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Abstract We first present a nonuniform box search
algorithm with length of each side of the square box
dependent on the local smoothing length, and show that
it can save up to 70% CPU time as compared to the
uniform box search algorithm. This is especially relevant
for transient problems in which, if we enlarge the sides
of boxes, we can apply the search algorithm fewer times
during the solution process, and improve the compu-
tational efficiency of a numerical scheme. We illustrate
the application of the search algorithm and the modified
smoothed particle hydrodynamics (MSPH) method by
studying the propagation of cracks in elastostatic and
elastodynamic problems. The dynamic stress intensity
factor computed with the MSPH method either from
the stress field near the crack tip or from the J-integral
agrees very well with that computed by using the finite
element method. Three problems are analyzed. One of
these involves a plate with a centrally located crack,
and the other with three cracks on plates’s horizontal
centroidal axis. In each case the plate edges parallel
to the crack are loaded in a direction perpendicular to
the crack surface. It is found that, at low strain rates,
the presence of other cracks will delay the propagation
of the central crack. However, at high strain rates, the
speed of propagation of the central crack is unaffected
by the presence of the other two cracks. In the third
problem dealing with the simulation of crack propaga-
tion in a functionally graded plate, the crack speed is
found to be close to the experimental one.
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1 Introduction

Modeling crack propagation during numerical and
analytical solutions of a transient problem is very chal-
lenging especially if the crack path is unknown a priori.
Following strategies are often employed to delineate
fracture in the solution of a problem by the finite ele-
ment method (FEM): (i) introduce cohesive elements
along inter-element boundaries that are weak in shear
and tension but very strong in compression; (ii) use
nodal release technique by placing two nearly coinci-
dent but unconnected nodes and setting tractions on
the newly created surfaces to zero, and (iii) reduce val-
ues of elastic constants and stresses developed in the
failed regions to zero and essentially delete these ele-
ments from the analysis. Wang and Nakamura [1] have
discussed four techniques, including the above three,
for simulating material failure. Numerical techniques
for modeling crack propagation include the finite differ-
ence method [2,3], the FEM [4,5], the boundary ele-
ment method [6,7], and meshless methods [8–11]; only
a few references are cited in each category to keep
the list short, there is no way one can include here
all papers dealing with fracture. Belytschko and Black
[4] enriched the FE basis functions by adding to them
four basis functions representative of the singular solu-
tion in linear elastic problems. Ching and Batra [12]
and Batra and Ching [8] added these four basis func-
tions to the monomials used to derive basis functions
by the moving least squares method and determined
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the stress intensity factor (SIF) near a crack tip with
the meshless local Petrov–Galerkin (MLPG) method
[13]. They accounted for the discontinuity in the trial
solution by using the visibility [14] and the diffraction
criteria [15].

In a meshless method employing not even a back-
ground mesh, such as the collocation method with radial
basis functions [16], smoothed particle hydrodynam-
ics (SPH) [17], modified smoothed particle hydrody-
namics (MSPH) [18], the reproducing kernel particle
method (RKPM) [19,20], and the MLPG [13], tech-
niques (ii) and (iii) of modeling material failure are
more viable than technique (i). Here we use the MSPH
method and the nodal release technique to simulate
crack initiation and propagation in elastodynamic prob-
lems. Whereas for static problems, one often uses either
the critical SIF, or the critical crack opening displace-
ment, or the critical value of the energy release rate as
the criterion for crack initiation, for a dynamic problem
the choice of the criterion is rather fuzzy. For exam-
ple, Batra and Love [21] found that in mode-I transient
deformations of a tungsten plate the J-integral increases
essentially monotonically with the crack length when the
nominal axial strain rate is 200/s but exhibits oscillations
at the higher nominal axial strain rate of 2,000/s. Here
we adopt the same criterion as used by Batra and Love
[21], namely, that a crack initiates at a point when the
maximum tensile principal stress there reaches a mate-
rial-dependent critical value. Thus the criterion is local,
does not incorporate any length scale, and does not ac-
count for deformations in the neighborhood of a point.
We also use the analog of the nodal release technique
to simulate crack opening. The presently computed dy-
namic stress intensity factor is found to match well with
that of Nishioka and Atluri [22], who used the FEM and
included moving singular elements embedded with ana-
lytical asymptotic solutions to account for the singularity
near the crack tip.

Many numerical methods require a search algorithm
to identify particles or nodes in the neighborhood of a
given particle or node. In a transient problem particles
are continuously displaced and one may need to find
after every time step particles in the neighborhood of
a given particle which can be computationally expen-
sive. Even in a static problem where nodes are densely
placed in one region to accurately compute deforma-
tions, a search algorithm can take considerable CPU
time to ascertain particles in the neighborhood of every
particle.

