacent to top surface is virtually the same but that at
points near the bottom surface decreases with an
increase in the value of p.

6. Conclusions

It is shown that the transient temperature distribution in
a thick functionally graded plate computed by using a
fifth-order plate theory and the meshless local Petrov-

Galerkin method matches very well with that obtained
analytically. The presumed temperature distribution
through the plate thickness exactly satisfies prescribed
temperature on the major surfaces of the plate.
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