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1. Introduction

Since their discovery by Iijima [1] in 1991, there has been
significant interest in characterizing mechanical properties
of both single-walled carbon nanotubes (SWCNTs) and
multi-walled carbon nanotubes (MWCNTs). An inherent
difficulty in completing this task is assigning a thickness
to the nanotube. Nearly all studies to date have assumed
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that the response of a SWCNT is equivalent to that of a
continuum structure undergoing deformations similar to
those of the SWCNT. The ECS (equivalent continuum
structure) could either be a solid fiber or a cylindrical tube.
However, in order that an ECS account at least approxi-
mately for the effect of van der Waals forces prevalent in
a CNT, we assume that the ECS of a SWCNT is a cylindri-
cal tube and that of a MWCNT is comprised of co-axial
cylindrical tubes of lengths and mean radii equal to those
of the corresponding CNTs [2]. The remaining variables
of the ECS to be found are the thickness, and values of
material moduli, and the mass density.
Continuum structures equivalent in normal mode vibrations
to single-walled carbon nanotubes
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Axial, torsional and radial breathing mode (RBM) vibrations of free–free unstressed (i.e., relaxed) single-walled carbon nanotubes
(SWCNTs) of different helicities having aspect ratio (length/diameter) of about 15 have been studied using the MM3 potential. It is found
that for axial and torsional vibrations, frequencies of the second and the third modes of SWCNTs equal, respectively, twice and three
times that of the corresponding first mode. A similar relation also holds for axial and torsional vibrations of a homogeneous linear elastic
prismatic body. The RBM frequencies are also used to validate computed frequencies of SWCNTs.
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SWCNT) computed without assuming any value for the wall thickness converges with an increase in the diameter of the SWCNT to
0.20 for armchair, 0.23 for zigzag, and 0.21 for chiral tubes. For a wall thickness of the ECS equal to 3.4 Å, Young’s modulus of the
material of the ECS (and hence of the SWCNT) equals �1 TPa and is independent of the helicity and the diameter of the SWCNT. How-
ever, the shear modulus varies with the diameter and the helicity of the underlying SWCNT. In the more common terminology, normal
modes of vibrations of a SWCNT give Young’s modulus of �1 TPa in the axial and the circumferential directions, and the shear modulus
of �0.4 TPa. Whereas Young’s modulus of a SWCNT is found to be independent of its diameter and helicity, the shear modulus depends
weakly upon them.
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The determination of the ECS is important since it
facilitates computing with either a homogenization tech-
nique or a micromechanical analysis effective moduli and
mass density of a composite with CNTs as reinforcements,
which are needed in the design of structures. Furthermore,
it is crucial to know whether or not the same ECS ought to
be used when studying static and dynamic deformations of
a SWCNT reinforced composite.

To simplify the work one assumes that the ECS is made
of a homogeneous material. What about the symmetry
group of the material of the ECS? Said differently, should
the material of the ECS be taken as isotropic or aniso-
tropic? If it is anisotropic, is it transversely isotropic or
orthotropic or has some other material symmetry group?
We note that expressions for molecular mechanics (MM)
potentials involve distances between atoms and angles
between lines joining adjacent atoms. These distances and
angles are invariant under a full orthogonal group. Thus
a rigid translation and a rotation of a SWCNT will not
alter the value of the MM potential. However, one expects
intuitively that material properties of the ECS in the radial
direction should be different from those in the axial and the
circumferential direction since a SWCNT is only one atom
thick. Also, contributions to the MM potential from
bonded and non-bonded atoms during radial deformations
will be different from those when the tube is deformed axi-
ally. Thus the symmetry group of an ECS is determined by
the relative positions of atoms in the corresponding CNT
as in body-centered cubic and face-centered cubic crystals.

It is commonly assumed that a SWCNT is obtained by
rolling a graphene sheet into a cylindrical tube. We adopt
this assumption and further postulate that the response
of a graphene sheet is the same in all directions in its plane
but may be different from that in the thickness direction.
We thus regard the material of the ECS to be transversely
isotropic with the axis of transverse isotropy along the
radial direction, similar to that presumed by Batra and
Sears [3]. It implies that Young’s moduli in the axial and
the circumferential directions are same but may be different
from that in the radial direction.

Whereas a molecular mechanics/dynamics (MM/MD)
potential used to characterize the response of a SWCNT
allows for long range interactions between atoms, the
ECS is generally assumed to be made of either linear elastic
or a non-linear elastic material with response depending
upon local interactions among material points. It reduces
the number of unknowns to be determined in order to char-
acterize the ECS material. For infinitesimal deformations
from the unstressed or the natural or the relaxed state of
a SWCNT and of the ECS, it is reasonable to regard their
responses to be linear elastic. Hence we need to find values
of five material moduli of the transversely isotropic mate-
rial of the ECS which in common terminology are called
the elastic moduli of the SWCNT.