The search algorithm usually includes two steps. The
first step is to separate the domain into different smaller
domains, and the second step is to determine all parti-
cles in the neighborhood of a given particle. During the

second step, only particles in certain smaller domains
are considered instead of the whole domain. So the effi-
ciency of the search algorithm is mainly determined by
the first step, i.e., dividing of the whole domain into
smaller domains. The direct search algorithm, which is
also the easiest one, calculates the distance of every par-
ticle in the domain from the given particle i to check
whether or not it is in the neighborhood of the parti-
cle i. Obviously, the direct search algorithm does not
include the first step, and is CPU intensive requiring NN

operations where N equals the total number of parti-
cles. Thus the CPU time of the direct search algorithm
increases dramatically with an increase in the number
of particles.

There are two types of methods that first divide the
domain. The first category is tree-like method, such as
hierarchical tree [23], binary tree and Barnes–Hut tree
[24] and the tree-code [25]. In the tree-code a cube of
side l enclosing all particles is subdivided into eight cubic
boxes with each of them further subdivided into eight
children boxes. The process is continued till the smallest
boxes, called the terminal boxes, have only one parti-
cle in them. Capuzzo-Dolcetta and Miocchi [25] have
proposed the fast multipole algorithm that is similar to
the tree algorithm except that the smallest box contains
more than one particle and reduces the CPU time.

Another commonly used method is the box algorithm
[26,27]. The uniform box search algorithm divides the
computational domain into uniform square boxes with
each side of length equal to twice the maximum smooth-
ing length, hmax. This requires searching particles in
boxes that are in the neighborhood of the box containing
the particle i, and needs N operations thereby reducing
the CPU time as compared to that for the direct search
algorithm.

The order of the CPU time required for the tree algo-
rithms is about N log N, while that for the box algorithm
is proportional to N. The CPU time for the tree-like
algorithm decreases to O(N2) when the tree is severely
unbalanced. For the box algorithm [26,27], when the
distances between adjacent particles are of similar sizes,
so are sizes of boxes. When the distances between adja-
cent particles vary noticeably as, for example, in the SPH
formulation, the smoothing lengths of some particles are
much larger than those of other particles. For such prob-
lems, the use of uniform boxes will greatly increase the
CPU time.

The analysis of contact problems also uses either
body-based or space-based search algorithms [28–32]
both of which require CPU time proportional to N ln(N)
where N equals the total number of discrete elements.
The performance of coordinate hashing algorithms is
influenced by the number of overlapping boxes. Munjiza
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and Andrews [27] have proposed a no binary search con-
tact detection algorithm for problems involving a large
number of bodies whose CPU time is directly propor-
tional to the number of particles.

In order to improve upon the uniform box search
algorithm at least for some class of problems, we pro-
pose here a nonuniform box search algorithm with the
length of the side of a square box determined by the local
smoothing length of the kernel function used to find ker-
nel estimates of the unknown function. For a transient
problem, we also give an empirical rule for estimating
the time interval after which the nonuniform box search
algorithm should be applied. For one example problem
involving unevenly distributed nodes/particles, we show
that the proposed nonuniform search algorithm requires
nearly 70% less CPU time than the uniform box search
algorithm, which requires 90% less CPU time than the
direct search algorithm. Also the CPU time for the non-
uniform search algorithm decreases back to O(N). The
proposed modification can be seen as an extension of
the current box algorithm [26,27].

2 Brief review of the MSPH method

The MSPH method, proposed by Zhang and Batra [18],
overcomes the two weaknesses, namely the tensile insta-
bility and the inconsistency, of the classical SPH method.
In the MSPH method, the concept of the kernel esti-
mate is applied to the Taylor series expansion, terms up
to and including second-order derivatives are retained
and a set of simultaneous equations is solved for the
kernel estimates of the function f (x) and its first and
second order derivatives. For example, the Taylor series
expansion of the function f (x) up to its second-order
derivatives is

f (ξ) = f
(
x(i)

) + ∂f

∂x(i)α

(
ξα − x(i)α

)

+ 1
2

∂2f

∂x(i)α ∂x(i)β

(
ξα − x(i)α

)(
ξβ − x(i)β

)
, (2.1)

where a repeated Greek index implies summation over
the range of the index, but no summation is implied
on repeated Latin indices enclosed in parentheses. Let
h be the smoothing length, and 2h the compact sup-
port of the non-negative kernel function W (x − ξ, h).
Multiplying both sides of Eq. (2.1) by W(x − ξ, h), its
first derivative Wγ = ∂W/∂xγ , and its second deriva-
tive Wγ δ = ∂2W/∂xγ ∂xδ , and integrating the resulting
equations over the domain �, we obtain the following
system (2.2) of equations for the determination of the

kernel estimate of f (x), and of its first and second order
derivatives at the point x(i) of domain � .
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,

fi = f (x(i)), fαi = ∂f

∂x(i)α
, fαβi = ∂2f

∂x(i)α ∂x(i)β
.

The integer N equals the number of particles in the
compact support of particle i, and mi and ρi denote,
respectively, the mass and the mass density of particle
i located at x(i). It is clear that the kernel estimate of
the function so obtained is second-order consistent, and
kernel estimates of the first and the second derivatives
are, respectively, first-order and zero-order consistent.

