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Abstract

The meshless local Petrov–Galerkin (MLPG) method is used for analysing two-dimensional (2D) static and dynamic deformations of
functionally graded materials (FGMs) with material response modelled as either linear elastic or as linear viscoelastic. The multiquadric
radial basis function (RBF) is employed to approximate the trial solution. Results are computed with two different choices of test func-
tions, namely a fourth-order spline weight function, and a Heaviside step function, each having a compact support. No background mesh
is used to numerically evaluate integrals appearing in the weak formulation of the problem, thus the method is truly meshless. A benefit
of using RBFs is that they possess the Kronecker delta property; thus it is easy to satisfy essential boundary conditions. For five prob-
lems, the computed results are found to match well with those either from their analytical solutions or numerical solutions of other
researchers who employed different algorithms. For a dynamic problem, the Laplace-transform technique is utilised. The numerical
examples illustrate that displacements and stress distributions in a structure made of an FGM differ considerably from those at the
corresponding points in the same structure made of a homogeneous material. Thus, the inhomogeneity in material properties can be
exploited to optimise stress distribution, minimise deflection and reduce the maximum stress.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are composites
with material properties varying continuously in one or
more directions according to a predetermined profile.
These materials have been introduced to exploit the ideal
performance of their constituents, e.g., heat/corrosion
resistance of ceramics on one side, and mechanical strength
and toughness of metals on the other side of a plate like
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body. Ideally, FGMs have no interfaces among constitu-
ents giving them an advantage over conventional laminated
composites because delamination failure mode is elimi-
nated. FGMs also permit tailoring of material composition
to optimise desired characteristics such as minimising
deflections or stresses, or maximising the first frequency
of free vibration. As a result, FGMs have potential appli-
cations in a wide variety of engineering components or sys-
tems, which include armour plating, heat engine parts and
human implants.

The variation of material properties in an FGM is usu-
ally achieved by continuously varying volume fractions of
their constituents. FGMs with material properties varying
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only in one direction can be manufactured either by high-
speed centrifugal casting [1,2] or by depositing ceramic
layers on a metallic substrate [3,4]. An FGM with proper-
ties changing in the plane of a sheet can be produced by
ultraviolet irradiation to alter the chemical composition
[5]. A directed oxidation technique has also been employed
[6,7] to deposit a ceramic layer on the outside surfaces of a
structure. FG fibre-reinforced composites can be fabricated
by varying the volume fraction of fibres and/or their orien-
tation in the preform prior to infusing resin into it. Com-
mercially developed FGMs are available for use as
structural elements in different applications. Here, we study
two-dimensional (2D) deformations of FG solids modelled
as either linear elastic or linear viscoelastic.

Approximate solutions of realistic engineering problems
are usually obtained numerically. Meshless methods such as
the element-free Galerkin (EFG) method [8], the Reproduc-
ing Kernel particle method (RKPM) [9], hp-clouds [10], the
partition of unity method (PUM) [11], the meshless local
Petrov–Galerkin (MLPG) method [12,13], the smoothed
particle hydrodynamics (SPH) [14], the corrected smoothed
particle hydrodynamics (CSPH) [15], and the modified
smoothed particle hydrodynamics (MSPH) [16] have
attracted considerable attention recently. As the name
implies, in the MLPG method a weak formulation of the
problem is derived on a sub-domain of the region occupied
by the body. These sub-regions may overlap and their union
while contained in the entire domain may differ from it by a
small amount. Depending upon the choice of test function,
six MLPG formulations have been labelled as MLPG1
through MLPG6 in [13]. The basis functions for the trial
solution and/or the test function can be generated by the
moving least squares (MLS) approximation [8], the PUM
using Shepard functions [11], the RKPM [9] or the MSPH
[16]; however, these are generally rational functions and
lack the Kronecker delta property. Thus, special techniques
such as the use of penalty parameters or Lagrange multipli-
ers, or the modification of the resulting system of linear
algebraic equations are needed to satisfy essential boundary
conditions. Recently, radial basis functions (RBFs) [17]
have been employed to solve partial differential equations
[18–20] and to approximate the trial solution in meshless
methods [21–24]. RBFs possess the Kronecker delta prop-
erty which facilitates satisfying essential boundary condi-
tions. Furthermore, when RBFs are used in the weak
formulation of a problem defined on a local domain (such
as that in an MLPG method [24–26]) rather than over a glo-
bal domain, dense matrices appearing in the global interpo-
lation are avoided. The modified multiquadrics (MQ) and
the thin plate spline (TPS) radial basis functions have been
successfully employed to approximate a trial solution in the
MLPG formulation [24,25] for solving 2D elastic problems.
The MQ and TPS RBFs have also been employed for the
analysis of homogeneous [26] and laminated plates [27].

Meshless methods have been used to analyse deforma-
tions of structures comprised of FGMs. Ching and Yen
[28,29] used the MLPG method, with test function equal
to the weight function used to generate the MLS basis
function (MLPG1), to study static and transient thermo-
elastic 2D deformations of FG elastic solids. Sladek et al.
[30] set the test function equal to a Heaviside step function
(MLPG5) to study static and dynamic 2D deformations of
FG solids. They also used a modified fundamental solution
as the test function in the MLPG method [31,32] to analyse
heat conduction in FGMs. Rao and Rahman [33] used the
EFG method to study fracture of FGMs, and Goupee and
Vel [34] have combined the EFG with a genetic algorithm
to optimise the composition of FGMs. Qian et al. [35–38]
combined the MLPG1 method with the higher-order shear
and normal deformable plate theory (HOSNDPT) of Batra
and Vidoli [39] to study static and dynamic deformations of
FG elastic and thermoelastic plates, transient heat conduc-
tion in an FG plate, and in-plane distribution of constitu-
ents to optimise the fundamental frequency of vibration
of a beam. All of the above-mentioned researchers who
used the MLPG method have employed the MLS basis
functions to approximate the trial solution. Special tech-
niques used to enforce essential boundary conditions
increased the computational cost. We have employed the
RBFs for the trial solution in an MLPG method for anal-
ysing FG plates [40]. RBFs have also been used in a collo-
cation method by Ferreira et al. for studying static
deformations [41] and free vibrations [42] of FG plates.
Dai et al. [43] have employed RBFs in the radial point
interpolation method to analyse static and dynamic defor-
mation of piezoelectric FG plates.

