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Abstract

The Modified Smoothed Particle Hydrodynamics (MSPH) method proposed earlier by the authors and applied to the
analysis of transient two-dimensional (2-D) heat conduction, 1-D transient simple shearing deformations of a thermovi-
scoplastic material, 1-D wave propagation in a functionally graded plate, and 2-D elastodynamic crack propagation is
extended to the analysis of axisymmetric deformations of a thermoviscoplastic material. In the MSPH method, different
shape functions are used to find kernel estimates of the function, and of its first and second derivatives. It differs from the
classical finite element method in which derivatives of a function are usually obtained by differentiating the shape function
used to approximate the function. It is shown that results computed with the MSPH method for the Noh problem agree
well with its analytical solution. The MSPH basis functions can be used in any meshless method to numerically solve either
static or dynamic problems. The method is then applied to analyze transient deformations of a cylindrical rod impacting at
normal incidence a rigid smooth stationary flat plate. The computed solution is found to agree very well with those
obtained by analyzing axisymmetric and 3-D transient deformations of the rod with the commercial code LS-DYNA.
The final length of the deformed rod, the final radius of the impacted face, and the final length of the relatively undeformed
portion of the rod for twelve test configurations computed with the MSPH method are also found to agree well with their
corresponding experimental values.
Published by Elsevier Inc.
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1. Introduction

In previous two publications [1,2] the authors proposed the modified smoothed particle hydrodynamics
(MSPH) method, and applied it to analyze one-dimensional (1-D) wave propagation in an elastic bar, 2-D
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transient heat conduction, and 1-D transient simple shearing deformations of a thermoviscoplastic body with
a defect at its center that facilitates the localization of deformation into narrow bands of intense plastic defor-
mation. It was found that the MSPH method, without the introduction of an artificial viscosity, could accu-
rately predict the development of severely deformed thin regions. More recently we [3,4] have used the method
to study wave propagation in a functionally graded elastic plate, and crack propagation in an elastic plate sub-
jected to time-dependent loads. The MSPH method, like its predecessor the SPH method, is total Lagrangian.
We note that the SPH method was introduced by Lucy [5], and Gingold and Monaghan [6] to analyze astro-
physical problems in a 3-D space. Libersky and Petschek [7] extended it to study dynamic response of mate-
rials; Monaghan [8] applied it to free surface flows, Liu et al. [9] to explosion problems, and Randles et al. [10]
to impact and penetration problems. Medina and Chen [11] have enhanced the performance of the method by
coupling it with parallel computing techniques.

Chen et al. [12,13] applied the concept of the kernel estimate to the Taylor series expansion of a function,
called it the corrective smoothed-particle method (CSPM), and showed that it corrected the tensile instability
present in the conventional SPH method; this deficiency of the SPH method and problems associated with
zero energy modes have been further improved upon by Randels and Libresky [14], and Vignjevic et al.
[15]. Zhang and Batra [1] modified the CSPM and by retaining terms up to second-order derivatives in the
Taylor series expansion of a function introduced second-order consistency for the function, first-order consis-
tency for the first derivative of the function, and zeroth-order consistency for the second derivative of the func-
tion. It was shown in [1] that accuracy of the computed solution improved with an increase in the order of
terms retained in the Taylor series expansion. That is, for a 2-D problem involving a scalar variable (e.g. Pois-
son’s equation), better results would be obtained by retaining second-order derivatives in the Taylor series
expansion of the trial solution than by keeping only first-order derivatives. Whereas the former approach
requires inverting a 6 · 6 matrix, in the latter alternative only a 3 · 3 matrix is inverted. Numerical solutions
of sample problems revealed that there was no tensile instability exhibited by the MSPH method. Accordingly,
we will not address consistency and tensile instability in this paper.

Here the MSPH method is extended to axisymmetric problems and is derived in cylindrical coordinates.
Similarities and differences between the MSPH method and the Finite Element method (FEM) are stated.
In the MSPH method, different shape functions are used to construct kernel estimates of the function (or
the trial solution) and of its first and second derivatives. These shape functions are found simultaneously
by solving a system of algebraic equations. However, in the FEM the shape functions are used to approximate
the trial solution, and derivatives of the trial solution are obtained by differentiating the shape functions. This
process usually involves inverting a matrix at each integration point within an element and thus can be com-
putationally expensive.