For a two-dimensional (2-D) problem, we set

W(x − ξ, h)

=
⎧
⎨

⎩

1.10081
(h

√
π)2

(
e−|x−ξ|2/h2 −e−4

)
|x − ξ|�2h

0 |x − ξ|>2h
(2.4)
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Thus the compact support of the kernel function is a
circle of radius 2h with center at the point x, and the
integral of W(x − ξ, h) over the support equals 1.

3 Governing equations and discretization

Governing equations for a 2-D linear elastodynamic
problem are

dUα

dt
= 1
ρ
σαβ,β + bα , (3.1)

σαβ = λεkkδαβ + 2µεαβ , (3.2)

εαβ = 1
2

(
uα,β + uβ,α

)
, (3.3)

Uα = duα
dt

, (3.4)

where uα is the displacement, Uα the velocity, ρ the mass
density, t the time, σαβ the Cauchy stress tensor, εαβ the
strain tensor, bα the body force per unit mass, and λ and
µ the Lame’ constants. Equation (3.1) expresses the con-
servation of linear momentum, Eq. (3.2) the constitutive
relation for a linear elastic isotropic material, Eq. (3.3)
the relation between the infinitesimal strain tensor and
the displacement gradients, and Eq. (3.4) defines the
velocity of a material point. A repeated index in Eq. (3.1)
implies summation over the range of the index.

If the function f in Eq. (2.2) is replaced by the dis-
placement uα , the first derivatives of the displacement
uα,β at the particle i can be evaluated in terms of dis-
placements of particles that are in the neighborhood of
the particle i. From derivatives of the displacement, the
strain tensor can be computed by using Eq. (3.3) and the
Cauchy stress tensor by Eq. (3.2). Replacing the func-
tion f in Eq. (2.2) by the stress component σαβ , we can
compute the first derivatives, σαβ,γ , of the stress tensor
at the particle i in terms of stresses at particles in the
neighborhood of particle i. Once values of variables on
the right-hand side of Eq. (3.1) have been found, we use
the central-difference scheme to integrate with respect
to time Eqs. (3.1) and (3.4) and compute the velocity and
the displacement field at the new time. The time step,
�ti, of particle i is given by the Courant–Frederich–Levy
(CFL) condition,

�ti = α
hi

CSi + |Ui| , (3.5)

where CSi is the speed of an elastic wave at particle i,
and the constant α is less than 1.0. We set α = 0.5 in
our computations, and the time step, �T, equal to the
minimum of �ti for all particles, i.e.,

�T = min(�ti, i = 1, 2, . . . , N). (3.6)

We note that there is no artificial viscosity introduced,
thus the computed solution especially near the crack tip
is likely to oscillate.

4 Search algorithm

4.1 Static problem

A meshless method generally requires the determina-
tion of all particles that are in the neighborhood of a
given particle and are also in the compact support of the
kernel or the weight function associated with the parti-
cle. The compact support of particle i usually equals a
circle of radius 2hi centered at the particle i. This search
is usually computationally expensive.

The box search algorithm described in Sect. 1 may
become inefficient when particles are unevenly distrib-
uted and the smoothing lengths of particles in one zone
are much larger than those of particles in another zone.
So in problems requiring closely spaced particles in some
regions and widely spaced in others such as those having
a propagating crack or a region of intense plastic defor-
mations, the uniform box search algorithm is inefficient.
The smoothing length in the coarsely spaced region is
likely to be several times, say nα , that in the densely
spaced region. In the uniform box search algorithm,
the length of the boxes’ side is 2hmax. Thus the box in the
finely discretized zone will include about (nα)β(β is the
dimensionality of space) times as many particles as will a
box in the coarsely discretized zone, and the CPU time
for boxes in the finely discretized region will be quite
large. In order to overcome this, we propose using non-
uniform boxes with the length of boxes’ sides varying
with the local smoothing length so that no one box will
include a large number of particles. This nonuniform box
search algorithm for a 2-D problem can be implemented
as follows:

1. First determine the maximum and the minimum val-
ues, xmax, ymax, xmin, ymin, among coordinates of all
particles, and also the maximum smoothing length,
hmax. If the condition ymax − ymin � xmax − xmin is
satisfied, divide the domain from the y-direction,
otherwise divide it from the x-direction. Below, we
assume that the algorithm is carried out from the
y-direction, and set h0 = 0.

2. In the zone [ymax − 4hmax, ymax] determine the max-
imum and the minimum x- coordinates xi

max, xi
min,

and the maximum smoothing length hi
max. Let h̄ =

max(hi
max, h0).



Comput Mech (2007) 40:531–546 535

3. In the zone [ymax − 2h̄, ymax] assign square boxes
from xi

min to xi
max with the length of the side of a

box = 2h̄.
4. Determine the box number of every particle in the

zone [ymax − 2h̄, ymax]. Let h0 = hi
max and ymax =

ymax − 2h̄.
5. If ymax > ymin, go to step 2, otherwise go to step 6.
6. Find particles in the neighborhood of a particle by

first locating its box number, and then looking at
particles that are in boxes neighboring the parti-
cle’s box.

