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Abstract We discuss the symmetric smoothed particle
hydrodynamics (SSPH) method for generating basis func-
tions for a meshless method. It admits a larger class of kernel
functions than some other methods, including the smoothed
particle hydrodynamics (SPH), the modified smoothed parti-
cle hydrodynamics (MSPH), the reproducing kernel particle
method (RKPM), and the moving least squares (MLS) meth-
ods. For finding kernel estimates of derivatives of a function,
the SSPH method does not use derivatives of the kernel func-
tion while other methods do, instead the SSPH method uses
basis functions different from those employed to approxi-
mate the function. It is shown that the SSPH method and
the RKPM give the same value of the kernel estimate of a
function but give different values of kernel estimates of deriv-
atives of the function. Results computed for a sine function
defined on a one-dimensional domain reveal that the L2, the
H1 and the H2 error norms of the kernel estimates of a func-
tion computed with the SSPH method are less than those
found with the MSPH method. Whereas the L2 and the H2

norms of the error in the estimates computed with the SSPH
method are less than those with the RKPM, the H1 norm
of the error in the RKPM estimate is slightly less than that
found with the SSPH method. The error norms for a sam-
ple problem computed with six kernel functions show that
their rates of convergence with an increase in the number of
uniformly distributed particles are the same and their magni-
tudes are determined by two coefficients related to the decay
rate of the kernel function. The revised super Gauss function
has the smallest error norm and is recommended as a ker-
nel function in the SSPH method. We use the revised super
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Gauss kernel function to find the displacement field in a lin-
ear elastic rectangular plate with a circular hole at its centroid
and subjected to tensile loads on two opposite edges. Results
given by the SSPH and the MSPH methods agree very well
with the analytic solution of the problem. However, results
computed with the SSPH method have smaller error norms
than those obtained from the MSPH method indicating that
the former will give a better solution than the latter. The SSPH
method is also applied to study wave propagation in a linear
elastic bar.

Keywords Symmetric smoothed particle hydrodynamics
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1 Introduction

The meshless Smoothed Particle Hydrodynamics (SPH)
method, proposed by Lucy [1] to study three-dimensional
(3D) astrophysics problems, has been successfully applied
to find an approximate solution of many transient problems
due to its simplicity and ease of applicability. However, it has
two intrinsic shortcomings, namely, the lack of accuracy at
boundary points, and the tensile instability. Many techniques,
including the corrected smoothed particle method (CSPM)
[2,3], the reproducing kernel particle method (RKPM) [4–6]
and the modified smoothed particle hydrodynamics (MSPH)
method [7,8] have been proposed to alleviate these two defi-
ciencies. The performances of the CSPM and the MSPH
methods for a sample problem have been compared in [7];
therefore, the CSPM is not further discussed here. Like the
RKPM, the MSPH method can be made consistent of any
desired order by retaining enough terms in the Taylor series
expansion of the trial solution. However, the MSPH method
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requires that all derivatives of the kernel function used in
the method be non-constants which restrict the choice of the
kernel function. Furthermore, the matrix to be inverted for
finding kernel estimates of the unknown function and its
derivatives is asymmetric. Here we study a Symmetric
Smoothed Particle Hydrodynamics (SSPH) method that
makes the matrix to be inverted symmetric, admits kernel
functions with non-zero constant derivatives, and gives a
better approximate solution than the MSPH method.

For a sine function defined on a 1D-domain, the L2, the
H1 and the H2 error norms of kernel estimates of the function
have been computed with the SSPH, the MSPH and the RKP
methods. It is found the L2 and the H2 error norms for the
approximation obtained with the SSPH method are lower
than those for the approximation derived with the RKPM,
but the H1 error norm for the approximation computed with
the RKPM is less than that for the approximation with the
SSPH method. The convergence rates of the error norms for
the three methods with an increase in the number of either
uniformly or non-uniformly spaced particles are nearly the
same.

The kernel function plays an important role in meshless
methods. Kernel functions generally used include spline [9]
and Gauss functions [10]. Capuzzo-Dolcetta [11] has pro-
posed a minimization procedure to select the kernel function
in the SPH method; however, it becomes negative at some
points within its compact support, which usually is not desir-
able. The effect of the kernel function on the accuracy of
the computed solution has not been studied in detail. Here
we compute results with six kernel functions, and propose
a simple criterion to choose an appropriate kernel function.
It is found that two constants related to the decay rate of a
kernel function give good indication of the error in the kernel
estimates of a function and its derivatives computed by using
the kernel function.