Johnson [16] applied the SPH algorithm to axisymmetric geometry and divided the particle volume by the
perimeter to obtain the same formula as for plane strain deformations. Petschek and Libersky [17] trans-
formed the SPH equations from Cartesian coordinates to cylindrical coordinates and integrated them along
the circumferential direction. We use Taylor series expansion of a function in cylindrical coordinates, and find
kernel estimates of the function and of its derivatives by integrating equations in the circumferential direction.
We illustrate the method by first analyzing the Noh problem and then deformations of a uniformly moving
cylindrical rod impacting at normal incidence a smooth rigid stationary flat plate; the latter is commonly
called the Taylor impact test. Results computed with the MSPH method are found to agree well with the ana-
lytical solution of the Noh problem and with those obtained from the commercial code LS-DYNA by assum-
ing deformations to be either axisymmetric or 3-D. For twelve test configurations, the final length of the
deformed rod, the diameter of the impacted face, and the final undeformed length are found to be close to
their corresponding experimental values.

2. The MSPH basis functions

We use cylindrical coordinates (R,h,Z) to analyze axisymmetric deformations of a circular cylindrical
body, and note that a function, f, describing a deformation variable is independent of the angular position,
h, of a material point. Whenever convenient, we denote (R,Z) by x with x1 = R and x2 = Z. The Taylor series
expansion of a function f(R,Z) about the point (Ri,Zi) is,
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where derivatives are evaluated at the point (Ri,Zi). Neglecting the third and higher order derivative terms on
the right-hand side of Eq. (2.1), multiplying both sides of the equation with a positive-valued kernel function
W(x�n,h) of compact circular support of radius 2h and center at the point x, its first derivatives WR = oW/oR

and WZ = oW/oZ, its second derivatives WRR = o2W/oR2, WZZ = o2W/oZ2 and WRZ = o2W/oRoZ, and inte-
grating the resulting equations over the domain X, we get,
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where fi = f(x(i)), fai ¼ of =oxðiÞa , and fabi ¼ o
2f =oxðiÞa oxðiÞb , a, b = 1,2 and x1 = R,x2 = Z. Because the kernel

function W is zero when the distance jx � nj is greater than 2h (h is the smoothing length), the integration
domain X can be replaced by the compact support of the kernel function. Eqs. (2.2) can be written in matrix
form as
BF ¼ T or BIJ F J ¼ T I ; I ¼ 1; 2; . . . 6; ð2:3Þ
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Here N equals the number of particles located in the compact support of the kernel function W(x � n,h).
These equations are the same as those in plane strain problems except that the mass, mj, now equals the mass
of a circular ring rather than that of a cylinder of unit length.
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If N equals at least six and particles are randomly distributed in the compact support of the kernel function,
then the determinant of matrix B is nonzero and Eq. (2.3) can be rewritten as
F J ¼ B�1
IJ T I ; ð2:5Þ
where �1 denotes the inverse of a matrix. Eq. (2.5) gives values of the function f and of its first-order and sec-
ond-order derivatives at the point x in terms of values of f at points in the neighborhood ofx; the number N of
these points is determined by the radius, 2h, of the compact support of the kernel function W. Eq. (2.5) can be
explicitly written as
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In the terminology of the FEM functions BI1UðIÞ mJ
qJ
; I ¼ 1; 2; . . . ; 6 can be viewed as shape functions for the

function f. Similarly, functions BI2UðIÞ mJ
qJ
; I ¼ 1; 2; . . . ; 6 and BI4UðIÞ mJ

qJ
; I ¼ 1; 2; . . . ; 6 can be regarded as shape
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second derivative at the point x are different. Recall that in the FEM
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For a = b = c = 0, Eq. (2.7) giving the approximate value of the function in the FEM is exactly of the same
form as that in the MSPH method. Of course, shape functions for the MSPH and the FEM are different. Also
expressions for approximate values of the first and the second derivatives of the function at the point x in the
MSPH method are different from those in the FEM. In order to compute approximate values of derivatives of
the function in the MSPH method, we do not need to differentiate the basis functions. Instead we use another
set of basis functions. Values of coefficients in Eq. (2.6) for finding approximate values of the function f(x), its
first derivative and its second derivative at the point x are determined simultaneously.