In order to ascertain the computational efficiency
of the three algorithms, namely the direct search algo-
rithm, the uniform box search algorithm, and the pro-
posed nonuniform box search algorithm, we consider
the 12 mm × 15 mm rectangular domain and employ
different discretizations in zones A, B, C and D depicted
in Fig. 1. (We have not experimented with either the
tree algorithm or any of the others described in Sect. 1.)
In each zone, particles are uniformly spaced, and the
smoothing length equals 1.5 times the particle distance
in that zone; particle distances in these zones are related
as �B = 2�A, �C = 2�B, and �D = 2�C.

For eight values of the total number of particles,
Table 1 gives, respectively, the CPU times Gd, Gu and
Gn of the direct search, the uniform box search, and the
nonuniform box search algorithms. For each value of the
total number of particles, the distance �A between two
adjacent particles in zone A is also listed in the table.
It is clear that with an increase in the total number of
particles, the ratio of the CPU time taken by the nonuni-
form box search algorithm to that for either the direct or
the uniform box search algorithm decreases rapidly. For
each case studied, the nonuniform box search algorithm
takes the least CPU time and the direct search algorithm
the most. For small number of particles, the uniform
box search algorithm takes more CPU time than the
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D

8m
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4m
m

m
m2

m
m1

12 mm

Fig. 1 Discretization of a domain

direct search algorithm because the CPU time needed to
compute boxes and determine every particle’s box num-
ber exceeds that saved by searching particles in boxes
neighboring particle’s own box. Figure 2a–c exhibits the
CPU time for the three algorithms versus the number
of particles. It is clear that the CPU time for the di-
rect search algorithm increases exponentially with an
increase in the total number of particles, but that of the
nonuniform box search algorithm increases almost lin-
early. It can be seen that the CPU time for nonuniform
box search algorithm is of O(N), the same as that for
the uniform box search algorithm often used to solve
problems of similar smoothing lengths.

Table 1 Comparison of the
CPU time required by three
different search algorithms on
a single processor PC

Particle distance Total number CPU time (s)
in zone A, of
�A(mm) particles, N Direct search Uniform box Nonuniform box

algorithm, search algorithm, search algorithm,
Gd Gu Gn

1/10 2,411 0.31 0.35 0.29
1/20 9,321 1.94 0.75 0.38
1/30 20,731 11.82 1.66 0.56
1/40 36,641 42.00 3.64 0.87
1/50 57,051 100.94 5.92 1.47
1/60 81,961 208.02 13.10 2.27
1/70 111,371 386.46 19.63 2.98
1/80 145,281 655.08 23.83 3.95



536 Comput Mech (2007) 40:531–546

Number of particles N Number of particles N

G
  (

s)

G
  (

s)

d

G
  (

s)

0.0E+00 3.0E+04 6.0E+04 9.0E+04 1.2E+05 1.5E+05

Number of particles N

0.0E+00 3.0E+04 6.0E+04 9.0E+04 1.2E+05 1.5E+05

0

100

200

300

400

500

600

u

0.0E+00 3.0E+04 6.0E+04 9.0E+04 1.2E+05 1.5E+05
0

5

10

15

20

25

n

0

1

2

3

4

(a)

(c)

(b)

Fig. 2 The CPU time versus the number of particles for a the direct search algorithm, b the uniform box search algorithm, and c the
nonuniform box search algorithm
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Fig. 3 The ratio of CPU time saved versus the number, N, of
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Figure 3 gives the ratio η1 = Gd−Gu
Gd

of the CPU
time saved by using the uniform box search algorithm

relative to that for the direct search algorithm, and the
ratio η2 = Gu−Gn

Gu
of the CPU time saved by using the

nonuniform box search algorithm relative to that for
the uniform box search algorithm. For 30,000 particles,
the uniform box search algorithm can save more than
90% CPU time as compared to that for the direct search
algorithm, while the nonuniform box search algorithm
can save 70% CPU time as compared to that for the
uniform box search algorithm.

For N = 9321, Fig. 4a, b depicts distributions of parti-
cles and boxes for the nonuniform and the uniform box
search algorithms. The numbers of boxes for the uniform
and the nonuniform box search algorithms equal 130
(13 layers) and 740 (23 layers), respectively. Whereas in
the coarsely discretized zone distributions of boxes are
the same for the two algorithms, the length of a side of a
box decreases in the nonuniform box search algorithm
due to the smaller smoothing length for it. The uniform
box search algorithm can be viewed as a special case of
the nonuniform one when the smoothing length is same
throughout the computational domain.
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Fig. 4 Comparison of
distributions of particles, and
assigned boxes for a the
nonuniform box search
algorithm, and b the uniform
box search algorithm
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4.2 Dynamic problem

In a dynamic problem particles move and some may
leave one particle’s compact support while others may
enter it. Thus, it may be necessary to determine neigh-
bors of every particle after every time step. A dynamic
problem often includes thousands of time steps, so for a
large number of particles the total CPU time required to
determine neighbors of particles may become a signifi-
cant part of the total CPU time. We propose that in the
search algorithm the length of the side of a box during
the time interval, δt = ψh

2|Umax| , be taken as (2+ψ)h since
the relative movement between two particles in time δt
will not exceed ψh. Here, Umax denotes the maximum
speed of a particle. Thus, we can use the search algorithm
after every δt rather than after every time step �T. Of
course during every time step, additional CPU time is
needed to determine the neighbor particles from the
list of all possible neighbor particles. With an increase
in the value of ψ , the additional CPU time needed to
determine neighbor particles from the list of all possi-
ble neighbors will increase. So the coefficient ψ cannot
be large. In our computations we take ψ = 0.1. Since
Umax � CSi, therefore δt � �T.