The emphasis of the SSPH method proposed in [12] was
to analyze numerically two plane stress/strain elasto-static
problems by using either the collocation method or a weak
formulation derived on a finite subregion of the given domain.
It was found that basis functions with derivatives of the trial
solution derived without differentiating basis functions for
the trial solution gave a lower error than that in which deriva-
tives of basis functions are used. Also, the numerical solution
based on the weak formulation of the problem had a lower
error than that based on the collocation method. The focus of
the present work is to compare the SSPH basis functions with
those derived by the MLS approximation and the RKPM,
delineate the effect of six kernel functions on the accuracy of
the numerical solution, and analyze an elasto-static and an
elasto-dynamic problem.

We note that the concept of approximating a function and
its derivatives by using different basis functions has been dis-
cussed in [13–18], and has also been adopted in the RKPM

[19–22]. Interestingly, the final formulation of the SSPH
method is similar to the reproducing kernel hierarchical par-
tition of unity method and the synchronized reproducing ker-
nel interpolant [15,16,23]. However, our approach of deriv-
ing basis functions is different from that employed in these
works.

The rest of the paper is organized as follows. Section 2
describes briefly the MSPH method, and Sect. 3 gives details
of the SSPH method. In Sect. 4, the RKPM is described for a
1D problem, and kernel estimates of a function and its deriv-
atives computed with the RKPM and the SSPH method are
compared with each other. The moving least squares (MLS)
basis functions are compared with the SSPH basis functions
in Sect. 5. Several numerical tests are performed in Sect. 6.1
to compare the accuracy of results computed with the RKPM,
the SSPH method, and the MSPH method. Results obtained
with the SSPH method using different kernel functions are
compared in Sect. 6.2 to exhibit that two constants deter-
mined from values of the kernel function at three adjacent
particles control the accuracy of the computed solution. Mod-
ifications for optimizing the performance of the super Gauss
function are proposed. The SSPH method with the super
Gauss kernel function is employed in Sect. 6.3 to solve a
2D linear elastostatic problem of a rectangular plate with a
circular hole at its centroid and pulled at two opposite edges.
Results computed with the SSPH basis functions are found to
have smaller values of error norms than those obtained with
the MSPH basis functions. A linear elastodynamic problem,
namely wave propagation in a bar, is solved with the SSPH
basis functions in Sect. 6.4. Conclusions of this work are
summarized in Sect. 7.

2 Modified smoothed particle hydrodynamics (MSPH)
method

The Taylor series expansion of a scalar function f (x) at the
point x = x(i) in a 3D-domain is

f (ξ) = f (x(i)) + ∂ f

∂x (i)
α

(
ξα − x (i)

α

)

+1

2

∂2 f

∂x (i)
α ∂x (i)

β

(
ξα − x (i)

α

) (
ξβ − x (i)

β

)
+ · · ·

(2.1)

where repeated indices α and β are summed over their ranges,
but the repeated index i enclosed in parentheses is not sum-
med. We introduce two matrices, P and Q, and rewrite
Eq. (2.1) as

f (ξ) = PQ + · · · (2.2)
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where

Q =
{

fi , fx1i , fx2i , fx3i ,
1

2
fx1x1i ,

1

2
fx2x2i ,

1

2
fx3x3i , fx1x2i , fx2x3i , fx3x1i

}T

, (2.3)

P =
{

1, ξ1 − x (i)
1 , ξ2 − x (i)

2 , ξ3 − x (i)
3 ,

(
ξ1 − x (i)

1

)2
,

(
ξ2 − x (i)

2

)2
,
(
ξ3 − x (i)

3

)2
,

(
ξ1 − x (i)

1

) (
ξ2 − x (i)

2

)
,
(
ξ2 − x (i)

2

) (
ξ3 − x (i)

3

)
,

(
ξ3 − x (i)

3

) (
ξ1 − x (i)

1

)}
, (2.4)

fi = f (x(i)), fxα i = ∂ f

∂xα

(x (i)), fxαxβ i = ∂2 f

∂xα∂xβ

(x(i)).

(2.5)

Elements of matrix Q are the unknown variables to be
found. As should become clear from the discussion given in
Sect. 3, elements of matrix P can be associated with shape
functions used in the Finite Element Method (FEM).