One invariably assumes that the ECS is deformed homo-
geneously, and the ECS and the SWCNT have the same
overall strains. This analogy works well for simple defor-
mations such as axial tension/compression. For torsional,
bending and radial expansion/contraction of SWCNTs
and their ECSs, it is a non-trivial task to find an equiva-
lence between deformations of the two structures since a
SWCNT is an atom thick and the ECS has a finite thick-
ness. Unless the thickness/(mean radius) of the ECS is
much smaller than one, its bending and torsional deforma-
tions will vary noticeably through the thickness.

A continuum structure can generally be deformed
homogeneously only if ideal boundary conditions are pre-
scribed at the bounding surfaces. Near the end faces where
either displacements or surface tractions are assigned,
deformations are usually inhomogeneous. Only at material
points far away (usually about two diameters) from the
boundary points, deformations are homogenous or nearly
homogeneous. This requires establishing a proper equiva-
lence between boundary conditions assigned at end faces
of a CNT and those of its ECS.

Sears and Batra [4] have listed in Tables 1 and 2 of their
paper values of the thickness of the ECS used by various
investigators to find the axial modulus of either a SWCNT
or a MWCNT. The non-uniqueness in the thickness of the
ECS results in different values of material moduli of the
ECS and hence of the CNT. Sears and Batra [4] proposed
that the thickness be found by using the relation
E = 2G(1 + m) between the axial Young’s modulus E, the
shear modulus G, and Poisson’s ratio m – all three measured
in the plane of the graphene sheet. For the response of the
(16,0) SWCNT modeled by the MM3 potential, they first
determined m = 0.21 by finding the change in the diameter
of the SWCNT when it is pulled axially, and then used
the relation between E, G and m to get E = 7.26 TPa,
G = 3 TPa, and wall thickness h = 0.4593 Å.

The wall thickness so found is different from the 0.66 Å
and the 3.4 Å employed by several investigators. Of course,
values of E and G depend upon the wall thickness and the
MM potential employed. Results of several other investiga-
tions [5–22] not listed by Sears and Batra [4] are summa-
rized below in Table 1. We note that the wall thicknesses
used vary from 1.29 Å to 6.8 Å. These investigators may
have used CNTs of different helicities and diameters
besides employing different techniques and MM potentials
to simulate their deformations. The axial Young’s modulus
computed by these researchers varies between 0.69 and
1.36 TPa, Poisson’s ratio between 0.14 and 0.43, and the
shear modulus between 0.14 and 0.65 TPa. They assumed
the ECS material to be homogeneous, linear elastic and
isotropic.

Here we study vibrations of free–free SWCNTs of differ-
ent diameters and helicities with aspect ratio of about 15,
and compare their frequencies with those of their ECSs.
The consideration of free ends eliminates establishing
equivalence between boundary conditions for CNTs and
their ECSs. We briefly review some works on vibrations
of CNTs. Sohlberg et al. [23] employed the solution of
wave equation, and simple beam dynamics to relate vibra-
tions of a CNT in terms of those of its ECS. However,



Table 1
Values of E, G and m reported in the literature; presently computed values of these variables are listed in the last row

Researchers Procedure Elastic constants and thicknesses

E (TPa) G (TPa) m h (Å)

Sanchez-Portal et al. (Ref. [6]) Ab initio �1.0 – – 3.4
Goze et al. (Ref. [7]) Tight binding 1.24 0.247–0.275 3.4
Zhou et al. (Ref. [8]) First-principles 0.764 – 0.32 –
Reich et al. (Ref. [9]) First-principles 1.075 0.65 – –
Reich et al. (Ref. [9]) Continuum 1.0 – 0.14 3.1
Jin and Yuan (Ref. [10]) MD-Energy approach Eh,Tz � 1.238 Ghz � 0.547 mhz �0.259, mzh �0.259 3.4
Jin and Yuan (Ref. [10]) MD-Force approach Eh,Tz � 1.350 Ghz � 0.492
Li and Chou (Ref. [11]) Structural mechanics �1.04 �0.48 – 3.4
Natsuki et al. (Ref. [12]) Structural mechanics �0.61–0.48 �0.30–0.27 0.27 3.4
Zhang et al. (Ref. [13]) Cauchy–Born rule 1.08–0.5 0.61 – 3.35
Guo et al. (Ref. [14]) Cauchy–Born rule 0.69 – 0.4295 3.34
Huang et al. (Ref. [15]) Interatomic Potential 0.55–1.23 – – 3.41
Kalamkarov et al. (Ref. [16]) Analytical-asymptotic