5 Applications

5.1 Dynamic stress intensity factor (DSIF)

We use the aforestated problem formulation and the
search algorithm to find time history of the DSIF in a
rectangular plate having a through-the-thickness crack
on its horizontal centroidal plane with the crack cen-
troid coinciding with the plate centroid, and the top and

0σ

0σ

2×12mm

2×52mm

2×
20

m
m

Fig. 5 Schematic sketch of a plate containing a through-the-
thickness crack and loaded in tension

the bottom surfaces of the plate loaded by uniformly
distributed surface tractions, as shown in Fig. 5. Dimen-
sions of the plate are given in the figure, and we set
σ0 = 0.4H(t)GPa, where H(t) is the Heaviside function,
shear modulus µ = 29.4 GPa, Poisson’s ratio ν = 0.286,
and mass density ρ = 2, 450 kg/m3. Due to the symme-
try of the problem about the horizontal and the vertical
centroidal axes, plane strain deformations of only the
North–East quarter of the plate are analyzed.

The discretization of the domain is similar to that
shown in Fig. 1 except that it is divided only into three
different zones, A, B and C. Zone A starts from the
crack surface and extends 2 mm in the vertical direc-
tion, has particles separated by � = 0.1 mm; Zone B
is also 2 mm in the vertical direction and the particle
distance in it is 0.2 mm; while the width of the top zone
C is 16 mm and � = 0.4 mm in it. The total number
of particles equals 18,791, and the smoothing length in
each zone equals 1.5�. In our computations, as shown in
Fig. 6, the two traction free crack surfaces represented
by lines 1-2-3-4-5-· · · and 1′-2′-3′-4′-5′- · · · , are taken to



538 Comput Mech (2007) 40:531–546

A
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Fig. 6 Location of particles near the crack tip

be δ = 2 × 10−3 mm apart (The figure is exaggerated in
the direction perpendicular to the crack surface), parti-
cle A is the crack tip and discontinuous fields near the
crack tip are modeled by the visibility criterion [14] and
the diffraction criterion [15]. The traction free boundary
conditions at the crack surface, except at the crack tip,
are imposed by first transforming the stress tensor into
local coordinates with axes aligned along and perpen-
dicular to the crack surface, and then setting the normal
and the tangential tractions equal to zero. The stress
tensor is then transformed back to the global coordi-
nate axes.

For mode-I loading, components of the stress field
near the crack tip can be expressed as

σ11(r, θ) = KI√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ
2

)
,

σ22(r, θ) = KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ
2

)
, (5.1)

σ12(r, θ) = KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ
2

,

where (r,θ) are polar coordinates of a point with the
origin at the crack tip, and KI is the dynamic stress
intensity factor (DSIF). For θ = 0 and 90◦, Eq. (5.1)1

gives,

KI = √
2πrσ22(r, 0◦), (5.2)

KI = 4
3

√
πrσ22(r, 90◦). (5.3)

We nondimensionalize the DSIF by σ0
√
πa and

obtain

K̄I = √
2r/a

σ22(r, 0◦)
σ0

, (5.4)

or

K̄I = 4
3

√
r/a

σ22(r, 90◦)
σ0

, (5.5)

where a is the crack length.
Figure 7 depicts time histories of the non-dimensional

DSIF computed from Eqs. (5.4) and (5.5) at the two par-
ticles closest to the crack tip by using both the diffraction
and the visibility criteria to account for the discontinu-
ity of displacements across the crack surfaces. The DSIF
equals zero until the dilatational wave reaches the crack
tip at about t = 2.5 µs. It is apparent that the DSIF
computed from Eq. (5.4) agrees well with that found by
Nishioka and Atluri [22] by the FEM. But for θ = 90◦,
the difference between the DSIFs computed at the first
and the second particles closest to the crack tip is large.
Also there is large difference between the DSIFs com-
puted with the diffraction and the visibility criteria. For
both the diffraction and the visibility criteria, the DSIF
computed from the stress field at the first particle closest
to the crack tip is less than that found by Nishioka and
Atluri, while the DSIF computed from the stress field
at the second particle closest to the crack tip is greater
than Nishioka and Atluri’s value.
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Fig. 7 Time histories of the nondimensional dynamic stress intensity factor (DSIF) computed by taking a θ = 0 and b θ = 90◦ using
the diffraction and the visibility criteria
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Fig. 8 Time histories of the nondimensional dynamic stress
intensity factor (DSIF) computed by taking the average of its
values for the first and the second particles closest to the crack tip

We have plotted in Fig. 8 the average of the DSIFs at
the first and the second particles. It can be seen clearly
from Fig. 8 that the DSIF computed with θ = 90◦ and
that with θ = 0 agree very well with that found by Nish-
ioka and Atluri [22] by the FEM except when the time
is greater than 15 µs. The maximum difference in values
of the DSIFs found from Eqs. (5.4) and (5.5) is about
3%. Both the diffraction criterion and the visibility cri-
terion can simulate the discontinuity very well and yield
essentially the same value of the DSIF. Henceforth we
use average of the results for the first and the second
particles closest to the crack tip to be the DSIF and give
results computed with Eq. (5.4).