Multiplying both sides of Eq. (2.2) with a kernel function
Wi (ξ , h) ≡ W (x(i)−ξ , h), integrating the resulting equation
over the domain �, and neglecting third and higher order
derivative terms, we get
∫

�

f (ξ) Wi dξ ≈
∫

�

PQWi dξ . (2.6)

In Eq. (2.6), the matrix P is known, but the number of
unknowns in matrix Q exceeds the number of equations,
which is one. Thus, additional equations are needed to solve
for the unknown elements of matrix Q. Multiplying both
sides of Eq. (2.2) with kernel function’s first derivative Wξγ =
∂W/∂ξγ , and its second derivative Wξγ ξδ = ∂2W/∂ξγ ∂ξδ

evaluated at the point x(i) and integrating the resulting equa-
tions over the domain �, we obtain
∫

�

f (ξ) Wξγ dξ ≈
∫

�

PQWξγ dξ , (2.7)

∫

�

f (ξ) Wξγ ξδ dξ ≈
∫

�

PQWξγ ξδ dξ . (2.8)

Equations (2.6)–(2.8) can simultaneously be solved for
the unknown element of matrix Q. In terms of the matrix M
defined as

M = {
W, Wξ1 , Wξ2 , Wξ3 , Wξ1ξ1 , Wξ2ξ2 , Wξ3ξ3 ,

Wξ1ξ2 , Wξ2ξ3 , Wξ1ξ3

}T
, (2.9)

Eqs. (2.6)–(2.8) can be written as

T = KQ or TI = K I J Q J , (2.10)

where

TI =
∫

�

f (ξ)MI dξ , K I J =
∫

�

MI PJ dξ . (2.11)

A suitable number, Ntotal , of particles are appropriately
located in the domain �, and domain integrals in Eq. (2.11)
are approximated by

TI =
∫

�

f (ξ)MI dξ ≈
N (i)∑
j=1

f j M ( j)
I

m j

ρ j
,

(2.12)

K I J =
∫

�

MI PJ dξ ≈
N (i)∑
j=1

M ( j)
I P( j)

J
m j

ρ j

where f j = f (ξ ( j)), and M ( j)
I is the value of MI at ξ ( j). For

particle i , located at the place x(i), the mass mi , and the mass
density ρi are computed from the given data; the number
N (i) of particles (or nodes) appearing in Eq. (2.12) is smaller
than Ntotal , and represents particles that are in the compact
support of the kernel function for particle i . It is clear that
the matrix K defined by Eq. (2.12)2 is not symmetric. In
Eq. (2.12) one can replace mi/ρi by the volume of domain
� associated with the particle i .

We first find conditions for the matrix K to be non-singular.
We note that for particle i , the matrix K can be written as

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N (i)∑
j=1

M ( j)
1 P( j)

1
m j
ρ j

N (i)∑
j=1

M ( j)
1 P( j)

2
m j
ρ j

· · ·
N (i)∑
j=1

M ( j)
1 P( j)

10
m j
ρ j

N (i)∑
j=1

M ( j)
2 P( j)

1
m j
ρ j

N (i)∑
j=1

M ( j)
2 P( j)

2
m j
ρ j

· · ·
N (i)∑
j=1

M ( j)
2 P( j)

10
m j
ρ j

.

.

.
.
.
.

. . .
.
.
.

N (i)∑
j=1

M ( j)
10 P( j)

1
m j
ρ j

N (i)∑
j=1

M ( j)
10 P( j)

2
m j
ρ j

· · ·
N (i)∑
j=1

M ( j)
10 P( j)

10
m j
ρ j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M (1)
1

m1
ρ1

M (2)
1

m2
ρ2

· · · M (N (i))
1

m N (i)

ρN (i)

M (1)
2

m1
ρ1

M (2)
2

m2
ρ2

· · · M (N (i))
2

m N (i)

ρN (i)

.

.

.
.
.
.

. . .
.
.
.

M (1)
10

m1
ρ1

M (2)
10

m2
ρ2

· · · M (N (i))
10

m N (i)

ρN (i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

P(1)
1 P(1)

2 · · · P(1)
10

P(2)
1 P(2)

2 · · · P(2)
10

.

.

.
.
.
.

. . .
.
.
.

P(N (i))
1 P(N (i))

2 · · · P(N (i))
10

⎤
⎥⎥⎥⎥⎦

(2.13)

where matrix K equals the product of a 10× N (i) matrix and
a N (i) × 10 matrix. By the Binet–Cauchy Theorem [24], the
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determinant of matrix K is given by

Det [K] =
N (i)∑

N1, N2, . . . , N10 = 1
N1 < N2 < · · · N9 < N10

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	
k=N1,N2,...,N10

[
mk

ρk

]
Det

⎡
⎢⎢⎢⎢⎣

M (N1)
1 M (N2)

1 · · · M (N10)
1

M (N1)
2 M (N2)

2 · · · M (N10)
2

...
...

. . .
...

M (N1)
10 M (N2)

10 · · · M (N10)
10

⎤
⎥⎥⎥⎥⎦

×Det

⎡
⎢⎢⎢⎢⎣

P(N1)
1 P(N1)

2 · · · P(N1)
10

P(N2)
1 P(N2)

2 · · · P(N2)
10

...
...

. . .
...