homogenization model
1.44 0.27 – 1.29

Kalamkarov et al. (Ref. [16]) Finite element 0.97–1.05 0.14–0.47 – 6.8
Wu et al. (Ref. [17]) MM–continuum 1.06 0.418 0.273 2.58
Peng et al. (Ref. [18]) Ab initio 1.23–1.36 – – 3.4
To (Ref. [19]) Finite element 1.024 0.47 – 3.4
Chandraseker and Mukherjee (Ref. [20]) Atomistic–continuum �0.46–0.68 �0.186–0.236 – 3.35
Chandraseker and Mukherjee (Ref. [20]) Ab initio 0.906–0.990 – – 3.35
Poncharal et al. (Ref. [21]) TEM 1.2 – 0.2 – – –
Agrawal et al. (Ref. [22]) MD–continuum 0.73 – 0.82 – – 3.4
Present MM–continuum 0.964 ± 0.035 0.403 ± 0.025 0.14–0.249 3.4
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while studying the radial breathing mode (RBM) vibra-
tions of a CNT and of its ECS, they seem to have ignored
the fact that radial deformations of a tube wall induce
strains in both the radial and the circumferential directions.
Yao and Lordi [24] analyzed transverse and longitudinal
thermal oscillations of a cantilever CNT using MD poten-
tial based on a universal force field. For a wall thickness of
3.4 Å, they found that the axial Young’s modulus of the
ECS decreased with an increase in the SWCNT diameter
and eventually approached 0.98 TPa. It is likely that for
tubes of large diameters studied by Yao and Lordi [24]
the tube lengths were not large enough for the expression
for the frequency of transverse vibration to be applicable.
Krishnan et al. [25] experimentally studied thermally
induced stochastic vibrations of cantilever SWCNTs with
diameters in the range of 10–15 Å, and found the average
value of Young’s modulus to be 1.25 TPa. Poncharal
et al. [21] assumed that the ECS is a solid fiber, used Euler’s
beam theory to analyze its vibrations, and found that for
SWCNTs of diameters 8 and 30 nm, Young’s modulus
equaled 1.2 and 0.2 TPa respectively. Because of rather
large diameters of CNTs, the tubes may not have been long
enough for the Euler beam theory to be applicable. Agra-
wal et al. [22] used MD simulations to analyze transient
axial and transverse deformations of a cantilever SWCNT,
and found Young’s modulus at either a constant value of
the axial stress or a constant value of the axial strain.
The average value of Young’s modulus for armchair and
zigzag SWCNTs was found to be 0.73 and 0.82 TPa,
respectively.

Wang et al. [26] have studied the applicability of Don-
nell’s and Flugge’s shell theories to ECSs for SWCNTs.
They found that predictions for the latter theory correlate
well with deformations of SWCNTs computed from MM/
MD simulations.

The rest of the paper is organized as follows. Section 2
describes the MM3 potential, and Section 3 provides
details of our MD simulations of the axial, the torsional,
and the RBM vibrations of free–free SWCNTs with no
cut-off distance used. Results of MD simulations are given
in Section 4. Section 5 briefly reviews known results of
axial, torsional and RBM vibrations of a cylindrical tube
made of a homogeneous linear elastic material. In Section
6 we compare results of MD simulations with those of lin-
ear elasticity, assume the wall thickness of the ECS to be
3.4 Å, and derive values of the axial Young’s modulus,
the shear modulus and Poisson’s ratio of the material of
the ECS, and hence of the SWCNT.

It is shown in Section 7 that these values agree well with
those computed from MM3 simulations of static axial and
torsional deformations of SWCNTs, and are also close to
those found by other investigators.

2. Molecular dynamics potential

The MM3 class II pair-wise potential with both higher-
order expansions and cross-terms and type 2 (alkene) car-
bon atoms [27] with a bond length of 1.42 Å is used. This
potential is appropriate for CNTs due to the similarity
between graphitic bonds in the nanotube and the aromatic
protein structures for which the potential was constructed.

The MM3 potential is given as Eq. (1) in which Us, Uh

and U/ are the primary bond deformation terms; UvdW is
the potential of non-bonded van der Waals forces, and



Table 2
Geometry, number of atoms and frequencies of first three modes of torsional and axial vibrations of relaxed SWCNTs and values of Poisson’s ratio, and
Young’s and shear moduli of ECSs

Tube Geometry/
Atoms
(ro, lo) Å
(re, le) Å
nc

Mode Torsional (cm�1) Axial (cm�1) m E (TPa) G (TPa)

(5,0) (1.957,59.640) 1 37.546 58.006 0.193 0.936 0.392
(1.869,55.425) 2 74.994 115.842 0.193 0.934 0.391
280 3 112.243 173.311 0.192 0.929 0.390

(5,5) (3.390,103.299) 1 22.270 33.730 0.147 0.985 0.429
(3.222,97.043) 2 44.541 67.384 0.144 0.983 0.429
840 3 66.818 100.878 0.140 0.979 0.429

(10,0) (3.915,119.280) 1 18.732 29.633 0.251 0.999 0.399
(3.716, 112.969) 2 37.464 59.218 0.249 0.998 0.399
1120 3 56.161 88.698 0.252 0.995 0.399