Another method to find the DSIF is to first calcu-
late the J-integral. For a 2-D problem, the J-integral is
given by

J =
∫

�

[
(w + I)dx2 − σijnj

∂ui

∂x1
ds

]

w =
εij∫

0

σijdεij =
t∫

0

σijDijdt,

Dij = 1
2

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
, I = 1

2
ρUiUi. (5.6)

Here, w is the strain energy density, I the kinetic energy
density, � an arbitrary contour around the crack tip, and
ds the element of arc length along the path �. We take
� as the rectangular path with distance d of each side
from the crack tip, as shown in Fig. 9.

Fig. 9 Sketch of the contour for computing the J-integral

For a static plane strain mode-I crack problem, the
SIF is related to the J-integral by [6]

K =
√

2µJ
1 − ν

, (5.7)

and the nondimensional SIF K̄ is computed from

K̄ = 1
σ0

√
2µJ

πa(1 − ν)
. (5.8)

Here we presume that Eqs. (5.7) and (5.8) hold for the
present transient problem. Figure 10 exhibits time his-
tories of the nondimensional DSIF for four values of
the distance d, namely, 2�, 4�, 6� and 8�, where � is
the distance between any two particles near the crack
tip. For both the diffraction and the visibility criteria,
the J-integral is found to be path independent, and the
computed DSIF agrees with that given by Nishioka and
Atluri [22]. Since there is very little difference between
results computed with the diffraction and the visibil-
ity criteria, we discuss below results computed with the
diffraction criterion, and also set d = 4�.

5.1.1 Effect of the smallest distance between two
particles

We now investigate the effect of the number of particles
on the DSIF. Two cases are studied; first the total num-
ber of particles is increased so that the smallest distance
between any two particles is decreased to one half of
its previous value, and the particle distance � near the
crack tip now equals 0.05 mm. In the second case the
smallest distance between any two particles is further
decreased by a factor of 2 and it now equals 0.025 mm
near the crack tip. Results depicted in Fig. 11a show that
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Fig. 10 Time histories of the nondimensional dynamic stress intensity factor (DSIF) computed from the J-integral with a the diffraction
criterion, and b the visibility criterion
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Fig. 11 Time histories of the nondimensional dynamic stress intensity factor (DSIF) computed by using a Eq. (5.4), and b the J-integral,
for different values of the distance between adjacent particles near the crack tip

the total number of particles does not influence much
the DSIF computed with Eq. (5.4). The DSIF increases
with a decrease in the particle distance. The effect of the
particle distance on the DSIF computed with the J-inte-
gral is much smaller. If we compare results of Fig. 11(a)
with those of Fig. 11(b), we find that the DSIF computed
with the J-integral is closer to the results computed by
using Eq. (5.4) when the minimum distance between two
particles is 0.025 mm.

5.1.2 Effect of the smoothing length

Time histories of the DSIF computed from Eq. (5.4)
and with four values,1.2�, 1.5�, 2.0� and 2.5�, of the
smoothing length, and with the J-integral are depicted in
Fig. 12a, b. It is obvious that the DSIF decreases slightly
with an increase in the smoothing length, and the DSIFs

computed from the J-integral are close to each other for
different values of the smoothing length.

5.1.3 Effect of the time step size

Figure 13 exhibits the effect of the time step size on
time histories of the DSIF; the size of the time step is
varied by setting the coefficient α in Eq. (3.5) equal to
0.1, 0.3, 0.5, 0.7 and 0.9. For both the DSIF computed by
Eq. (5.4) and by the J-integral, the time step size seems
to have virtually no effect on the results.

5.2 Simulation of Crack propagation

5.2.1 One central crack in a plate

We now study the propagation of a through-the-thick-
ness crack centrally located in a square plate pulled
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Fig. 12 Time histories of the nondimensional dynamic stress intensity factor (DSIF) computed by using a Eq. (5.4), and b the J-integral,
for different values of the smoothing length
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Fig. 13 Time histories of the nondimensional dynamic stress intensity factor (DSIF) computed by using a Eq. (5.4), and b the J-integral,
for different values of the time step size

axially on opposite edges that are parallel to the crack
surfaces so as to induce an average axial strain rate of
either 200/s or 1,000/s. A schematic sketch of the prob-
lem studied, dimensions of the tungsten plate and the
starter or the initial crack are shown in Fig. 14. Values
assigned to material parameters are: Young’s modulus
E = 400 GPa, Poisson’s ratio ν = 0.29, mass density
ρ = 19, 300 kg/m3, and the maximum principal ten-
sile stress at crack opening = 4.5 GPa. Because of the
symmetry of the problem and the boundary conditions
about the two centroidal planes, we analyze deforma-
tions of a quarter of the plate, set normal velocities
and tangential tractions equal to zero on the planes of
symmetry, and assume that the crack propagates hor-
izontally. The locations of particles in the domain are
similar to those shown in Fig. 1. Zone A with the small-
est distance,� = 0.025 mm, between two particles abuts
the crack surface and extends 0.3 mm in the vertical