P(N10)
1 P(N10)

2 · · · P(N10)
10

⎤
⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.14)

Here N1, N2, . . . , N10 are any ten particles in the ascend-
ing order from 1 to N (i), and P(N1)

I , M (N1)
I denote values

of PI and MI at the particle N1. Because polynomial func-
tions in Eq. (2.4) are linearly independent, and the matrix M
is non-singular since det [M] equals the Wronskian of the
function W, the determinant of matrix K is not zero. Thus
the necessary condition for the matrix K to be non-singular
is that the number of particles in the compact support of the
kernel function for a particle equal at least the number of
linearly independent monomials in Eq. (2.4). Furthermore,
all derivatives of the kernel function appearing in matrix M
must not be constants. This latter requirement restricts the
choice of the kernel function.

Equation (2.10) can be written as

Q = K−1T. (2.15)

For the MSPH method, the kernel estimates of a function,
and its first, and second order derivatives are consistent up
to orders m, (m − 1) and (m − 2), respectively, if up to m
order terms are retained in the Taylor series expansion (2.1)
of the function.

3 Symmetric smoothed particle hydrodynamics (SSPH)
method

Rather than multiplying both sides of Eq. (2.2) by the kernel
function and its derivatives, we multiply them with Wi PI ,
neglect terms involving third and higher order derivatives,
integrate the resulting equation over the domain�, and obtain

∫

�

f (ξ) Wi PIdξ ≈
∫

�

PQPIWi dξ . (3.1)

We write Eq. (3.1) in matrix form as

T = KQ or TI = K I J Q J , (3.2)

where

TI =
∫

�

f (ξ)Wi PI dξ ≈
N (i)∑
j=1

f j Wi j P( j)
I

m j

ρ j
,

K I J =
∫

�

PI PJ Wi dξ ≈
N (i)∑
j=1

P( j)
I P( j)

J Wi j
m j

ρ j
,

Wi j = W (x (i) − ξ ( j)). (3.3)

Thus the matrix K is symmetric which reduces storage
requirements and the CPU time needed to solve Eq. (3.2) for
Q. An interesting aspect of this alternative is that in Eq. (3.2)
there are no derivatives of the kernel function. It allows for a
much larger class of functions to be used as the kernel func-
tion, and hence improves the practicality and the usefulness
of the method.

In order to show that the matrix K defined by Eq. (3.3) is
non-singular, we follow a procedure similar to that used to
show that the matrix K defined by Eq. (2.12) is non-singular.
Indeed, we replace MI with Wi PI in Eq. (2.14) and obtain
the following for the determinant of matrix K:

Det[K] =
N (i)∑

N1, N2, . . . , N10 = 1
N1 < N2 < · · · N9 < N10

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	
k=N1,N2,...,N10

(
Wik

mk

ρk

)

× Det

⎡
⎢⎢⎢⎢⎣

P(N1)
1 P(N1)

2 · · · P(N1)
10

P(N2)
1 P(N2)

2 · · · P(N2)
10

...
...

. . .
...

P(N10)
1 P(N10)

2 · · · P(N10)
10

⎤
⎥⎥⎥⎥⎦

2⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (3.4)

Here N1, N2, . . . , N10 are any ten particles in the ascend-
ing order from 1 to N (i). For reasons stated in Sect. 2, the
determinant of matrix K is non-zero.

For a 1D problem, P =
{

1, ξ − x (i),
(
ξ − x (i)

)2
}

, P2 =(
ξ − x (i)

)
. Using Vandermonde’s rule [25], Eq. (3.4) reduces

to
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Det[K] =
N (i)∑

N1, N2, N3 = 1
N1 < N2 < N3

{
	

k=N1,N2,N3

(
Wik

mk

ρk

)

×
[(

P(N2)
2 − P(N1)

2

) (
P(N3)

2 − P(N2)
2

)

×
(

P(N3)
2 − P(N1)

2

)]2
}

(3.5)

For P(N1)
2 �= P(N2)

2 �= P(N3)
2 , the determinant will be dif-

ferent from zero. Thus for the matrix K to be nonsingular, the
necessary and sufficient condition is that the compact sup-
port of a particle’s kernel include at least two other particles
(having different coordinates).

Since the matrix K is symmetric, we designate this method
as symmetric smoothed particle hydrodynamics (SSPH)
method.

Equation (3.2) has the solution

Q = K−1T. (3.6)

The matrix K−1 is symmetric. For a 1D-problem Eq. (3.6)
can be written as

fi =
∫

�

PK−1 {1, 0, 0}T W
(

x (i)−ξ
)

f (ξ) dξ,

fxi =
∫

�

PK−1 {0, 1, 0}T W
(

x (i)−ξ
)

f (ξ) dξ, (3.7)

fxxi =
∫

�

PK−1 {0, 0, 1}T W
(

x (i)−ξ
)

f (ξ) dξ .