(9,6) (5.119,167.120) 1 13.622 20.893 0.176 0.977 0.415
(4.856,158.100) 2 27.244 41.753 0.174 0.976 0.415
2052 3 40.866 62.542 0.176 0.973 0.415

(8,8) (5.425,164.787) 1 13.833 21.161 0.170 0.971 0.415
(5.146,155.261) 2 27.667 42.284 0.168 0.969 0.415
2144 3 41.503 63.321 0.164 0.966 0.415

(14,2) (5.911,182.253) 1 12.282 19.276 0.231 0.992 0.403
(5.606, 172.808) 2 24.561 38.522 0.230 0.991 0.403
2584 3 36.840 57.710 0.227 0.988 0.403

(9,9) (6.103,184.463) 1 12.319 18.902 0.177 0.971 0.412
(5.787,173.879) 2 24.637 37.769 0.175 0.969 0.412
2700 3 36.956 56.562 0.171 0.966 0.412

(16,0) (6.264,191.700) 1 11.633 18.329 0.241 0.938 0.378
(5.939,181.303) 2 23.263 36.631 0.239 0.937 0.378
2880 3 34.891 54.871 0.236 0.9348 0.378

(10,10) (6.780,204.139) 1 11.101 17.077 0.183 0.971 0.410
(6.429,192.503) 2 22.202 34.124 0.181 0.970 0.410
3320 3 33.304 51.104 0.177 0.967 0.410

(15,5) (7.058,215.035) 1 10.443 16.270 0.214 0.983 0.405
(6.691,203.737) 2 20.886 32.515 0.212 0.982 0.405
3640 3 31.328 48.701 0.208 0.979 0.405

(11,11) (7.459,223.816) 1 10.103 15.574 0.188 0.972 0.409
(7.071, 211.130) 2 20.206 31.122 0.186 0.970 0.409
4004 3 30.309 46.722 0.188 0.972 0.409

(20,0) (7.830,238.560) 1 9.346 14.691 0.235 0.9738 0.394
(7.422,222.966) 2 18.691 29.359 0.233 0.9723 0.394
4480 3 28.034 43.977 0.230 0.9696 0.394

(19,3) (8.090,264.085) 1 8.464 13.258 0.227 0.987 0.402
(7.666,250.557) 2 16.928 26.498 0.225 0.985 0.402
5124 3 25.390 39.697 0.222 0.983 0.402

(13,13) (8.815,265.627) 1 8.484 13.120 0.195 0.972 0.406
(8.355,250.718) 2 16.969 26.217 0.193 0.970 0.406
5616 3 25.453 39.265 0.190 0.968 0.406

(17,9) (8.953,292.268) 1 7.689 11.938 0.205 0.979 0.406
(8.485,277.197) 2 15.379 23.858 0.203 0.978 0.406
6276 3 23.069 35.742 0.200 0.975 0.406

(23,0) (9.004,272.640) 1 8.177 12.837 0.232 0.973 0.395
(8.534,255.246) 2 16.354 25.655 0.230 0.971 0.395
5888 3 24.530 38.428 0.227 0.968 0.395

(15,15) (10.171,309.898) 1 7.255 11.244 0.200 0.973 0.405
(9.640,292.642) 2 14.511 22.488 0.200 0.973 0.405
7560 3 21.768 33.654 0.195 0.968 0.405
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Table 2 (continued)

Tube Geometry/
Atoms
(ro, lo) Å
(re, le) Å
nc

Mode Torsional (cm�1) Axial (cm�1) m E (TPa) G (TPa)

(26,0) (10.179,315.240) 1 7.073 11.092 0.230 0.973 0.395
(9.646,295.587) 2 14.145 22.168 0.228 0.971 0.395
7696 3 21.217 33.207 0.225 0.968 0.395

(22,7) (10.261,334.972) 1 6.682 10.424 0.217 0.981 0.403
(9.723,317.625) 2 13.364 20.834 0.215 0.980 0.403
8244 3 20.045 31.211 0.212 0.977 0.403

r and l are radius and length of the SWCNTs and subscripts ‘o’ and ‘e’ refer to initial and relaxed configurations.
nc refers to number of carbon atoms in the SWCNTs.
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Us/, U/s and Uhh represent cross interactions between dif-
ferent types of deformations. Parameters r, h and u used in
Eq. (1) are shown in Fig. 1. A subscript, e, on a variable
signifies its value in the configuration of minimum poten-
tial energy. The total energy of a body equals the sum of
the potentials of all atoms in the body (the indices i and j

in Eq. (1) range over bonded atoms, and the index k over
all atoms).