direction; Zone B is 0.5 mm in the vertical direction
and the smallest distance between any two particles
in it is 0.05 mm. The widths of zones C and D equal,
respectively, 1 and 8.2 mm, and � in them equals 0.1
and 0.2 mm, respectively. The total number of particles
equals 10,324, and the smoothing length in each zone
equals 1.5�. The Rayleigh wave speed, CR, in the mate-
rial can be obtained by first finding the largest root, ηmax,
of the cubic equation [34]

f (η) = η3 + (4γ − 3)η2 − η − (1 − 2γ )2 = 0, (5.9)

and then using

CR = C2

√
η2

max − 1
η2

max − γ
(5.10)

where C2 = √
µ/ρ andγ = µ/(λ+ 2µ). For the tungsten

plate, CR = 2624.1 m/s.
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Fig. 14 Schematic sketch of a plate with a centrally located crack

Figure 15 shows schematically the propagation/
growth of the crack. When the crack initiation criterion
is satisfied at a particle, the crack is assumed to open
there. The crack opening is handled differently depend-
ing upon whether or not the crack initiation criterion is
satisfied next to the crack-tip or elsewhere. If particle B
where the crack initiation criterion is met is next to the
crack tip as shown in Fig. 15a, and · · · -5-4-3-2-1 -A-1′-
2′-3′-4′-5′- · · · is the crack surface, the crack is assumed
to propagate from particle A to particle B which will be-
come the new crack tip. The initiation of crack at particle
A is simulated by placing two particles A′′ and A′ at A

with a small vertical distance δ = 2 × 10−3 mm between
them. Thus the new crack surface becomes · · · -5-4-3-2-1
-A′′-B-A′-1′-2′- 3′-4′-5′-· · · . However, if the particle B
is not next to the crack tip, as shown in Fig. 15b, a new
crack is generated with two crack tips – one at particle
2 and the other at particle 3. If one of the two particles,
say particle 2, happens to be the tip of another crack
(see Fig. 15c), then the new crack tip is located at parti-
cle 3, and new crack surface is 1′-2′-B′-3-B′′- 2′′-1′′, see
Fig. 15d. Thus the crack has advanced by two particles
rather than by one particle. In our numerical simulations
we did not encounter a situation when the crack initi-
ation criterion was met at a point whose distance from
the crack tip was more than 2�.

Time histories of evolution of the crack length for
average axial strain rates of 200/s and 1,000/s are
depicted in Fig. 16 till the crack length becomes 5 mm.
The crack begins to propagate at about 9.6 µs when the
average axial strain rate is 200/s, but at about 2 µs for the
nominal axial strain rate of 1,000/s. The crack speed at
any time is taken to equal the slope of the least square
line fit through 11 points with 5 points immediately pre-
ceding the crack tip and 5 points immediately following
it. Figure 17 exhibits time histories of the crack propa-
gation speed at the two nominal axial strain rates; the
horizontal dashed line is the Rayleigh wave speed for
the plate material. The crack accelerates faster when the
plate is deformed at a nominal axial strain rate of 1,000/s
than when it is deformed at the nominal axial strain
rate of 200/s; however, the crack speed stays below the
Rayleigh wave speed which agrees with Eischen’s [35]
result.

Figure 18 shows the crack propagation speed versus
the crack length for average axial strain rates of 200/s
and 1, 000/s. In the beginning the crack propagation
speed increases rapidly as it elongates by about 1 mm;
subsequently, its speed increases rather slowly. The crack
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Fig. 15 Schematic sketch of crack propagation
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Fig. 17 Time histories of the crack propagation speed at nominal
axial strain rates of 200/s and 1,000/s

propagation speed is higher for an axial strain rate of
1, 000/s than that for the axial strain rate of 200/s; these
results are in qualitative agreement with those of Batra
and Love [21] who employed the FEM, the nodal release
technique, and simulated crack propagation at nominal
strain rates of 200/s and 2,000/s. For a crack length of
2 mm and the nominal strain rate of 200/s, both analyses
give crack propagation speed of 1.9 km/s.