It is clearly seen that for the MSPH method, kernel estimates of the second derivatives, first derivative and
the function are consistent of orders (n � 2), (n � 1) and n, respectively, if up to n order terms are retained in
the Taylor series expansion, Eq. (2.1).

We use the following revised Gauss function W(x�n,h) as the kernel function:
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1:10081
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(
ð2:8Þ
and note that the integral of W(x�n,h) over its compact support equals one.

3. Governing equations

In cylindrical coordinates, equations expressing the conservation of mass, the conservation of linear
momentum, and the conservation of internal energy for axisymmetric deformations are
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q _e ¼ trðrDÞ: ð3:4Þ
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Here q denotes the mass density of a material particle, U its velocity, d/dt or a superimposed dot the total
derivative with respect to time t, r the Cauchy stress tensor, e the specific internal energy, D the strain-rate
tensor, and tr( ) is the trace operator. When the R coordinate approaches zero, Eqs. (3.1)–(3.3) are no longer
valid, and using L’Hospital’s rule they become
dq
dt
¼ �q 2

oU R
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� 	
;

UR ¼ 0;

dU Z

dt
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q
2
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:

In Eq. (3.4) deformations have been assumed to be locally adiabatic, thus effects of heat conduction have been
neglected. This assumption is reasonable for studying the short time response in a transient problem such as
deformations occurring in a Taylor impact test unless one is interested in finding the width of the region of
intense plastic deformations; e.g. see [26,27]. We assume that the rate of change of internal energy is related
to the rate of change of temperature through the relation
q _e ¼ qC _T þ trðrDeÞ; ð3:5Þ

where C is the specific heat, T the present temperature of a material point, and De the elastic part of the strain-
rate tensor.

Substitution from Eq. (3.5) into Eq. (3.4) yields the following equation for the rate of change of
temperature
qC _T ¼ trðrD� rDeÞ ¼ trðrDpÞ; ð3:6Þ

where Dp equals the plastic part of the strain-rate tensor. Eqs. (3.1)–(3.6) need to be supplemented by consti-
tutive relations, initial conditions, and boundary conditions.

The thermo-visco-plastic response of the material is assumed to be represented by the following empirical
Johnson-Cook relation that considers strain hardening, strain-rate hardening, and thermal softening effects.
rY ¼ aþ bðepÞnð Þ 1þ c ln
_e
_e0

� 	� 	
1� T �mð Þ: ð3:7Þ
Here rY is the flow stress of the material; b, n and c are the strain hardening coefficient, the strain hardening
exponent, and the strain-rate hardening parameter, respectively, and _e0 is the reference strain rate.
T � ¼ T�T room

T M�T room
, where TM is the fictitious melting temperature of the material obtained by fitting a curve by

the least squares method to the test data, T the current temperature, Troom the room temperature, and m

the thermal softening exponent. The effective strain rate _e is given by
_e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
DijDij

p
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The Jaumann rate of the deviatoric stress, Srab, defined by
Srab ¼ _Sab � Sac
_Rbc � Scb

_Rac; ð3:9Þ
is computed from
Srab ¼ 2l Dab �
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3
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� 	
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where _eV ¼ Dii is the volumetric strain rate, l the shear modulus, and dab the Kronecker delta. The compo-
nents of the strain rate tensor D and the spin tensor _R in rectangular Cartesian coordinates are given by
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Physical components of D in cylindrical coordinates are
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U R
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We compute stresses at time tn + dt by assuming that deformations during the time interval (tn, tn + dt) are
elastic and subsequently correct them if the resulting stresses lie outside the yield surface. Thus the trial devi-
atoric stress, S�ab, at time tn + dt is given by
S�ab ¼ Sn
ab þ Sac

_Rbc þ Scb
_Rac þ 2l _Dab �

1

3
_eVdab

� 	
 �
dt: ð3:11Þ
The only nonzero component of _R in cylindrical coordinates is _RRZ that equals 1
2
ðoUR

oZ �
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oR Þ. The final devia-

toric stress at time tn + dt is the trial deviatoric stress S�ab if
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Otherwise, we scale the trial deviatoric stresses back to the yield surface by
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Note that Eq. (3.12) with the equality sign is the von Mises yield surface. We define the equivalent stress
by
S� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
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and introduce the function
f̂ ¼ min ry=S�; 1
� �

: ð3:15Þ
From Eqs. (3.13)–(3.15), the deviatoric stress Snþ1
ab at the time tn + dt can be expressed as
Snþ1
ab ¼ f̂ S�ab: ð3:16Þ
The pressure is assumed to change linearly with the compression ratio, i.e.,
P ¼ K
q
q0

� 1

� 	
; ð3:17Þ
where K is the bulk modulus. After the deviatoric stress and the pressure at time tn+1 have been computed, we
get the stress tensor at time tn + dt from
rnþ1
ab ¼ �P nþ1dab þ Snþ1

ab : ð3:18Þ
The increment in the deviatoric strain tensor equals ðDab � 1
3

_eVdabÞdt; and the elastic part of the deviatoric
strain increment D�ee

ab is given by
D�ee
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� �
dt
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From Eqs. (3.10), (3.11) and (3.19), we find that the plastic strain increment is given by
Dep
ab ¼ D�eab � D�ee

ab ¼ S�ab � Snþ1
ab

� �
=2l ¼ 1� f̂

� �
S�ab=2l: ð3:20Þ
After having found all components of the plastic strain increment, we compute the effective plastic strain
increment from
Dep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ijDep
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We replace the function f(R,Z) in Eq. (2.2) by UR, UZ, rRR, etc., and solve the resulting system of Eq. (2.3)
for terms involving derivatives on the right-hand sides of Eqs. (3.1)–(3.3) in terms of values of U and r at
points in the neighborhood of the point x. This procedure is repeated for suitably scattered points or particles
x in the domain X. We thus arrive at a set of coupled nonlinear ordinary differential equations (ODEs)
expressing time derivatives of q and U in terms of values of q, U and r at discrete points in X. Knowing
the constitutive relation characterizing the response of the material that expresses stresses in terms of velocity
gradients, these ODEs are integrated with respect to time t by the central-difference method.

The time step dti of particle i is determined from the Courant–Fredrich–Levy condition
dti ¼ 0:2
hi

ci þ jUij
; ð3:22Þ
where hi, ci and Ui are the smoothing length, the sound speed, and the velocity vector, of particle i, respec-
tively. The time step used to integrate coupled ODEs equals the minimum of the time steps for all
particles.

In order to control oscillations near the shock wave, the conservative smoothing method [18–21] is often
applied to smooth out the density and the velocity fields. Conservative smoothing removes tensile instability,
but it sometimes also eliminates fine details of the solution. Hicks and Liebrock [22] have shown that for 1-D
problems the SPH B-spline finite interpolation method can stabilize the solution without excessive loss of its
fine details. It is not known whether the method can be extended to 2-D problems. It seems that with some
modifications, the procedure should also work for 2-D and 3-D problems. However, this is not the focus
of our work. For problems involving shock loads, conservative smoothing can yield larger stable time steps
and less error in the approximate solution than those when the artificial viscosity is used. The smoothing func-
tion is defined by
gðfi; acsÞ ¼ fi þ acs

PN
j¼1fjW ijmj=qjPN

j¼1W ijmj=qj

� fi

" #
: ð3:23Þ
The coefficient acs that satisfies 0 < acs 6 0.5 is taken as 0.3 in this work. At each time step, after the density
and the velocity fields have been computed from Eqs. (3.1)–(3.3), they are smoothened with Eq. (3.23).
4. Results and discussion

4.1. Noh’s problem

Before presenting numerical results for the Taylor impact test, we use the MSPH method to solve Noh’s
problem [23] in cylindrical coordinates. Conservation equations and constitutive relations for Noh’s problem
for a gas are
dq
dt
¼ �q

oUR

oR
þ U R

R

� 	
; ð4:1Þ

dUR

dt
¼ � 1

q
oP
oR

; ð4:2Þ

de
dt
¼ � P

q
oU R

oR
þ U R

R

� 	
; ð4:3Þ

P ¼ ðc� 1Þqe: ð4:4Þ
Here, P is the gas pressure, and c the specific heat. For an ideal gas, we set c = 5/3, mass density q = 1, and
assume that it moves in the radial direction. The initial conditions are:
URðRÞ ¼
�1 1 P R > 0;