U ¼
X

i

X
j

ðUs þ U h þ U/ þ Us/ þ U/s þ U 0hhÞ

þ
X

i

X
k

UvdW ;

U s ¼ 71:94Ksðr � reÞ2

1� 2:55ðr � reÞ þ
7

12

� �
2:55ðr � reÞ2

� �
;

U h ¼ 0:021914Khðh� heÞ2½1� 0:014ðh� heÞ
þ 5:6ð10Þ�5ðh� heÞ2 � 7:0ð10Þ�7ðh� heÞ3

þ 9:0ð10Þ�10ðh� heÞ4�;
U/ ¼ ðV 1=2Þð1þ cos /Þ þ ðV 2=2Þð1� cos 2/Þ

þ ðV 3=2Þð1þ cos 3/Þ;
U s/ ¼ 2:51118Ks/½ðr � reÞ þ ðr0 � r0eÞ�ðh� heÞ;
U/s ¼ 11:995ðK/s=2Þðr � reÞð1þ cos 3/Þ;
U hh0 ¼ �0:021914Khh0 ðh� heÞðh0 � h0eÞ; and

U vdW ¼ eef�2:25ðrv=rÞ6 þ 1:84ð10Þ5 exp½�12:0ðr=rvÞ�g
ð1Þ

Values of constants Ks, Kh, V1, V2, V3, ee, rm, Ksu,, K/s and
Khh are given in Zhou et al. [28]. Note that the van der
Fig. 1. Depictions of variables r, h and / used in the MM3 potential.
Waals force between two atoms varies as (rm /r)6 and
exp(�12 r/rm). The first term is the same as that in the Len-
nard–Jones potential, but the second term is different.

3. Vibrations of a SWCNT

In order to derive elastic moduli and geometric parame-
ters of an ECS that has the same mechanical response as
the corresponding SWCNT we consider SWCNTs of large
aspect ratio, i.e., the length/diameter is about 15. A large
aspect ratio of an ECS minimizes transverse inertia effects
which are responsible for coupling among the thickness,
the elastic modulus, Poisson’s ratio and the frequency of
axial oscillations. However, the same can not be said a pri-

ori for the SWCNTs since these effects have not been inves-
tigated yet. Furthermore, we do not know the effective
thickness of a SWCNT since it is only one atom thick. Fre-
quencies of the first few axial, torsional and RBMs of
vibrations of a SWCNT are derived from results of MD
simulations as follows.

The SWCNTs are first relaxed to find the minimum
energy configuration at room temperature to within
0.001 kcal/mol/Å rms without using any cut-off distance.
It is ensured that tubes in the relaxed configuration have
aspect ratio of about 15. Both ends of the tube are assumed
to be free to eliminate the problem of establishing equiva-
lence between boundary conditions to be applied to
SWCNTs and their ECSs. The module VIBRATE in com-
puter code TINKER [29] is used to calculate frequencies. It
computes the Hessian of the system by finding second-
order derivatives of the MM3 potential with respect to
positions of atoms in the relaxed configuration, and then
diagonalizes the mass weighted Hessian to compute eigen-
values and eigenvectors of normal modes.

The first six eigenvalues of the Hessian equal zeros and
are discarded since they correspond to three translational
and three rotational rigid body modes. The eigenvector
associated with an eigenvalue is used to identify the corre-
sponding mode of vibration of a SWCNT. These are com-
pared with the natural frequencies of the ECS for the same
mode of vibration by assuming the material of the ECS to
be linear elastic, homogeneous and transversely isotropic
with the axis of transverse isotropy in the radial direction.



Table 3
Frequencies of radial breathing modes for SWCNTs (N.A.: not available)

Tube Present
Simulations
(cm�1)

Present
Continuum
(cm�1)

Rao et al.
[30] (cm�1)

Richter and Subbaswamy [31]
Saito et al. [34] (cm�1)

Lawler et al.
[35] (cm�1)

Kurti et al.
[32] (cm�1)

Kuzmany et al. [33]
(cm�1) (Experimental)

(5,0) 568.847 556.631 N.A. N.A. 602 N.A. N.A.
(5,5) 332.881 333.040 N.A. N.A. 341 N.A. N.A.

(10,0) 290.463 294.926 N.A. N.A. 294 298 N.A.
(9,6) 221.496 219.559 N.A. N.A. 222 N.A. N.A.
(8,8) 209.008 205.768 206 N.A. 210 219 211

(14,2) 192.508 194.083 N.A. N.A. 191 N.A. N.A.
(9,9) 185.896 183.260 183 N.A. 187 195 195

(16,0) 181.747 183.163 N.A. N.A. 177 188 (fitted) 185
(10,10) 167.377 165.280 165 165 169 175 177
(11,11) 152.207 150.590 150 N.A. N.A. 159 162
(20,0) 145.363 144.227 N.A. N.A. N.A. 150 N.A.
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Fig. 2. Dependence of the frequency of the RBM of vibration of a
SWCNT upon its radius in the relaxed configuration.
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4. MD simulation results