5.2.2 Three cracks on a centroidal axis of a plate

We now investigate the problem when the plate, as
shown in Fig. 19, has three 0.8 mm long cracks on its
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Fig. 18 Crack propagation speed versus the crack length
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Fig. 19 Schematic sketch of a plate with three cracks

horizontal centroidal axis and the two opposite plate
edges parallel to the crack are pulled vertically at a pre-
scribed speed. Particles are located in a way similar to
that in the plate having only one crack. Because of the
symmetry of the problem about the horizontal and the
vertical centroidal axes, deformations of a quarter of
the plate are analyzed. Note that the loading wave ar-
rives simultaneously at all crack tips/surfaces. Figures 20
and 21 exhibit time histories of the propagation speed
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Fig. 20 Time histories of the crack propagation speed for average
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Fig. 21 Time histories of the crack propagation speed for nomi-
nal axial strain rate of 1,000/s

of crack tips 1, 2 and 3 for axial strain rates of 200/s and
1,000/s; the crack tip speed of only one centrally located
crack studied in Sect. 5.2.1 is also plotted in this figure
for comparison. For an axial strain rate of 200/s, it can
be seen from Fig. 20 that the presence of the other two
cracks delays the propagation of the central crack. The
crack tip 3 begins to propagate ∼ 0.4 µs later than crack
tip 1, and crack tip 2 starts to propagate a little later.
When the nominal axial strain rate is 1,000/s, the three
crack tips begin to propagate essentially simultaneously,
and the presence of the other two cracks seems not to
affect the propagation of the central crack.

5.2.3 Crack propagation in a functionally graded (FG)
plate

Shukla and Jain [36,37] have studied experimentally the
crack propagation in a FG elastic plate with material
properties varying only in the anticipated horizontal
direction of crack propagation as shown in Fig. 22. The
single edge notch specimen with an edge crack at the
left edge of initial length a = 0.125 W (W being the
plate width) is pulled by applying equal and opposite
axial velocities of 2.1 m/s at the top and the bottom sur-
faces of the plate resulting in mode-I deformations of
the plate. Due to the symmetry of the problem about
the horizontal centroidal plane, we analyze deforma-
tions of one-half of the plate, and use 360 particles in
the x-direction near the crack tip.

Variations of the mass density, the shear modulus, and
the static SIF (SSIF), K, along the x-direction obtained
by fitting curves by the least squares method to the test
data given in Jain and Shukla’s paper [37] are given by

ρ(x) = 1, 200e−1.52x(Kg/m3)

µ(x) = 1.345e1.76x(GPa)

K(x) = 2.18x + 0.71(MPam1/2)

The Poisson ratio ν = 0.34 is taken to be a constant.
In our simulations, a particle is assumed to have failed

when the DSIF there equals twice the SSIF for that par-
ticle, and the crack is extended.

Figure 23, giving the time history of the crack length,
shows that the crack begins to propagate at ∼90 µs. The
crack speed equaling the slope of the crack length versus
time curve is 822 m/s, which is close to the experimen-
tal speed of 600 and 700 m/s reported by Shukla and
Jain [36].

Fig. 22 The crack propagation in FG plate
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Fig. 23 Time history of the crack length in the FG plate (Dots
are computed values, and the solid line is the best least squares fit)

We note that Jin and Batra [38,39] have shown that
the crack-tip fields in a FG material are similar to those
in a homogeneous material. Also, Batra and Zhang [40]
have used the MSPH method to study wave propagation
in a FG plate.

6 Conclusions

We have proposed a nonuniform box search algorithm
in which the length of the side of a square box depends
upon the local smoothing length. For a class of problems
involving nodes placed densely in one part of the domain
and coarsely in the other, it saves nearly 70% CPU time
over the uniform box search algorithm which in turn
equals 10% of the CPU time taken by a direct search
algorithm. We have neither compared the performance
of the proposed algorithm with that of other available
algorithms nor tried it on several problems with ran-
domly distributed particles having uneven spacing. Fur-
thermore, for a dynamic problem, we have suggested
and successfully tested a time increment after which the
search algorithm should be applied.

We have employed the modified smoothed particle
hydrodynamics (MSPH) method and the diffraction and
the visibility criteria to analyze three linear elastody-
namic crack problems. The computed dynamic stress
intensity factor (DSIF) for mode-I loading of a cracked
rectangular plate is found to match well with that ob-
tained by Nishioka and Atluri using the finite element
method. The DSIF computed from stresses at a point
near the crack tip whose polar angle is 0◦ is better than
that from stresses at a point with the polar angle of 90◦.
We also computed the J-integral, established its path
independence, and used it to find the DSIF. Effects of the
smallest distance between two particles, the smoothing

length, and the time step size on the DSIF have also
been examined.

During the analysis of transient deformations of a
rectangular elastic plate containing a crack parallel to
the two opposite edges that are pulled at a prescribed
speed, it is found that the crack propagates sooner and
accelerates faster at the nominal axial strain rate of
1,000/s than that at the average axial strain rate of 200/s.
However, the highest computed crack propagation
speed is lower than the Rayleigh wave speed of the mate-
rial. In a rectangular plate containing one centrally lo-
cated crack and two other cracks symmetrically located
around it on the horizontal centroidal axis, the elonga-
tion of the central crack is delayed by the presence of
the other two cracks at the nominal axial strain rate of
200/s but is virtually unaffected at the higher nominal
axial strain rate of 1,000/s.

We have also simulated crack propagation in an edge
cracked functionally graded plate loaded in tension at
the two opposing faces parallel to the crack surface so as
to induce mode-I deformation near the crack tip. Mate-
rial parameters are assumed to vary only in the direc-
tion of the crack. The computed crack speed is found to
match well with that found experimentally.
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