0 R ¼ 0;

�
e ¼ 0; P ¼ 0; q ¼ 1:
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The analytical solution gives that a shock moves radially outwards with velocity = 1/3. The density, the pres-
sure, the velocity and the specific energy behind the shock are 16, 16/3, 0 and 0.5, while they are 1 + t/R, 0, �1
and 0 in front of the shock where t is the time. The distributions of the mass density, the pressure, the velocity
and the specific energy at t = 0.6 computed with the MSPH method using 800 uniformly distributed particles
are depicted in Fig. 1. The analytical solutions (solid line) are also plotted in Fig. 1 for easy comparison with
the numerical solution. It can be seen that the MSPH method captures the shock well, and the computed re-
sults agree well with the corresponding analytical ones except near the cylinder center where the computed
energy (mass density) is much higher (lower) than its analytical value. This can be alleviated by introducing
an artificial heat conduction term in the energy equation, but has not been pursued here.

4.2. Taylor impact

We first analyze transient deformations of a 37.97 mm long and 7.595 mm diameter cylindrical rod made of
low strength 4340 steel, and striking a rigid stationary smooth anvil at normal incidence with a speed of
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Fig. 1. Comparison of the MSPH solution for the distributions of (a) the density, (b) the pressure, (c) the radial velocity, and (d) the
specific energy computed with the MSPH method with those from the analytical solution.
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181 m/s. We compare computed results with the experimental findings of House and Lewis [24], and also with
numerical solutions obtained by using the commercial code LS-DYNA. Values assigned to different material
parameters [25] are
Fig. 2.
and th
q ¼ 7830 kg=m3
; l ¼ 82:9 GPa; K ¼ 169:1 GPa; C ¼ 460 J=Kg K;

a ¼ 792 MPa; b ¼ 510 MPa; n ¼ 0:26; c ¼ 0:014; m ¼ 1:03;

T M ¼ 1293 K; T room ¼ 293 K; _e0 ¼ 1=s:
A total of 3820 particles with 20 in the radial and 191 in the axial directions are uniformly placed in the
region occupied by the rod in the reference configuration; thus the distance between adjacent particles in
the radial direction equals that in the axial direction. The initial smoothing length, h, is taken as 1.5 times
the distance between adjacent particles, D. The rod is assumed to be initially stress free, at room temperature
and moving with a uniform velocity in the axial direction. During deformations of the rod, its mantle (cylin-
Time histories of the vertical displacement of the centroid of the impact face computed with the MSPH code, and the axisymmetric
e 3-D analyses with LS-DYNA.
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drical surface) and top surface are taken to be traction free and thermally insulated, and the contact surface
between the rod and the immovable flat anvil to be smooth and thermally insulated. The traction free bound-
ary conditions are imposed by first transforming the stress tensor at a boundary point into local coordinates
with axes aligned along and perpendicular to the boundary surface, and then setting the normal and the tan-
gential tractions equal to zero. The stress tensor is then transformed back to the global coordinate axes. Essen-
tial boundary conditions at points on the impact face and on the centroidal axis of the bar are satisfied by
setting the appropriate component of velocity equal to its prescribed value. The thermal boundary condition
of bounding surfaces being thermally insulated is automatically satisfied since deformations have been taken
to be locally adiabatic. The time is reckoned from the instant of impact. If a part of rod’s impact face leaves
the anvil surface, then it is taken to be traction free and thermally insulated. Since the impacted face cannot
Fig. 3. Time history of the tail end axial velocity computed with the MSPH code, and the axisymmetric (LS-DYNA) and the 3-D LS-
DYNA (LS-DYNA) analyses.

Fig. 4. Time histories of the rod length for the three analyses.
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sustain tensile normal traction, when the stress component rZZ at a point on rod’s impact surface is tensile, the
traction free boundary condition at that point is enforced and the point is taken to have lost contact with the
anvil.

Results computed with the MSPH method are compared with those obtained by using the commercial FE
code LS-DYNA and by assuming that deformations are either axisymmetric or 3-D. Coordinates of nodes in
the FE mesh are the same as those of particles in the MSPH method. For axisymmetric analysis with
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Fig. 6. Contours of the effective plastic strain in the rod at (a) 15 ls and (b) 30 ls computed by the MSPH method.
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LS-DYNA, the number of nodes and elements are 3820 and 3610, while for the 3-D analysis there are 65,550
nodes and 72,580 hexahedron elements. The FE discretizations in the RZ-plane for the axisymmetric and the
3-D analyses are identical.