Table 2 lists initial lengths and radii of various SWCNTs
studied, and their lengths and radii after they have been
relaxed. The diameter, d, of an (m,n) SWCNT is found
from its bond length a0 by using the relation [41]

d ¼ a0

ffiffiffi
3
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ n2 þ mnÞ

p
ð2Þ

To check the validity of Eq. (2), the circumference of tubes
in both states, the original and the relaxed, was measured
and the diameter thus calculated was found to agree well
with that obtained from Eq. (2). It is noted that while cal-
culating the diameter of a relaxed tube, a0 in Eq. (2) is set
equal to the bond length in the relaxed configuration. It is
clear from values listed in Table 2 that for all SWCNTs
studied, the radius and the length of a relaxed tube are less
than those of the starting tube. The total number of atoms
used in the simulations increases with an increase in the
diameter of the SWCNT. We have also listed in Table 2 fre-
quencies of the first three torsional and the axial modes of
vibration of the SWCNTs. We note that for each tube stud-
ied, the frequency of the 2nd and the 3rd mode is very close
to twice and three times the corresponding frequency of the
1st mode. Frequencies in cm�1 equal the frequency in Hz
divided by the speed of light (3 � 1010 cm/s).

Raman spectroscopy is a reliable technique to character-
ize SWCNTs experimentally. A peak corresponding to a
RBM is a significant spectral line observed during experi-
ments [30]. Frequencies, xRBM, of RBMs of SWCNTs
are listed in Table 3, and their values are compared with
those available in the literature. Since SWCNTs studied
are of finite lengths, only that RBM is considered whose
axisymmetric eigenvector has one half wave length along
the tube axis. From results reported in Table 3, it is clear
that the presently computed frequencies agree well with
those found by others either computationally or experi-
mentally. We have also plotted in Fig. 2, xRBM versus
the radius of the relaxed SWCNT. The least squares fit
to the data by a helicity-independent power law of the form
xRBM = B/re (Ref. [36]) gives B = 1076 cm�1 Å. However,
when the radius of the original (unrelaxed) SWCNT is
used, then B equals 1135 cm�1 Å. Values of B in, cm�1 Å,
reported by other investigators and based on the radius of
the unrelaxed tube are 1090 [37], 1140 [38], 1160 [6], 1170
[32], 1155 [35] and 1119 [38]. Thus the presently computed
value of B is in good agreement with that obtained by other
researchers. However, we believe that the radius of the
relaxed SWCNTs should be considered in the relation
xRBM = B/re. Thus the relation xRBM = B/re between the
computed xRBM and re agrees with that obtained using
other techniques.
5. Review of natural frequencies of a continuous structure

Natural frequencies of axial and torsional modes of
vibration of a free–free cylindrical continuum rod or tube
made of a linear elastic, homogeneous and transversely iso-
tropic material with the axis of transverse isotropy along a
radial line are given by [39]

xnA ¼
np
le

ffiffiffiffi
E
q

s
; n ¼ 1; 2; 3; . . . ; for axial oscillations ð3Þ



Fig. 3. Cylindrical tube equivalent in mechanical response to a SWCNT.
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xnT ¼
np
le

ffiffiffiffi
G
q

s
; n ¼ 1; 2; 3; . . . ; for torsional oscillations

ð4Þ

where xnA and xnT are nth circular (rad/s) natural frequen-
cies for the axial and the torsional oscillations, respectively,
n is the order of the mode, E, G, q and le equal, respectively,
the axial Young’s modulus, the shear modulus in the zh-
plane, the mass density and the length of the cylindrical
rod or tube. Eqs. (3) and (4) satisfy the relation

m ¼ 1

2

xnA

xnT

� �2

� 1 ð5Þ

where m is Poisson’s ratio in the zh-plane. Here z-axis is
along the axis of the cylindrical tube. We note that Eq.
(5) involves frequencies of the axial and the torsional
modes of vibration, and does not include any other mate-
rial and geometric variable. Since Poisson’s ratio of a linear
elastic material is expected to be less than 0.5, therefore
xA/xT must be less than

ffiffiffi
3
p

.
The frequency of RBM, in rad/s, of an infinitely long

cylindrical thin tube of mean radius re and made of a linear
elastic, homogeneous and transversely isotropic material
with the axis of transverse isotropy along a radial line is
given by [26]

xRBM ¼
1

re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

qð1� m2Þ

s
ð6Þ

For a tube of finite length Eq. (6) holds when the distance
between axial nodes is much greater than the tube radius.
Accordingly in Table 3, frequencies of RBMs derived from
the present MD simulations are based on the distance be-
tween the axial nodes to be equal to the length of the tube,
thus satisfying the condition for Eq. (6) to apply. Combin-
ing Eqs. (3), (4), and (6), we express the frequency of the
RBM in terms of frequencies of the first axial and the first
torsional modes as follows.

xRBM ¼
2xTle

pre

4� xA

xT

� �2
 !�1=2

ð7Þ

Besides frequencies of different modes of vibration, Eq. (7)
involves the effective length and the effective radius of the
continuum structure. We note that Eqs. (3), (4) and (6)
are based on the assumptions that only one deformation
mode is dominant. Accordingly, Young’s moduli in the
axial and circumferential directions appear, respectively,
in Eqs. (3) and (6). The shear modulus and Poisson’s ratio
in the hz-plane appear in Eqs. (4) and (6) respectively.