Analytical solutions of static and dynamic problems for
simply supported thermoelastic FG rectangular plates have
been given by Vel and Batra [44,45], for a clamped elliptic
plate by Cheng and Batra [46], and for a pressurised hollow
cylinder and a rotating disk by Horgan and Chan [47]; the
latter are summarised in chapter 10 of Batra’s book [48].

Here, 2D static and dynamic deformation FG linear elas-
tic or linear viscoelastic solids is analysed with two MLPG
methods – one uses a fourth-order spline function of com-
pact support as the test function (MLPG1) and the other
employs a Heaviside step function (MLPG5) as the test
function. The MQ RBFs are used to approximate the trial
solution. These methods are applied to find numerical solu-
tions of five problems, and computed results are compared
with either their analytical solutions or numerical solutions
reported by other researchers. Contributions of this work
include comparing the performance of two numerical
schemes for a class of elastostatic and elastodynamic prob-
lems for inhomogeneous bodies. It is found that for static
problems the MLPG5 method requires less CPU resources
than the MLPG1 formulation, and for the same number
and locations of nodes the two formulations give results
that compare very well with those obtained analytically.

2. Interpolation using radial basis functions

Consider a continuous function u(x) defined on a 2D
domain X having a set of suitably located nodes in it. An
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interpolation of u(x) in the neighbourhood of a point xQ

using RBFs and polynomial basis is written as

uðxÞ ¼
Xn

i¼1

giðxÞaiðxQÞ þ
Xm

j¼1

pjðxÞbjðxQÞ ¼ GTaþ P Tb ð1Þ

with the constraint

Xn

i¼1

pjðxi; yiÞai ¼ 0; j ¼ 1; 2; . . . ;m: ð2Þ

Here, gi(x) is a radial basis function associated with node i,
pj(x) is a monomial in the space coordinates xT = [x,y], n is
the number of nodes in the neighbourhood of xQ, m is the
number of monomial basis functions (usually m < n), and
ai(xQ) and bj(xQ) are coefficients for gi(x) and pj(x), respec-
tively, that vary with the point xQ. The vectors a, b, G and
P in Eq. (1) are defined as

a ¼ ½a1; a2; a3; . . . ; an�T; ð3aÞ
b ¼ ½b1; b2; b3; . . . ; bm�T; ð3bÞ
GT ¼ ½g1ðxÞ; g2ðxÞ; g3ðxÞ; . . . ; gnðxÞ�

T
; ð3cÞ

P T ¼ ½p1ðxÞ; p2ðxÞ; p3ðxÞ; . . . ; pmðxÞ�
T
: ð3dÞ

The RBF is a function of the Euclidean distance r between
points x and xi. That is

giðxÞ ¼ giðriÞ; ð4aÞ
ri ¼ ½ðx� xiÞ2 þ ðy � yiÞ

2�1=2
: ð4bÞ

Eq. (4a) implies that gi(x) is function of a scalar variable.
The polynomial term in Eq. (1) is added to guarantee the
non-singularity of the RBF interpolation and a 2D prob-
lem has the following set of complete monomials:

P T ¼ ½1; x; y; x2; xy; y2; . . .�: ð5Þ

Requiring that the function u(x) given by Eq. (1) equals
its value at n nodes in the vicinity of the point xQ, we get
the following set of simultaneous linear algebraic equations
for the coefficients ai and bj:

uðxk; ykÞ ¼
Xn

i¼1

aigiðxk; ykÞ þ
Xm

j¼1

bjpjðxk; ykÞ;

k ¼ 1; 2; 3; . . . ; n: ð6Þ

Eqs. (6) and (2) can be expressed in matrix form as follows:

G0 P 0

P T
0 0

� �
a

b

� �
¼

ue

0

� �
; ð7Þ

where

ue ¼ ½u1; u2; u3; . . . ; un�T; ð8Þ

G0 ¼

g1ðx1; y1Þ g2ðx1; y1Þ � � � gnðx1; y1Þ
g1ðx2; y2Þ g2ðx2; y2Þ � � � gnðx2; y2Þ

..

. ..
. ..

. ..
.

g1ðxn; ynÞ g2ðxn; ynÞ � � � gnðxn; ynÞ

2
66664

3
77775

n�n

; ð9Þ
P 0 ¼

p1ðx1; y1Þ p2ðx1; y1Þ � � � pmðx1; y1Þ
p1ðx2; y2Þ p2ðx2; y2Þ � � � pmðx2; y2Þ

..

. ..
. ..

. ..
.

p1ðxn; ynÞ p2ðxn; ynÞ � � � pmðxn; ynÞ

2
66664

3
77775

n�m

: ð10Þ

The solution of Eq. (7) is

a

b

� �
¼ A�1 ue

0

� �
; ð11Þ

where

A ¼
G0 P 0

P T
0 0

� �
ð12Þ

and conditions (2) ensure that the matrix A is non-singular
and hence invertible. Thus Eq. (1) becomes

uðxÞ ¼ ½GTðxÞP TðxÞ�A�1 ue

0

� �
¼ UðxÞue; ð13Þ

where

UðxÞ ¼ ½/1ðxÞ;/2ðxÞ;/3ðxÞ; . . . ;/kðxÞ; . . . ;/nðxÞ� ð14Þ
are the shape functions in which

/kðxÞ ¼
Xn

i¼1

giðxÞ�Ai;k þ
Xm

j¼1

pjðxÞ�Anþj;k: ð15Þ

Here, �Ai;k is the (i,k) element of the matrix A�1. The deriv-
atives of /k(x) can be obtained as follows:

o/k

ox
¼
Xn

i¼1

ogi

ox
�Ai;k þ

Xm

j¼1

opj

ox
�Anþj;k; ð16aÞ

o/k

oy
¼
Xn

i¼1

ogi

oy
�Ai;k þ

Xm

j¼1

opj

oy
�Anþj;k: ð16bÞ

The extended MQ function [49] is defined by

giðx; yÞ ¼ ðr2
i þ c2Þb; ð17Þ

where b and c are shape parameters. For b = 0.5 and �0.5,
Eq. (17) gives, respectively, the original Hardy’s MQ [17]
and the inverse MQ functions.