Fig. 2a depicts time histories of the position of the material particle initially at the center of the impact face
as computed by the MSPH method, and the two analyses with LS-DYNA; results for 0 6 t 6 3.0 ls are shown
in Fig. 2b. The two solutions with LS-DYNA are identical implying that deformations are indeed axisymmet-
ric as expected. The center of the impact surface does not leave the anvil until about 1.0 ls. The gap between
the center of the impact surface and the anvil increases, reaches a maximum, and subsequently decreases. The
maximum upward displacement of the particle given by the MSPH method is 0.03 mm, while that by the LS-
DYNA is 0.02 mm. However both codes predict that the material point at the centroid of the impact face re-
establishes contact with the anvil at 2.4 ls.

Time histories of the axial velocity of a material particle at the center of the free end face, or the tail end of

the rod, are exhibited in Fig. 3. The speed of the elastic wave is given by Ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kþ4l=3

q

q
¼ 5976 m=s, and it will

arrive at the tail end at time t = L/Ce = 6.3 ls. Each one of the three analyses predicts that the speed of the tail
end begins to decrease at t � 6.3 ls. The solution given by LS-DYNA exhibits oscillations after the speed
Fig. 7. Fringe plots of the effective plastic strain in the rod at (a) 15 ls and (b) 30 ls computed with the LS-DYNA code.
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Fig. 8. Contours of the temperature in the rod at time (a) 15 ls and (b) 30 ls computed with the MSPH method.
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Fig. 9. Contours of the temperature in the rod at (a) 15 ls and (b) 30 ls computed with LS-DYNA.
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begins to decrease. The axial velocity of points on the rear surface computed with the MSPH method is lower
than that given by LS-DYNA. Hence the final length of the rod, 34.7 mm, computed with the MSPH code is
slightly larger than the 34.5 mm given by both the axisymmetric and the 3-D analyses performed with LS-
DYNA; see Fig. 4. Final lengths computed with the two codes agree very well with the experimentally found
final length of 34.6 mm.

The impacted face of the rod and the region adjacent to it is mushroomed; time histories of the radius of the
deformed impact face computed with the two codes are exhibited in Fig. 5. For each of the three solutions, this
radius ceases to increase for times greater than 30 ls; the radius computed with the MSPH code is the smallest
and that given by the 3-D analysis of the problem with LS-DYNA the largest; the two differ by about 6.0%.
The maximum radii of the impacted face computed with the MSPH code, and the axisymmetric and the 3-D
analyses with LS-DYNA equal, respectively, 4.99 mm, 5.31 mm and 5.31 mm. Each of these values is greater
than the experimentally measured value of 4.75 mm.

Since the axisymmetric and the 3-D analyses with LS-DYNA give nearly identical results, henceforth we
only give results of the axisymmetric analysis with LS-DYNA.
Fig. 10. Time histories of the tail end axial velocity computed by the MSPH method with five different distributions of particles.
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Figs. 6 and 7 depict contours of the effective plastic strain at 15 ls and 30 ls after impact, for the MSPH
and the LS-DYNA solutions. It is evident that at each time, the maximum effective plastic strain computed
with LS-DYNA is a little higher than that with the MSPH code. The difference in the two peak values of
the effective plastic strain equals 1% and 4%, respectively, at 15 ls and 30 ls. Fringe plots of the temperature
field computed with the two codes, evinced in Figs. 8 and 9, look very similar. At time = 15 ls, the maximum
temperature in the rod computed with LS-DYNA is 512.9 K, which is 5.4% higher than the 486.5 K given by
the MSPH method, and at time = 30 ls, the difference between the maximum temperatures computed by the
two methods is 7.6%. The spikes in the temperature near the centroidal axis of the rod computed with the LS-
DYNA code have larger amplitudes than those computed with the MSPH code. It could be due to different
basis functions and smoothing techniques employed in the MSPH code and the LS-DYNA. LS-DYNA
employs one-point integration rule and uses hour-glass control to eliminate spurious modes of deformation.