Or equivalently,

fi ≈
N (i)∑
j=1

PK−1 {1, 0, 0}T Wi j f j m j/ρ j ,

fxi ≈
N (i)∑
j=1

PK−1 {0, 1, 0}T Wi j f j m j/ρ j , (3.8)

fxxi ≈
N (i)∑
j=1

PK−1 {0, 0, 1}T Wi j f j m j/ρ j .

We rewrite Eq. (3.8) as

f (k)
i ≈

N (i)∑
j=1

Ni j (k) f j , k = 0, 1, 2, (3.9)

where f (k)
i equals the kth derivative of f evaluated at the

point x (i), and

Ni j (1) = P K −1 {1, 0, 0}T Wi j m j/ρ j ,

Ni j (2) = P K −1 {0, 1, 0}T Wi j m j/ρ j ,

Ni j (3) = P K −1 {0, 0, 1}T Wi j m j/ρ j .

(3.10)

Note that indices i and j in Eq. (3.10) are not tensorial
indices. The function Ni j (k) can be viewed as a shape func-
tion for the node located at x (i). That is, shape functions for f ,
its first derivative fx , and its second derivative fxx at particle
x (i) are different. Recall that in the FEM,

f (k)
i =

N∑
j=1

dk

dxk

(
N j

)
f j , k = 0, 1, 2, . . . . (3.11)

For k = 0, the kernel estimate (3.9) of the function in the
SSPH method is exactly of the same form as that in the FEM.
However, for k �= 0, expressions for kernel estimates of the
first and the second derivatives are different from those in the
FEM. In order to compute kernel estimates of derivatives in
the SSPH method, we do not differentiate the shape functions.
Instead we use another set of shape functions.

As for the MSPH method, the kernel estimates of a func-
tion, and of its first and second derivatives are consistent of
order m, (m − 1) and (m − 2), respectively, when terms up
to order m are retained in the Taylor series expansion (2.1)
of the function.

The basis functions (3.10) have been derived without using
any connectivity among particles. Therefore, like the MLS
basis functions [26], these can be used as basis to solve an
initial-boundary-value problem. We note that like the MLS
basis functions the SSPH basis functions (3.10) do not exhibit
the Kronecker delta property.

4 Comparison of the SSPH method with the RKPM

The RKPM [4–6] improves the traditional SPH method, and
is briefly described below for a 1D problem. The kernel esti-
mate of a function f (x) in the SPH method is given by

f (x) ≈
∫

�

f (ξ) W (x − ξ) dξ . (4.1)

The traditional SPH method proposed by Lucy [1] does
not have zeroth-order consistency at the boundaries. In the
RKPM it is remedied by modifying the kernel function to
W (x − ξ) defined by

W (x − ξ) = W (x − ξ) C (x − ξ) , (4.2)

where C (x − ξ) is a correction to the kernel function.
Expanding the function f (ξ) in terms of Taylor series around

123



326 Comput Mech (2009) 43:321–340

the point x , and setting

m̃k (x) =
∫

�

(x − ξ)k W (x − ξ) dξ k = 0, 1, 2, . . . , n,

(4.3)

Eq. (4.1) can be written as

f (x) = m̃0 (x) f (x) − m̃1 (x) f ′ (x) + · · ·
+ (−1)n

n! m̃n f (n) (x) + · · · . (4.4)

In order to reproduce the original function, the correction
kernel is chosen by setting coefficients of the first and the
higher order derivatives to zero and the coefficient of the
constant term to one. That is,

(−1)n

n! m̃n (x) = δn0, (4.5)

where δi j is the Kronecker delta. Generally C (x − ξ) in the
corrected kernel (4.2) is chosen to be the polynomial function

C (x − ξ) ≈ Pb, (4.6)

where the matrix P is given by Eq. (2.4), and
b = [b0 (x) , b1 (x) , . . . , bn (x)]T . The kth order moment
of the corrected kernel function can be written as

m̃k (x) =
∫

�

(x − ξ)k C (x − ξ) W dξ

=
∫

�

(x − ξ)kPbW (x − ξ) dξ

= b0 (x) mk (x) + b1 (x) mk+1 (x) + · · ·
+ bn (x) mk+n (x) (4.7)

where mk (x) is the kth order moment of the original kernel
W (x − ξ).

From Eqs. (4.5) and (4.7), we get

M (x) b (x) = {1, 0, 0}T = PT (0) , (4.8)

where

M (x) =

⎡
⎢⎢⎢⎣

m0 (x) m1 (x) · · · mn (x)

m1 (x) m2 (x) · · · mn+1 (x)
...