3. MLPG formulation

3.1. Local weak form for static 2D deformations of a linear
elastic body

Consider the following 2D problem defined on the
domain X with boundary C:

rij;j þ bi ¼ 0 in X; ð18Þ
ti ¼ rijnj ¼ �ti on Ct; ð19aÞ
ui ¼ �ui on Cu: ð19bÞ

Here, rij is the stress tensor, ui the displacement field, bi the
body force vector, (),j denotes o()/oxj, nj is the unit outward
normal to the boundary C, and �ui and �ti denote, respec-
tively, the prescribed displacements and tractions. Bound-
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ary conditions (19a) and (19b) are called natural and essen-
tial, respectively.

A weak form of Eq. (18) over a subdomain Xs of domain
X and bounded by Cs, obtained by using the weighted
residual method isZ

Xs

viðrij;j þ biÞdX ¼ 0; ð20Þ

where vi is a test function. Neither Lagrange multipliers nor
penalty parameters appear in Eq. (20) because essential
boundary conditions can be imposed directly by using the
interpolation Eq. (1) as is done in the finite element meth-
od. The application of the divergence theorem in Eq. (20)
givesZ

Xs

rijvi;j dX�
Z

Csi

tivi dC�
Z

Csu

tivi dC

¼
Z

Cst

�tivi dCþ
Z

Xs

bivi dX; ð21Þ

where Cst is the intersection of Ct and Cs, and Csu is the
intersection of Cu and Cs.

We choose the test function vi(x) such that it is positive
in Xs and vanishes outside Xs. Even though the shape of Xs

can be arbitrary, in practice, it is taken to be either a circle
or a rectangle; we take it to be a circle.

3.1.1. Test function

Atluri and Shen [13] have proposed six different choices
for test functions and labelled the corresponding formula-
tions as MLPG1 through MLPG6. Here we take the test
function to be either a fourth-order spline function or a
Heaviside step function. The corresponding two MLPG
formulations are called MLPG1 and MLPG5, respectively.
Qian and Batra [50] have compared the performances of
MLPG1 and MLPG5 for static and dynamic deformations
of a plate made of a homogeneous and isotropic material.
The fourth-order spline function of compact support rs is
defined by

wJ ¼W ðx�xJ Þ¼
1�6 dJ

rs

� �2

þ8 dJ
rs

� �3

�3 dJ
rs

� �4

; 06 dJ 6 rs;

0 dj P rs

8<
:

ð22Þ

and the Heaviside step function by

wJ ¼ W ðx� xJ Þ ¼
1; 0 6 dJ 6 rs;

0; dj P rs:

�
ð23Þ

Here, dJ = jx � xJj. The circular subdomain Xs has radius
rs and centre at the node located at xi, hereafter also called
node i or xi; thus the support of W equals the size of the
subdomain.

3.1.2. Discretisation and numerical implementation
The displacement u in the neighbourhood Xs of node i is

approximated by Eq. (1) or equivalently by Eq. (13). Refer-
ring the reader to [24] for details, for a linear elastic mate-
rial one can deduce the following system of linear algebraic
equations from Eq. (21).Xn

j¼1

Kijuj ¼ fi: ð24Þ

For the MLPG1 method

Kij ¼
Z

Xs

½Bi�½D�½Bj�dX�
Z

Csi

½Wi�½N �½D�½Bj�dC

�
Z

Csu

½Wi�½N �½D�½Bj�dC; ð25aÞ

fi ¼
Z

Cst

½Wi��ti dCþ
Z

Xs

½Wi�bi dX; ð25bÞ

where

Bj¼
/j;x 0

0 /j;y

/j;y /j;x

2
64

3
75; Bi¼

wi;x 0 wi;y

0 wi;y wi;x

" #
; N ¼

n1 0 n2

0 n2 n1

� �
;

ð26aÞ
[Wi] is the vector of test functions vi(x). For an isotropic FG
linear elastic material the material property matrix [D] is
given by

D ¼
�EðxÞ

1� �mðxÞ

1 �mðxÞ 0

�mðxÞ 1 0

0 0 1� �mðxÞ

2
64

3
75; ð26bÞ

�E ¼
E;
E

1�m2 ;

(
�m ¼

m for plane stress;
m

1�m for plane strain:

�
ð26cÞ

For plane stress deformations of an orthotropic FG mate-
rial, we have

D ¼
E1ðxÞ=e E2ðxÞm12ðxÞ=e 0

E2ðxÞm12=e E2ðxÞ=e 0

0 0 G12ðxÞ

2
64

3
75;

eðxÞ ¼ 1� E2ðxÞ
E1ðxÞ

ðv12ðxÞÞ2: ð26dÞ

For the MLPG5 method with the Heaviside step func-
tion taken as the test function, the stiffness matrix and
the load vector are given by

Kij ¼ �
Z

Csi

½N �½D�½Bj�dC�
Z

Csu

½N �½D�½Bj�dC; ð27aÞ

fi ¼
Z

Cst

�ti dCþ
Z

Xs

bi dX: ð27bÞ

When bi = 0 then integrals in Eqs. (27a) and (27b) are
on parts of the boundary Cs of the subdomain Xs, and
the CPU time required to evaluate the stiffness matrix
and the load vector is significantly reduced. These line inte-
grals can be evaluated by using an appropriate Gauss
quadrature rule by first subdividing Cs into several parts
and then mapping each segment onto the interval
[�1,+1]. Similarly, integrals on a circular domain in Eq.
(25) are computed by mapping it onto a square region.
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Since the line and the domain integrals as well as the RBFs
are computed without using any mesh, the method is truly
meshless. For each Gauss quadrature point xQ, the approx-
imate form of function u given by Eq. (1) and the corre-
sponding RBFs are found. Thus the evaluation of the
stiffness matrix K and the load vector can be computation-
ally expensive. However, no assembly of equations is
needed. The RBFs determine how displacements of node
i affect those of point xQ.