4.2.1. Effect of the number of particles

Four additional discretizations, 31 · 301, 41 · 401, 51 · 501 and 61 · 601 (number of particles in the radial
direction · number of particles in the axial direction) were used to compute results with the MSPH method.
Fig. 11. Time histories of the tail end axial velocity computed with LS-DYNA with five different nodal distributions.
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Fig. 10 exhibits the time history of the tail end axial velocity for the five cases that includes results for the
20 · 191 discretization. It can be seen that the tail end velocity increases with an increase in the number of
particles, but the difference between any two sets of results is very small. However, the amplitude of oscilla-
tions in the tail end axial velocity increases with an increase in the number of particles; cf. Fig. 10b. The effect
of the number of nodes is also studied by using LS-DYNA and results are given in Fig. 11. The difference in
tail end velocities is much smaller, but the amplitude of oscillations is larger than that computed with the
MSPH method. As for the MSPH method the amplitude of oscillations increases with an increase in the num-
ber of nodes. Thus the coarse distribution of nodes (or particles) smoothens out the oscillations.

The comparison of the development of the mushroomed end is given in Fig. 12. It is apparent that the
radius of the mushroomed face increases with an increase in the number of particles. Also, the vertical dis-
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3 ls.



Fig. 14. Time histories of the tail end axial velocity computed by the MSPH method with three different values of the smoothing length.
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placement of the particle at the centroid of the impact face increases with an increase in the number of par-
ticles; see Fig. 13.

An increase in the number of particles or nodes influences significantly the amplitude of vertical displace-
ments of points near the centroid of the impacted face but has a negligible effect on the radius of the deformed
impacted face and the final length of the rod.

Even though deformations of the material in the mushroomed region are inhomogeneous, involve peak
strains of 84% and the maximum temperature of 500 K, the deformation was not found to localize into narrow
regions of intense plastic deformation usually called adiabatic shear bands.

4.2.2. Effect of the smoothing length

The smoothing length h plays an important role in the MSPH method. A larger smoothing length will
increase the number of particles in a particle’s compact support and hence will increase the CPU time required
for the analysis of the problem. On the other hand, a very small smoothing length will not include enough
number of particles in a particle’s compact support resulting in the matrix B in Eq. (2.3) becoming singular.
Generally, the smoothing length is taken as 1.5 times the minimum distance between two adjacent particles, as
we have done in our computations. Here we also give in Fig. 14 results for two other values of h, i.e., h = 2.0D,
and h = 2.5D. It can be seen that the three values of the smoothing length give essentially the same time his-
tories of the tail end axial velocity.

4.2.3. Effect of the coefficient acs in the smoothing function

Time histories of the tail end axial velocity for different values of the coefficient acs in the conservative
smoothing function (3.23) are exhibited in Fig. 15. The tail end axial velocity increases with a decrease in
the value of acs. It can be seen that the amplitude of oscillations increases with a decrease in the value of
acs. From this aspect, conservative smoothing is similar to the artificial viscosity, i.e., small values of viscosity
result in larger amplitudes of oscillation while a large value of viscosity smoothes out the solution. We note
that results for acs = 0.2, 0.3 and 0.4 are very close to each other implying thereby that results presented above
do not have excessive damping.

5. Comparison with experimental results

We have simulated all twelve test configurations reported in [24] with the MSPH code by taking 20 particles
in radial direction, while the particle number in axial direction is determined by the rod length so that the
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Table 1
Comparison between experimental and computed values of different variables for the Taylor impact test on low strength 4340 steel rods

Test no. Initial dia.
(mm)

Initial length
(mm)

Impact speed
(m/s)

Final length
(mm)

Final length of
undeformed rod (mm)

Diameter of the impact
face (mm)

Test Simulation Test Simulation Test Simulation

1 7.595 11.39 285 9.2 9.6 3.2 2.7 10.9 10.3
2 7.595 15.19 234 13.1 13.3 5.6 5.3 10.2 10.1
3 7.595 15.19 275 12.4 12.8 5.2 4.7 11.2 10.7
4 7.595 15.19 302 12.0 12.5 5.2 4.3 12.2 11.1
5 7.595 25.29 170 23.4 23.3 11.2 10.4 9.2 9.5
6 7.595 25.29 215 22.4 22.5 10.0 10.0 10.3 10.4
7 7.595 37.97 181 34.6 34.6 15.5 17.0 9.5 10.0
8 7.595 37.97 183 34.7 34.6 15.3 17.0 9.8 10.0
9 7.595 37.97 224 33.0 33.3 11.9 15.5 10.5 11.0