...
. . .

...

mn (x) mn+1 (x) · · · m2n (x)

⎤
⎥⎥⎥⎦ . (4.9)

We note that the matrix M is the same as the matrix K
defined in the SSPH method. We use below the matrix K
instead of the matrix M and write Eq. (4.8) as

b (x) = K−1 (x) PT (0) . (4.10)

Substituting for b in Eq. (4.6) and the result in Eqs. (4.2)
and (4.1), we get

f (x) =
∫

�

PbW (x − ξ) f (ξ) dξ . (4.11)

Similarly, we obtain the following for the first and the
second derivatives of the function f (x):

f ′ (x) =
∫

�

f (ξ)
d

dx
[PbW (x − ξ)] dξ,

(4.12)

f ′′ (x) =
∫

�

f (ξ)
d2

dx2 [PbW (x − ξ)] dξ,

we note that

b′ (x) = −K−1 (x) K′ (x) b (x) ,

b′′ (x) = −K−1 (x)
[
K′′ (x) b (x) + 2K′ (x) b′ (x)

]
,

(4.13)

where K′ (x) is the first derivative of the matrix K (x).
For the RKPM, we rewrite kernel estimates of the function

f (x) and of its first and second derivatives together in the
matrix form as
⎧⎪⎨
⎪⎩

fi

fxi

fxxi

⎫⎪⎬
⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

∫
�

PbW
(
x (i) − ξ

)
f (ξ) dξ∫

�
d

dx

[
PbW

(
x (i) − ξ

)]
f (ξ) dξ

∫
�

d2

dx2

[
PbW

(
x (i) − ξ

)]
f (ξ) dξ

⎫⎪⎪⎬
⎪⎪⎭

(4.14)

For the SSPH method, Eq. (3.7) gives

⎧
⎪⎨
⎪⎩

fi

fxi

fxxi

⎫
⎪⎬
⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

∫
�

PK−1 {1, 0, 0}T W
(
x (i)−ξ

)
f (ξ) dξ∫

�
PK−1 {0, 1, 0}T W

(
x (i)−ξ

)
f (ξ) dξ∫

�
PK−1 {0, 0, 1}T W

(
x (i)−ξ

)
f (ξ) dξ

⎫⎪⎪⎬
⎪⎪⎭

(4.15)

For PT (0) = {1, 0, 0}T , expressions for kernel estimates
of the function in Eqs. (4.14) and (4.15) are identical to each
other. However, expressions for their first- and second-order
derivatives are quite different. In the RKPM, the expression
for the derivatives of f (x) involves the derivative of the ker-
nel function W through the derivative of the matrix b. The
requirement of using a differentiable kernel function restricts
the choice of the kernel function as in the MSPH method. The
evaluation of derivatives of the matrix b requires additional
CPU time.

5 Comparison of the SSPH basis functions
with the MLS basis functions

The MLS basis functions proposed by Lancaster and
Salkauskas [26] have been widely used in meshless methods
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[27,28]. The approximation of a function in the neighbor-
hood of a point x is expressed as

f (x) = P (x) a (x) , (5.1)

where a is the coefficient matrix to be determined, and P is the
matrix of complete monomials. The matrix P = {1, x1, x2,

x3, x2
1 , · · · } is different from the matrix P = {1, ξ1 − x1,

ξ2 − x2, ξ3 − x3, (ξ1 − x1)
2 , . . .} in the MSPH, the SSPH

and the RKPMs. Eq. (5.1) can be transformed into the Taylor
series expansion form of Eq. (2.1). For example, in 1D, and
retaining two terms in the Taylor series expansion, we get

f j ≈ f + fx
(
x j − x

) + 1

2
fxx

(
x j − x

)2

≈
(

f + fx x j + 1

2
fxx x2

j

)
− (

fx + fxx x j
)

x + 1

2
fxx x2

(5.2)

Thus the difference between Eqs. (2.1) and (5.1) is that
the matrix a in the MLS basis functions has a different inter-
pretation from the matrix Q in the SSPH basis functions. For
a 1D-problem, Q = { f, fx ,

1
2 fxx }, and a = { f + fx x j +

1
2 fxx x2

j ,− fx − fxx x j ,
1
2 fxx }. The coefficient matrix a is

determined by minimizing the functional, J , that represents
the weighted discrete L2 error norm defined by

J =
N∑

j=1

W
(

x ( j) − ξ
) (

P
(

x ( j)
)

a (x) − f j

)2
, (5.3)

where f j is the fictitious value of the function at node or
particle j and N equals the number of particles where the
weight function or the kernel function W is non-zero. The
minimization of J obtained by setting ∂ J

∂a = 0 yields

Aa = BF, (5.4)

where A=∑N
j=1 W j P( j)P( j)T

, B=[W1P(1)T
, W2P(2)T

, . . . ,

WN P(N )T ], F = [ f1, f2, . . . , fN ]T , W j = W (x ( j) −ξ) and
P(N ) = P

(
x (N )

)
.