6. Geometric and material parameters of an equivalent

continuum structure

As pointed out above, frequencies of the second and the
third modes of vibration of axial and torsional deforma-
tions of a SWCNT computed from the MM3 potential
equal twice and thrice of the corresponding frequency of
its first mode of vibration which also holds for a continu-
ous linear elastic and homogeneous cylindrical body. Thus
a necessary condition for the existence of an ECS is satis-
fied. Furthermore, frequencies of axial, torsional and
RBM of vibration of a SWCNT computed from the MM
simulations satisfy Eq. (7) in which xRBM is for a thin
cylindrical tube. It is thus reasonable to assume that an
ECS is a cylindrical tube, and its length equals that of
the relaxed SWCNT. Then for the aspect ratio of the
ECS to be equal to that of the SWCNT, it is necessary that
the mean radius of the ECS tube be equal to that of the
relaxed SWCNT. An ECS for a SWCNT is schematically
shown in Fig. 3.

We now postulate that the thickness, Young’s modulus
and the shear modulus of the ECS are such that its fre-
quency of free vibrations equals that of the corresponding
SWCNT in all three modes of vibration. From frequencies
computed using MD simulations, Poisson’s ratio for the
material of the ECS is determined by using Eq. (5) without
assuming values for the thickness h, Young’s modulus E

and the shear modulus G. Values of Poisson’s ratio of the
ECS found from Eq. (5) are listed in Table 2. We note that
Poisson’s ratio of an ECS varies with its radius, depends
upon the helicity of a SWCNT, and m for an ECS of a
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zigzag SWCNT is usually higher than that for an ECS of
an armchair SWCNT of the same diameter. The Poisson
ratio of the ECS versus its mean radius is plotted in
Fig. 4. For ECSs corresponding to zigzag and armchair
SWCNTs, m appears to converge to 0.23 and 0.20, respec-
tively, while for chiral tubes it converges to 0.21. A similar
trend has been reported in the literature for Poisson’s ratios
computed from ab initio calculations [6]. One reason for
results for the (5, 0) zigzag SWCNT not following the curve
passing through data for other zigzag SWCNTs is that its
radius is slightly larger than the bond length, and van der
Walls forces may be playing a more significant role than
that in tubes of larger radius. If so, results for the axial
and the RBMs of vibrations of the ECS are not valid for
this tube since these vibrations may change the distance
between non-bonded atoms. With an increase in the radius
of the SWCNT, the approximation improves and results
for SWCNTs of diameters exceeding 6.4 Å lie on a smooth
curve.

In Eqs. (3), (4), and (6), the thickness, h, of the EC cylin-
drical tube appears only through the mass density q. We
assume that the thickness h equals 3.4 Å, and the mass of
an ECS equals that of the SWCNT, i.e., the mass of all
atoms in the SWCNT. Thus

q ¼ mcnc

p½ðre þ h=2Þ2 � ðre � h=2Þ2�le

ð8Þ

where nc and mc, respectively, equal the number and the
mass of carbon atoms in a SWCNT. With
mc = 1.992(10)�26 kg, for each one of the SWCNTs stud-
ied, the average mass density q of the ECS is found to be
2491 kg/m3. We can now use either Eq. (3) to find E or
Eq. (4) to find G from the corresponding frequency com-
puted using MD simulations; results are reported in Table
2. Average values of E, G and m are also listed in the last
row of Table 1. It is clear that presently computed values
of E, G and m match well with those obtained by other
investigators who took h = 3.4 Å.

The values of E and G for the ECSs are nearly indepen-
dent of the helicity and the diameter of their corresponding
SWCNTs, and they satisfy the relation E = 2G(1 + m).
Thus we conclude that SWCNTs have axial Young’s mod-
ulus = 0.964 ± 0.035 TPa and shear modulus in the zh-pla-
ne = 0.403 ± 0.025 TPa. Presently computed values of E

are compared in Table 1 with those obtained by other
investigators. It can be seen that the estimate of E based
on the frequency of axial vibrations is in reasonable agree-
ment with that obtained by most other investigators who
used different techniques. Furthermore, values of the shear
modulus listed in Table 2 are close to those found by using
MD, structural mechanics, finite element, and MM simula-
tions. The factor (1 + m) in the relation E = 2G(1 + m)
reduces somewhat the dependence of G upon the SWCNT
helicity and diameter. Recall that E is nearly a constant but
m varies with the SWCNT helicity and diameter.