We note that, for every node xi, there are two local
domains: the test function domain Xi

te (same as the local
subdomain Xs) for vi 5 0 (of radius rs), and the interpola-
tion domain Xi for xQ (size ri). Fig. 1 shows the subdomain
Xs of node xi and the interpolation domain Xi for the inte-
gration point xQ. These two circular domains are indepen-
dent of each other and have radii rs = asdi and ri = aidi,
respectively, where as and ai are scaling parameters and di

is the distance from the node i to its closest neighbouring
node. The number of nodal variables coupled in Eq. (24)
depends upon the size ri of the interpolation domain Xi.

The choice vi(x) = (di1 + di2)W for i = 1 and 2 in Eq.
(21) gives two linearly independent equations. Here, dij is
the Kronecker delta. Repeating the procedure for every
node in the domain X gives the following system of simul-
taneous linear algebraic equations for the solution of nodal
displacements.

Ku ¼ f : ð28Þ

Since shape functions constructed with RBFs possess the
Kronecker delta function property, thus essential boundary
conditions can be easily satisfied by modifying Eq. (28) and
terms in the row of the matrix K for the nodes where essen-
tial boundary conditions are prescribed are not computed
to economise on the computing cost.

3.2. MLPG method for transient deformations of an
anisotropic linear viscoelastic body

Transient deformations of an inhomogeneous body are
governed by

rij;jðx; tÞ � qðxÞ€uiðx; tÞ ¼ �biðx; tÞ; ð29Þ
Fig. 1. The support and the interpolation domains: the region enclosed by
a circle of radius rs equals the support of node i and that enclosed by the
dotted circle of radius ri represents the interpolation domain. The two
domains are shown separately for clarity.
where q is the mass density, rij(x, t) is the stress tensor,
ui(x, t) is the displacement vector, and a dot over a quantity
represents its differentiation with respect to time t. Eq. (18)
governing static deformations can be derived from Eq. (29)
by setting the acceleration term €uiðx; tÞ equal to zero. The
following boundary and initial conditions are assumed:

uiðx; tÞ ¼ ~uiðx; tÞ on Cu; tiðx; tÞ ¼ ~tiðx; tÞ on Ct; ð30aÞ
uiðx; tÞjt¼0 ¼ uiðx; 0Þ and _uiðx; tÞjt¼0 ¼ _uiðx; 0Þ in X:

ð30bÞ

The constitutive relation for an isotropic linear visco-
elastic body can be written as

sij ¼ 2

Z t

0

lðx; t � sÞ deij

ds
ds; ð31aÞ

rkk ¼ 3

Z t

0

Kðx; t � sÞ dekk

ds
ds; ð31bÞ

where K and l are the bulk and the shear relaxation func-
tions respectively, eij is the strain tensor for infinitesimal
deformations, and sij and eij are deviatoric components of
the stress and strain tensors, respectively. That is

sij ¼ rij �
1

3
rkkdij; ð32aÞ

eij ¼ eij �
1

3
ekkdij: ð32bÞ

For an anisotropic linear viscoelastic body Eq. (31)
becomes

rijðx; tÞ ¼
Z t

0

cijklðx; t � sÞ dekl

ds
ds: ð33Þ

Here, the relaxation function cijkl(x, t) is assumed to have
the form

cijklðx; tÞ ¼ c0~cijklðxÞf ðtÞ; ð34Þ
where c0 is a material constant, and ~cijklðxÞ and f(t) depend
on the Cartesian coordinates and the time, respectively. Eq.
(34) implies that the same relaxation function holds for all
components of the tensor cijkl(x, t) that simplifies the anal-
ysis considerably. The correspondence principle holds for
an inhomogeneous viscoelastic solid [51]. In general, the
correspondence principle [51] states that the Laplace trans-
forms of the non-homogeneous viscoelastic variables are
obtained by replacing c0 with c0pf(p), where f(p) is the La-
place transform of f(t).

Substitution from Eq. (34) into Eq. (33) gives

rijðx; tÞ ¼ c0~cijklðxÞ
Z t

0

f ðt � sÞ dekl

ds
ds: ð35Þ

Taking the Laplace transform of Eqs. (29) and (35) we
obtain

�rij;jðx; pÞ � qðxÞp2�uiðx; pÞ ¼ ��F iðx; pÞ; ð36aÞ
�rijðx; pÞ ¼ c0~cijklp�f ðpÞ�eklðx; pÞ; ð36bÞ

where

�F iðx; pÞ ¼ biðx; pÞ þ qðxÞpuiðx; 0Þ þ qðxÞ _uðx; 0Þ ð37Þ



472 D.F. Gilhooley et al. / Computational Materials Science 41 (2008) 467–481
combines the effect of initial conditions with the Laplace
transform of the body force. Proceeding as in Section 3.1,
we obtain the following for the local weak form of Eq.
(36a):

�
Z

Cs

�rijðx; pÞnjðxÞviðxÞdCþ
Z

Xs

�rijðx; pÞvi;jðxÞdX

þ
Z

Xs

½qðxÞp2�uiðx; pÞ þ �F iðx; pÞ�viðxÞdX ¼ 0: ð38Þ

Substitution of the trial solution and test function dis-
cussed above results in the following equation for the
MLPG1 formulation:

�
Xn

i¼1

uiðpÞ
Z

Csi

WðxÞNðxÞ�Dðx; pÞBðxÞdC

þ
Xn

i¼1

uiðpÞ
Z

Xs

~BðxÞ�Dðx; pÞBðxÞdC

þ p2
Xn

i¼1

uiðpÞ
Z

Xs

qðxÞwðxÞ/ðxÞdC

�
Xn

i¼1

uiðpÞ
Z

Csu

WðxÞNðxÞ�Dðx; pÞBðxÞdC

¼
Z

Cst

WðxÞ�tðx; pÞdCþ
Z

Xs

WðxÞ�Fðx; pÞdX: ð39Þ

For the MLPG5 formulation, we get

�
Xn

i¼1

uiðpÞ
Z

Csi

NðxÞ�Dðx; pÞBðxÞdC

þ p2
Xn

i¼1

uiðpÞ
Z

Xs

qðxÞ/ðxÞdX

�
Xn

i¼1

uiðpÞ
Z

Csu

NðxÞ�Dðx; pÞBðxÞdC

¼
Z

Cst

�tðx; pÞdCþ
Z

Xs

�Fðx; pÞdX: ð40Þ

Eqs. (39) or (40) are solved for nodal displacements in
the Laplace transformed domain. The time-dependent
nodal values are determined by taking the inverse Laplace
transforms of Eqs. (39) and (40) with Stehfest’s inversion
algorithm [52]. According to this algorithm, at time t, an
approximate value fa of the function f(t) is given by

faðtÞ ¼
ln 2

t

XN

i¼1

vi
�f

ln 2

t
i

� 	
; ð41Þ

where

vi ¼ ð�1ÞN=2þi
Xminði;N=2Þ

k¼½ðiþ1Þ=2�

kN=2ð2kÞ!
ðN=2� kÞ!k!ðk � 1Þ!ði� kÞ!ð2k � iÞ!

ð42Þ

The accuracy and computational efficiency of the
algorithm depend on the value of N in Eq. (41). In order
to obtain the solution at time t, one needs to solve N

boundary-value problems in the Laplace-transform para-
meter p = i ln2/t. Sladek et al. [30] and Sutradhar et al.
[53] achieved good accuracy with N = 10, and for the
numerical examples discussed below we also take N = 10.
For the transient heat conduction problem, Vel and Batra
[54] employed 15 terms, expressed the solution in the La-
place transformed domain in terms of the partial fractions
of p, and then took its inverse.
4. Determination of effective material properties

of an FGM

One can presume closed form expressions for the varia-
tion of elastic moduli and then find the required volume
fractions of constituents which may be difficult to achieve
experimentally. Simple expressions facilitate solving
analytically the pertinent boundary-value problem. Alter-
natively, one employs a micromechanical analysis to ascer-
tain effective elastic moduli of an FGM from the volume
fractions and shapes of constituents. Methods that con-
sider only volume fractions of constituents include the rule
of mixtures, the Mori–Tanaka method [55] and the self-
consistent approach [56]. For problems studied here, we
use either closed-form expressions for the moduli or use
the Mori–Tanaka or the self-consistent method to derive
them from presumed variations of volume fractions of
the constituents. Formulae for the effective moduli in these
the two techniques are described below.

4.1. Mori–Tanaka method

The effective bulk modulus Ke and the effective shear
modulus le of a mixture of two constituents is given by

Ke�K1

K2�K1

¼ V 2

1þð1�V 2Þð3ðK2�K1Þ=ð3K1þ4l1ÞÞ
; ð43aÞ

le�l1

l2�l1

¼ V 2

1þð1�V 2Þðl2�l1Þ=ðl1þl1ð9K1þ8l1Þ=6ðK1þ2l1ÞÞ
:

ð43bÞ

Here, K1, l1 and V1 are, respectively, the bulk modulus, the
shear modulus and the volume fraction of constituent 1,
and K2, l2 and V2 = 1 � V1 are the corresponding quanti-
ties of constituent 2. The bulk and the shear moduli are re-
lated to Young’s modulus and Poisson’s ratio by

K ¼ E
3ð1� 2mÞ ; ð44aÞ

l ¼ E
2ð1þ mÞ : ð44bÞ
4.2. Self-consistent method

For a two-phase composite, the effective bulk and shear
moduli are determined from



Fig. 2. Schematic of an orthotropic FGM disc showing values of material
properties at two points.

Fig. 3. (Color online) Normalised radial stress vs. the radius in the
rotating orthotropic FGM disc with constant elastic moduli and variable
mass density.

D.F. Gilhooley et al. / Computational Materials Science 41 (2008) 467–481 473
1

K þ 4=3l
¼ V 1

K1 þ 4=3l
þ V 2

K2 þ 4=3l
; ð45aÞ

V 1K1

K1 þ 4=3l
þ V 2K2

K2 þ 4=3l
þ 5

V 1l2

l� l2

þ V 2l1

l� l1

� 	
þ 2 ¼ 0:

ð45bÞ

Note that the quartic equation (45b) needs to be solved for
the effective shear modulus l. K is then computed from Eq.
(45a). It is therefore easier to use the Mori–Tanaka method
than the self-consistent method. Young’s modulus and
Poisson’s ratio are determined as in the Mori–Tanaka
method using Eq. (44).

5. Numerical examples

Five example problems have been analysed to illustrate
the accuracy, efficiency and versatility of the present
method. We adopt the optimum values of shape parame-
ters for the MQ–RBFs determined previously [24] as
c = 6d and b = 1.99, where d equals the minimum distance
between two nodes. The scaling parameters for circular
subdomains and interpolation domains are assigned values
as = 0.75 and ai = 3.5. We used 6 Gauss points for numer-
ical evaluation of line integrals and a 6 · 6 quadrature
scheme (i.e., 36 Gauss points) to evaluate domain integrals.
It should be noted that the present RBF MLPG methods
are more efficient than the MLS–MLPG methods because
it is easier to impose the essential boundary conditions
using RBFs.

5.1. Rotating orthotropic FG disc

We first study deformations of a thin orthotropic solid
glass/epoxy disc of radius R = 1 m rotating about the
z-axis, which is perpendicular to the disc surface. This
problem has been analysed by Sladek et al. [30] with the
MLPG5 method using the MLS basis functions to approx-
imate the trial solution. In order to compare our results
with those of Sladek et al. [30], we use the same material
properties as they did, i.e., E10 = 48.26 GPa, E20 =
17.24 GPa, G12 = 6.89 GPa, m12 = 0.29, and q0 = 1 kg/m3.
Young’s moduli and the mass density are taken to vary
exponentially only in the radial direction according to the
relations:

qðrÞ ¼ q0eðcrÞ; ð46aÞ
EiðrÞ ¼ Ei0eðcrÞ; ð46bÞ

where q0 and Ei0 are the mass density and Young’s moduli
at the centre of the disc, and c is a scaling parameter. The
material principal directions coincide with the x and y axes
of the disc as shown in Fig. 2 that also depicts a plot of Eq.
(46a).