With the definition D = BF, we write Eq. (5.4) as

Aa=D, AI J =
N∑

j=1

W j P( j)
I P( j)

J , DI =
N∑

j=1

f j W j P( j)
I ,

(5.5)

where P( j)
I is the I th element of matrix P evaluated at

(
x ( j)

)
.

The comparison of Eqs. (5.5) and (3.2) reveals that except
for the factor m j/ρ j and the matrix P, matrices A and K are
similar, and matrices D and T are similar. Thus matrices a and
Q play similar roles as stated in the text following Eq. (5.2).

From Eq. (5.4), the coefficient matrix a can be determined
as

a = A−1BF. (5.6)

Substituting for a from Eq. (5.6) into Eq. (5.1), the approx-
imation of the function is given by

f (x) ≈ PA−1BF = �F =
N∑

j=1


 j f j , (5.7)

where 
 may be regarded as the MLS basis function and f j

is the fictitious value of the function at particle j .
Derivatives of the function can be obtained by differenti-

ating the shape functions in Eq. (5.7), i.e.,

fx (x) ≈ �,x F =
N∑

j=1


 j,x f j . (5.8)

Thus computation of fx necessitates the differentiation
of matrix A and hence of the kernel function which restricts
choices of the kernel function. Whereas in the SSPH method,
kernel estimates of the first and the second derivatives of a
function are found by solving a system of linear algebraic
equations, in the MLS approximation they are evaluated by
differentiating the MLS basis functions like that in the FEM.

In order to evaluate derivatives of a function at a point,
the kernel (or the weight) function needs to be differentiated
when using the MSPH method, the RKPM, and the MLS
approximation but not in the SSPH method.

6 Numerical examples

6.1 Comparison of approximations of a function with the
RKPM, the MSPH method and the SSPH method

Consider the function

f (x) = sin [8 (1 − x)] / sin 8 (6.1)

defined on the domain [0,1]. We use the SSPH, the MSPH
and the RKPM, to compute kernel estimates of the function
and of its first and second derivatives with 10 equally spaced
particles placed on the domain [0, 1]. The smoothing length,
h, equals 1.5 times the minimum distance, � = 0.1, between
two adjacent particles.

We use the following revised Gauss function as the kernel
function.

W (x − ξ) = G(
h
√

π
)λ

×
{(

e−(|x−ξ |2/h2
)
− e−4

)
|x − ξ | ≤ 2h

0 |x − ξ | > 2h

(6.2)

Here λ equals the dimensionality of the space, and the
normalization parameter G has values 1.04823, 1.10081, and
1.18516 for λ = 1, 2, and 3, respectively.
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Fig. 1 Kernel estimates of (a)
the function, its (b) first
derivative, and (c) second
derivative computed with the
MSPH and the SSPH methods,
and with the RKPM
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We define below the L2, the H1 and the H2 norms of the
error, e, in the kernel estimates of the function f and of its
first and second derivatives.

‖e‖0 =

√√√√√
1∫

0

( f exact − f compute)2 dx

‖e‖1 =

√√√√√
1∫

0

(
f exact
x − f compute

x

)2
dx (6.3)

‖e‖2 =

√√√√√
1∫

0

(
f exact
xx − f compute

xx

)2
dx

Figure 1 shows kernel estimates of the function, and of its
first and second derivatives computed with the three methods.
It is obvious that each one of the three methods reconstructs
the function very well with only ten particles distributed uni-
formly on [0,1]. In [7], it is shown that the error in kernel
estimates of the function and its derivatives near the bound-
ary is greatly reduced in the MSPH method as compared to
that in the SPH method and the CSPM (corrective smoothed
particle method). It is obvious from results depicted in Fig. 1
that kernel estimates of the function computed with the SSPH
method and the RKPM are as accurate at the boundary as

those found with the MSPH method. The SSPH method gives
more accurate values of the first and the second derivatives
of the function than the MSPH method. The first derivatives
computed with the RKPM are better approximations of their
analytical values than those computed either with the SSPH
or with the MSPH method. However, values of the second
derivatives computed with the RKPM near end points of the
domain [0,1] are worse than those found with the SSPH and
the MSPH methods.

The shape functions for the kernel estimate, the first and
the second derivatives are shown in Fig. 2. It is seen from
Fig. 2(a) that

∑
j Ni j (1) = 1, i.e., it is a partition of unity.