Popov et al. [40] used a lattice dynamics model to study
waves in an infinitely long SWCNT with force constants of
the valence force field type which account for nearest-
neighbor stretch, next-to-nearest-neighbor stretch, in-plane
bend, out-of-plane bend and twist interactions. Their com-
puted values of E increase with an increase in the tube
radius, equaling about 0.857 GPa for tube radius of 2 Å
and converge to 1 TPa for SWCNTs of radius exceeding
6 Å

0
. For a given tube radius, E for an armchair tube is

slightly less than that for a zigzag tube, and that for a chiral
tube has an intermediate value. Presently computed values
of E for armchair tubes are essentially independent of the
tube radius. Recalling that the minimum radius of a tube
considered here is 3.2 Å, our value of E agrees with that
of Popov et al. [40]. For zigzag tubes studied herein, the
radius varies from 1.87 Å to 9.64 Å. Whereas presently
computed values of E are close to the converged value
obtained by Popov et al. [40] they do not show the same
trend when the tube radius is increased. For chiral tubes,
presently computed values of E are virtually independent
of the tube radius, equal the converged value computed
by Popov et al. [40] and are both qualitatively and quanti-
tatively consistent with their results since the minimum
tube radius considered here is 4.86 Å. With an increase in
the tube radius, the qualitative behavior of presently com-
puted Poisson’s ratio is opposite to that obtained by Popov
et al. [40] even though the two sets of values are very close
to each other. In each case, the converged value of Pois-
son’s ratio equals about 0.2. Differences between our
results and those of Popov et al. [40] can be attributed to
different inter-atomic interaction effects in the two formula-
tions, our not using a cut-off length and considering tubes
of finite length. For example, the MM3 potential considers
van der Walls forces and interactions between bond
stretching and bending, and between bond stretching and
twisting deformations.
7. Validation of the equivalent continuum structure

Sears and Batra [4] used MM3 potential to simulate sta-
tic axial and torsional deformations of (16,0) SWCNT by
applying essential boundary conditions (i.e. prescribing dis-
placements of atoms) at the end faces. By computing the
change in the diameter of a SWCNT during its axial defor-
mations, they found Poisson’s ratio by dividing the nega-
tive of the lateral strain by the axial strain. Poisson’s
ratio varied with the axial strain e. They also postulated
that for infinitesimal deformations of a SWCNT, its ECS
is a linear elastic cylindrical tube of mean radius equal to
the radius of the relaxed SWCNT. Their computations
gave

E ¼ 1:18ð10Þ�6

2preh
Pa ð9Þ

G ¼ 1:72ð10Þ�25

2prehðr2
e þ 0:25h2Þ

Pa ð10Þ

Eq. (9) is obtained by setting e = 0 in Eq. (2) of Ref. [4],
and Eq. (10) is the same as Eq. (4) in Ref. [4]. Setting



S.S. Gupta, R.C. Batra / Computational Materials Science 43 (2008) 715–723 723
re = 5.935 Å and h = 3.4 Å in Eqs. (9) and (10), we get
E = 0.93 TPa, and G = 0.356 TPa which are close to the
values obtained herein. Thus the ECS of a (16, 0) SWCNT
is the same for static and free vibration problems.

We note that the frequency xRBM of a RBM given by
Eq. (6) has not been used to ascertain E, G, q and h of
the ECS. Thus, this relation can be employed to further
validate the ECS. Frequencies of RBMs determined from
Eq. (6) are listed in column 3 of Table 3. It is clear that they
agree very well with those computed from the MD
simulations.

8. Conclusions

We have used the MM3 potential to study free vibra-
tions of the relaxed configuration of a single-walled carbon
nanotube (SWCNT), and postulated that a continuum
structure equivalent (ECS) to a SWCNT is a cylindrical
tube of length and mean radius equal to those of the
relaxed SWCNT, thickness 3.4 Å, and mass equal to that
of all atoms in the SWCNT. The ECS is comprised of a lin-
ear elastic, homogeneous and transversely isotropic mate-
rial with the axis of transverse isotropy coincident with a
radial line of the SWCNT. Values of Poisson’s ratio of
the ECS are found from frequencies of axial and torsional
vibrations and are independent of the wall thickness of the
ECS. The mass density is found by requiring that the mass
of the ECS equal that of all atoms in the SWCNT. Young’s
modulus and the shear modulus of the ECS are found by
equating frequencies of axial and torsional modes of vibra-
tion of the ECS to those of SWCNT computed through
numerical simulations using the MM3 potential. It is found
that for various SWCNTs, Young’s modulus equals
0.964 ± 0.035 TPa and the shear modulus in the zh-plane
0.403 ± 0.025 TPa. Poisson’s ratio of the ECS depends
upon the radius and the helicity of the underlying SWCNT,
and converges to 0.23, 0.20 and 0.21 for zigzag, armchair
and chiral SWCNTs respectively. Frequencies of radial
breathing modes of vibration computed from the MM3
potential equal those of the ECS thereby validating mate-
rial parameters for it. Also, presently computed values of
Young’s modulus and of the shear modulus of the ECS
agree well with those obtained by using results of static
simple tensile and torsional deformations.
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