Even though the problem is 1D, we analyse it as 2D in
rectangular Cartesian coordinates and deformations of a
quarter of the disc are studied. We use the same number
and location of nodes as in [30] (95 nodes with 37 located
on the global boundary). Results are computed for three
values, 0.0, 0.1 and 0.3, of the grading parameter c; c = 0
corresponds to a homogeneous disc. A disc with constant
elastic moduli is first analysed with the mass density vary-
ing with the radial distance r according to Eq. (46a). The
presently computed variations along the radial direction
of the radial and the hoop stresses, normalised by q0x

2R2

where x is the angular speed of the disc, are compared with
those of Sladek et al. [30] in Figs. 3 and 4. It can be seen
that the present results from the MLPG1 and the MLPG5
formulations are in excellent agreement with those of Sla-
dek et al. [30]. The maximum values of the radial and the
hoop stresses occur at the centre of the plate, and as
expected are equal to each other. An increase in the mass
density (i.e., increasing c) enhances both stress components
due to the higher centrifugal force on the disc. Variations
of displacements, normalised by q0x

2R3/E2, and shown



Fig. 4. (Color online) Normalised hoop stress vs. radius in the rotating
orthotropic FGM disc with constant elastic moduli and variable mass
density.

Fig. 5. (Color online) Normalised displacement u1 vs. radius in the
rotating orthotropic FGM disc with constant elastic moduli and variable
mass density.

Fig. 6. (Color online) Normalised displacment u2 vs. radius in the rotating
orthotropic FGM disc with constant elastic moduli and variable mass
density.
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in Figs. 5 and 6 also agree very well with those reported by
Sladek et al. [30]. It can be seen that for every value of
radius r the displacement u2 is much larger than the dis-
placement u1 because Young’s modulus E1 is greater than
E2 making the plate stiffer in the x-direction.

We now assume that both elastic moduli and mass den-
sity vary with r according to Eq. (46). Normalised stresses
and displacements calculated using the MLPG1 and the
MLPG5 formulations and depicted in Figs. 7–10 agree well
with those reported by Sladek et al. [30]. A comparison of
stresses in Figs. 7 and 8 (variable density and Young’s
moduli) with those in Figs. 3 and 4 (variable density only)
suggests that adding Young’s modulus variation to the
mass density variation tends to diminish effects of the mass
density variation. It should be apparent from results plot-
ted in Fig. 8 that the inhomogeneity in material properties
shifts the location of the peak circumferential stress away
from the centre of the disc. By comparing displacements
plotted in Figs. 9 and 10 with those in Figs. 5 and 6, we
conclude that the variation in Young’s modulus reduces
Fig. 7. (Color online) Normalised radial stress vs. radius in the rotating
orthotropic FGM disc with variable elastic moduli and mass density.

Fig. 8. (Color online) Normalised hoop stress vs. radius in the rotating
orthotropic FGM disc with variable elastic moduli and mass density.



Fig. 10. (Color online) Normalised displacement u2 vs. radius in the
rotating orthotropic FGM disc with variable elastic moduli and mass
density.

Fig. 12. Normalised hoop stress vs. radius in the rotating orthotropic
FGM disc with variable elastic moduli and constant mass density.

Fig. 13. Normalised displacement u1 vs. radius in the rotating orthotropic
FGM disc with variable elastic moduli and constant mass density.

Fig. 9. (Color online) Normalised displacement u1 vs. radius in the rotating
orthotropic FGM disc with variable elastic moduli and mass density.
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the magnitudes of u1 and u2. These conclusions are further
supported by results plotted in Figs. 11–14, where stresses
and displacements are plotted for c = 0 and 0.3 using the
Fig. 11. Normalised radial stress vs. radius in the rotating orthotropic
FGM disc with variable elastic moduli and constant mass density.

Fig. 14. Normalised displacement u2 vs. radius in the rotating orthotropic
FGM disc with variable elastic moduli and constant mass density.
MLPG1 method with varying Young’s moduli only (con-
stant mass density). These results imply that increasing
Young’s moduli leads to decreased displacements as would



Fig. 15. (Color online) Time variation of normalised displacements at a
point on the outermost surface of a rotating viscoelastic FG disc. (a)
Normalised displacement u1 and (b) normalised displacement u2.

Fig. 16. Schematic sketch of the FG cylinder under applied pressure.
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be expected since the disc is stiffer. The effect on the circum-
ferential stress plotted in Fig. 12 is more involved, with the
value at the centre of the disc decreasing with increasing
Young’s moduli, and that at the outer edge increasing. This
leads to the shift in the location of the peak circumferential
stress away from the centre of the disc, as seen in Fig. 8.

5.2. Rotating viscoelastic FG disc

For this problem also studied by Sladek et al. [30], we
assume that Young’s moduli vary with both time and
spatial coordinates according to the following relation:

Eiðx; tÞ ¼ Ei0eðcrÞf ðtÞ

¼ Ei0eðcrÞ Ei1

Ei0
þ 1� Ei1

Ei0

� 	
exp � t

t0

� 	� �
: ð47Þ

The shear modulus G12 is also assumed to be given by an
equation analogous to Eq. (47). However, the mass density
is kept constant. Values assigned to material parameters
are: E10 = 48.26 GPa, E20 = 17.24 GPa, G120 = 6.89 GPa,
E11 = 15 GPa, E21 = 6 GPa, G121 = 2 GPa, t0 = 2.5 s,
m12 = 0.29. According to the correspondence principle
[51], Young’s moduli Ei0e(cr) in the corresponding elastic
analysis should be replaced by

Ei0eðcrÞp�f ðpÞ ¼ ½Ei1 þ ðEi0 � Ei1Þ
pt0

pt0 þ 1
�eðcrÞ: ð48Þ

The problem has been analysed with zero initial conditions,
i.e., uiðx; 0Þ ¼ _uiðx; 0Þ ¼ 0. Fig. 15 compares time histories
of the presently computed displacements at r = R, norma-
lised by q0x

2R3/E20, with those of Sladek et al. [30]. It can
be concluded that both MLPG1 and MLPG5 formulations
give equally good results that are in excellent agreement
with those of Sladek et al. [30]. It should be noted that be-
cause of the domain integral on the left-hand side of Eq.
(40), the MLPG5 formulation no longer has only line inte-
grals and hence is not advantageous over the MLPG1 for-
mulation for a dynamic problem.