10 7.595 37.97 234 33.1 32.9 13.3 15.0 10.6 11.2
11 7.595 37.97 270 31.3 32.0 11.8 12.9 12.1 11.8
12 7.595 56.96 242 47.8 48.7 17.5 22.0 11.6 11.6
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particle distances in two directions are the same, h = 1.5D, and acs = 0.2. The computed final length of the rod,
the diameter of the impact face, and the length of the undeformed region of the rod are compared with their
corresponding experimental values in Table 1. The final undeformed length is defined as the length of the con-
tiguous rod where the nominal radial strain is less than 0.2%. It can be seen that computed values of different
quantities agree very well with their experimental counterparts. The maximum difference between the two final
lengths is 4.3% and occurs for the configuration of test 1, and that between the final diameters of the impacted
face is 9.0%.

6. Comparison of the MSPH code with LS-DYNA

The commercial code LS-DYNA is highly optimized and has different options to account for contact
between two distinct bodies and smoothen out the solution. We used 8-node brick elements for the analysis
of the 3-D problem and 4-node quadrilateral elements for studying the axisymmetric problem. In each case,
the code uses one-point integration rule to evaluate integrals defined on an element, and eliminates spurious
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modes by implementing the hour-glass control which is equivalent to introducing artificial viscosity. Whereas
LS-DYNA employs displacement based formulation and assumes that stresses and temperatures are constants
within each element, the MSPH code takes displacements, stresses and temperatures as unknowns. In LS-
DYNA stresses and temperatures are computed only at the integration point that increases its efficiency. How-
ever, it necessitates using a very fine mesh to resolve regions of intense plastic deformation and regions with
very high gradients of solution variables. Both codes use the radial return method to ensure that stresses sat-
isfy the yield criterion, the Johnson-Cook viscoplasticity relation, and neglect effects of heat conduction. Our
effort is focused on presenting the MSPH method rather than developing an optimum production code. We
feel that it is not fair to compare the performance of a research code with that of a commercial code.

7. Remarks

We note that Batra and his colleagues [28–30] have used the code DYNA2D to analyze Taylor impact
problems under different assumptions, but had not compared their research findings with test values as has
been done here. They [31,32] have also analyzed with the FEM the localization of deformation into narrow
regions of intense plastic deformation in heat-conducting thermo-elasto-viscoplastic materials.

We have also generalized the MSPH basis functions to symmetric smoothed particle hydrodynamics
(SSPH) basis functions [33]. This method permits the use of a large variety of kernel functions, requires the
inversion of a symmetric matrix to find the basis functions, and is thus computationally less expensive than
the MSPH method.

8. Conclusions

The Modified Smoothed Particle Hydrodynamics (MSPH) method has been extended to the analysis of axi-
symmetric problems for thermoelastoviscoplastic materials. Results computed from it have been found to
compare well with those obtained by analyzing either axisymmetric or three-dimensional deformations with
the LS-DYNA code. The effect of the particle number, the smoothing length and the coefficient in the conser-
vative smoothing function has also been studied. Results computed with the MSPH formulation for twelve
configurations of the Taylor impact test are found to agree well with their corresponding experimental values.
It has been found that the presently computed results match well with the experimental findings. An increase
in either the total number of particles or the smoothing length improves the accuracy of results. The conser-
vative smoothing employed herein has not introduced excessive damping in the numerical solution. The basis
functions for the MSPH method are complete polynomials as are for the finite element method. Whereas in
the MSPH method, the function and its derivatives can be approximated by using different basis functions and
basis functions for the derivatives of a function are not obtained by differentiating those for the function itself,
in the finite element method basis functions for the derivative of a function are usually obtained by differen-
tiating those for the function. Advantages of a meshless method over the finite element method include the
following. A meshless method (i) does not require element connectivity and thus saves time required to pre-
pare the data input file, (ii) allows for cracks to propagate along paths dictated by the physics of the problem
rather than a finite element mesh, (iii) allows for the analysis of phase transformations more readily than the
finite element method, (iv) avoids difficulties associated with mesh distortion usually encountered in large
deformation problems, and (v) permits accurate computations of fluxes (e.g. stresses, heat flux) at arbitrary
points. As mentioned above, the MSPH method has the additional advantage of not having to differentiate
shape functions to obtain derivatives of a function. It is not fair to compare the CPU time required by our
research code with that needed by highly optimized commercial code LS-DYNA.

The MSPH basis functions provided herein can also be used in other meshless methods.
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