5.3. A pressurised hollow FG cylinder

Fig. 16 exhibits a schematic sketch of the problem that
has also been studied by Ching and Yen [28] with the
MLPG1 method using the MLS basis functions to approx-
imate the trial solution. The cylinder made of an isotropic
material with inner radius ra = 5 mm and outer radius
rb = 10 mm is subjected to pressure on either its internal
or external surface. The variation of Young’s modulus of
the cylinder material in the radial direction is given by

Eð�rÞ ¼ E0�rg; ð49Þ

where �r ¼ r=ra, E0 = 1 unit and the parameter g controls
the profile of the material gradation with radial coordinate;
g = 0 for a homogeneous cylinder. Poisson’s ratio, m = 0.3,
is taken to be a constant. A plane strain state of deforma-
tion is assumed, and due to the symmetry of the problem
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about the horizontal and the vertical axes, deformations of
only a quarter of the cylinder are analysed. Results with the
MPLG1 and the MLPG5 formulations using 840 nodes are
compared with the closed form solution of Horgan and
Chan [47]. Since the two MLPG methods give almost iden-
tical values of the radial and the hoop stresses, for brevity,
we have displayed radial stresses computed with the
MLPG1 method and hoop stresses with the MLPG5 for-
mulation. For different values of g, as shown in Figs. 17
and 18, the computed radial the hoop stresses normalised
by the applied pressure match well with those from the ana-
lytical solution [47]. For all values of g considered, the
radial stress increases monotonically with the radius r

whereas the hoop stress does not. The radial stress distribu-
tion is quadratic for g = 0 in agreement with the classical
result for a homogeneous cylinder, but becomes increas-
ingly linear as g increases. This is because with an increase
in g the cylinder becomes increasingly stiff towards the out-
er edge resulting in the compressive radial stress increasing
Fig. 17. (Color online) Normalised radial stress vs. radius in the
pressurised hollow FG cylinder under internal pressure.

Fig. 18. (Color online) Normalised hoop stress vs. radius in the
pressurised hollow FG cylinder under internal pressure.
more rapidly from the outer surface to the inner surface as
compared to that for g = 0. For g = 0 and g = 1, the max-
imum hoop stress occurs at a point on the inner surface but
for g = 2 and g = 3, the maximum hoop stress is at a point
on the outer surface of the cylinder. Results for an exter-
nally loaded cylinder are shown in Figs. 19 and 20; both
the radial and the hoop stresses are compressive as
expected and agree very well with their corresponding ana-
lytical values. We note that as for deformations of the disc
analysed in Sections 5.1 and 5.2, it is basically 1D problem
even though it has been studied as 2D in rectangular Carte-
sian coordinates.

5.4. Pressurised FG cylinder with material properties

calculated by the Mori–Tanaka and the self-consistent

schemes

The pressurised cylinder of Section 5.3 is now taken to
be comprised of aluminium (Al) and ceramic (SiC) with
the following material properties:
Fig. 19. (Color online) Normalised radial stress vs. radius in the
pressurised hollow FG cylinder under external pressure.

Fig. 20. (Color online) Normalised hoop stress vs. radius in the
pressurised hollow FG cylinder under external pressure.



Fig. 22. (Color online) Normalised hoop stress vs. radius in the
pressurised hollow FG cylinder under internal pressure: material moduli
in the radial direction determined using Mori–Tanaka (MT) and self
consistent (SC) methods (V o

c ¼ 1; V i
c ¼ 0).
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Al : E ¼ 70 GPa m ¼ 0:3;

SiC : E ¼ 427 GPa m ¼ 0:17:

The volume fraction of the ceramic is assumed to be given
by

V c ¼ V i
c þ ðV o

c � V i
cÞ

r � ra

rb � ra

� 	g

; ð50Þ

where V o
c and V i

c are, respectively, volume fractions of the
ceramic on the outer and the inner surfaces of the cylinder,
and g is the power law index that controls the inhomogene-
ity of the material phases through the thickness. The effec-
tive material properties at a point are calculated using Eq.
(43) for the Mori–Tanaka method, and Eq. (45) for the
self-consistent method. For an internally loaded cylinder
with V o

c ¼ 1:0 and V i
c ¼ 0:0 variations with r of the radial

and the hoop stresses for different values of g are plotted
in Figs. 21 and 22. As in the previous section, the radial
stress and the hoop stress values are from solutions with
the MLPG1 and the MLPG5 methods, respectively. The
presently computed results agree very well with those of
Ching and Yen [28] who used the MLPG1 method and
the MLS basis functions to approximate the trial solution.
For both schemes of finding effective material properties,
variations with r of the radial stress for 1 < g < 3 are virtu-
ally unchanged. The difference between results calculated
with the Mori–Tanaka and the self-consistent schemes is
more apparent in the hoop stresses plotted in Fig. 22.
The change in g from 1 to 3 increases the magnitude of
the hoop stress on the inner and the outer surfaces of the
cylinder.

Variations of the radial and the hoop stresses with the
change in the volume fraction of the ceramic phase on
the inner surface of the cylinder are plotted in Figs. 23
and 24. As the volume fraction of the ceramic phase on
the inner surface increases the volume fraction of the cera-
Fig. 21. (Color online) Normalised radial stress vs. radius in the
pressurised hollow FG cylinder under internal pressure: material variation
through radial direction determined using Mori–Tanaka (MT) and self-
consistent (SC) methods (V o

c ¼ 1; V i
c ¼ 0).

Fig. 23. (Color online) Normalised radial stress vs. radius in the internally
pressurised hollow FG cylinder for different volume fractions of ceramic
on the inner surface of the cylinder: g = 1, material moduli in the radial
direction determined using Mori–Tanaka (MT) and self-consistent (SC)
methods.
mic phase on the outer surface decreases according to the
relation V o

c ¼ 1� V i
c. It can be seen that as the volume

fraction of the ceramic on the inner surface of the cylinder
is increased from 0 to 1 the distribution of the radial stress
becomes increasingly non-linear. The hoop stress increases
on the inner surface and decreases on the outer surface as
the ceramic content shifts to the inner surface, resulting
in a change in the location of the maximum hoop stress
from the outer to the inner surface.
5.5. FG link bar

The FG link bar, shown in Fig. 25, made of titanium/
titanium monoboride is subjected to a tensile load of 1 unit



Table 1
Comparison of presently computed axial stresses at points A and B in
Fig. 25 with those given in [28,57]

Method Material properties Location A Location B

MLS-MLPG1 [28] Homogeneous 2.918 2.140
FGM 2.360 2.594

Graded FEM [57] Homogeneous 2.908 2.137
FGM 2.369 2.601

RBF-MLPG1 Homogeneous 2.885 2.127
FGM 2.420 2.620

RBF-MLPG5 Homogeneous 2.901 2.131
FGM 2.403 2.607

Fig. 24. (Color online) Normalised hoop stress vs. radius in the internally
pressurised hollow FG cylinder for different volume fractions of ceramic
on the inner surface of the cylinder: g = 1, material moduli in the radial
direction determined using Mori–Tanaka (MT) and self-consistent (SC)
methods.

Fig. 25. Schematic of a link bar and the locations of 1101 nodes.

Fig. 26. (Color online) Contours of the axial stress rxx for a homogeneous
and a FG link bar. (a) Homogeneous and (b) FGM.
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at the right edge. Values assigned to material parameters of
titanium monoboride (TiB) and titanium (Ti) are

ETiB ¼ 375 GPa; mTiB ¼ 0:14; ETi ¼ 107 GPa; mTi ¼ 0:34:

These properties are assumed to vary exponentially in the
y-direction according to the following relations:

EðyÞ ¼ ETieðbEyÞ; ð51aÞ
mðyÞ ¼ mTieðbmyÞ; ð51bÞ

where the non-homogeneity parameters bE and bm are given
by

bE ¼
1

W
logðETiB=ETiÞ; ð52aÞ

bm ¼
1

W
logðmTiB=mTiÞ: ð52bÞ

Due to the symmetry of the problem about the x-axis,
deformations of the upper half of the bar with 1101 nodes
located as shown in Fig. 25 are found. The problem under
the assumption of plane stress state of deformation has
been analysed by Ching and Yen [28] and Kim and Paulino
[57] who found that the use of a FG material reduces stress
concentration and changes the location of the maximum
axial stress in the bar. For a homogeneous isotropic bar,
they [28,57] found that the maximum axial stress occurs
at point A in Fig. 25, and for a bar made of a FG material
the maximum stress occurs at point B. As values of the
axial stress (rxx) listed in Table 1 show, the presently com-
puted axial stress agrees very well with that reported in
[28,57]. Contour plots of the axial stress, calculated using
the MLPG5 formulation, are shown in Fig. 26 for a
homogenous and a FG bar. It is clear from these plots that
for a homogeneous material, the maximum axial stress is at
point A, but for a FG bar it is at point B and is also re-
duced compared to that in the homogeneous bar.

6. Remarks

All problems discussed above are linear and solutions are
valid for infinitesimal deformations of FG bodies. Batra [58]
and Love and Batra [59,60] have incorporated material and
geometric nonlinearities in the analysis of problems for FG
hyperelastic and elasto-thermo-viscoplastic bodies, respec-
tively. Zhang and Batra [61] have used the MSPH method
to study wave propagation in a linear elastic FG bar.
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One can avoid using the correspondence principle in the
analysis of FG viscoelastic bodies by differentiating with
respect to time the constitutive relation (31) and expressing
it as on ordinary differential equation, e.g., see [62]. It
introduces stresses as additional unknowns at nodes but
allows for a general variation of material moduli.

7. Conclusions

Two MLPG formulations, namely the MLPG1 and the
MLPG5, using the multiquadric radial basis function to
approximate the trial solution have been used to analyse
2D problems for isotropic and orthotropic FG structures.
In the MLPG1 formulation, the test function is taken as
the fourth order spline and in the MLPG5 method it equals
the Heaviside step function. In each case, the weak form of
governing equations is derived on a subdomain of the given
domain, and domain integrals are evaluated without using
any background mesh. Thus, no element connectivity is
needed and the two methods are truly meshless. The shape
functions constructed using the RBF interpolation satisfy
the Kronecker delta property; thus no special procedure
is needed to satisfy essential boundary conditions. The spa-
tial variation of material properties is either taken to be
known a priori or derived from the known volume frac-
tions of constituents by using either the Mori–Tanaka or
the self-consistent schemes. For a body made of a FG vis-
coelastic material, governing equations transformed to the
Laplace domain are solved numerically and their inverse
Laplace transform taken using Stehfest’s algorithm.

It is found that for the five 2D problems studied the
MLPG1 and the MLPG5 methods with basis functions
derived by using the RBFs yield results that are in excellent
agreement with those from either the analytical solutions of
the problems or numerical solutions of others who
employed a different set of basis functions to approximate
the trial solution. An advantage of using the MLPG5
method over the MPLG1 method in static problems is that
in the absence of body forces only line integrals appear in
the weak formulation. These line integrals can be easily
evaluated numerically. However this advantage is lost in
time-dependent problems solved by using the Laplace-
transform technique.

Results for the five example problems studied herein
suggest that the deformation and the stress distributions
in a functionally graded structure differ considerably from
those in the corresponding homogeneous bodies. Thus, a
properly tailored FG structure can yield significant advan-
tages over its homogeneous counterpart, such as lower
deflection, redistributed deflection and stress fields, and
reduced stress concentrations.
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