Values of the three error norms for approximations with
the three methods listed in Table 1 reveal that all of the error
norms for the SSPH basis functions are smaller than those
for the MSPH basis functions. As shown above in Sect. 4, the
RKPM and the SSPH method give identical values of kernel
estimates of the function. The H1 error norm is smallest for
the RKPM, but its evaluation requires additional computa-
tional time. The H2 error norm of the RKPM solution equals
32.8, which is 63.2 and 90.7% larger than that given by the
MSPH and the SSPH basis functions, respectively.

Variations of the error norms with the particle distance,
�, are exhibited in Fig. 3 on log-log plots for 10, 20, 30, 50,
100, 250 and 500 uniformly spaced particles. It is clear that
irrespective of the number of particles, the L2 error norm
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Fig. 2 For ten uniformly
distributed particles on the
domain [0,1], shape functions
for (a) kernel estimate, (b) first
derivative, and (c) second
derivative

x

N
ij(

1)

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x

N
ij(

2)

0.2 0.4 0.6 0.8

-12

-8

-4

0

4

8

12(a)

x

N
ij(

3)

0.2 0.4 0.6 0.8
-50

-40

-30

-20

-10

0

10

20

30(c)

(b) 

Table 1 Error norms for the RKPM, the MSPH and the SSPH methods

MSPH SSPH RKPM

||e||0 2.86E-2 1.88E-2 1.88E-2

||e||1 1.40 1.21 0.59

||e||2 20.1 17.2 32.8

Table 2 Convergence rates of error norms for the MSPH, the SSPH
and the RKPM solutions

MSPH SSPH RKPM

‖e‖0 3.52 3.54 3.54

‖e‖1 1.92 1.96 1.80

‖e‖2 1.47 1.49 1.54

of the approximations with the SSPH and the RKPM basis
functions are smaller than that of the MSPH basis functions.
The RKPM gives the smallest value of the H1 error norm
and the largest value of the H2 error norm. The conver-
gence rates, i.e., slopes of the least squares fitted straight
lines, for the three methods are listed in Table 2. For each
one of the three methods, convergence rates of the L2, the
H1 and the H2 error norms equal approximately 3.5, 2.0 and
1.5, respectively. Larger differences in the convergence rates

of the H1 and the H2 error norms between the RKPM and the
MSPH/SSPH solutions are due to the noticeable deviations
in the RKPM solution for values of x near x = 0 and x = 1.

Figure 4 shows results for the nonuniform particle distrib-
utions with the distance between particles (i − 1) and i equal-
ing �(i + 0.2(i − 1)) where � equals the distance between
particles 1 and 2 which is the smallest distance between any
two adjacent particles. Results have been computed for 10,
20, 30, 50, 100, 250 and 500 particles. These results are
similar to those obtained for the uniform particle distribu-
tion except that for small number of particles the H2 error
norm of the RKPM solution is less than that of the MSPH
and the SSPH solutions. We did not experiment with other
non-uniform distributions of particles.

6.2 Results for the SSPH method with different kernel
functions

As noted earlier, the kernel function in the MSPH method
must be such that none of its first and second order deriv-
atives is a constant. Thus if we need kernel estimates of a
function and of its mth order derivatives then the order of the
polynomial in the kernel function must be at least (m + 1).
However, there is no such restriction in the SSPH method.
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Fig. 3 Variation with different
number of uniformly spaced
particles of the (a) L2 norm; (b)
H1 norm; and (c) H2 norm of the
error in kernel estimates of a
function computed with the
MSPH and the SSPH methods,
and with the RKPM
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We compare results with the following six kernel functions
of which four, namely, the cubic spline [29], the quartic spline
[30], the revised Gauss, and the super Gauss [31] functions,
are often used in meshless methods, while the other two,
namely the linear and the quadratic, cannot be used in some
meshless methods including the SPH, the MSPH and the
RKPMs if kernel estimates of the first and the second order
derivatives are to be found.

Linear function:

W (d) = G

hλ

{
(2 − d)/4 0 ≤ d ≤ 2
0 2 < d

(6.4)

Quadratic function:

W (d) = G

hλ

{
1 − d + d2/4 0 ≤ d ≤ 2
0 2 < d

(6.5)

Cubic B-spline function:

W (d) = G

hλ

⎧⎨
⎩

1 − 1.5d2 + 0.75d3 0 ≤ d < 1
(2 − d)3 /4 1 ≤ d ≤ 2
0 2 < d

(6.6)

Quartic spline function:

W (d) = G

hλ

{
1 − 3

2 d2 + d3 − 3
16 d4 0 ≤ d ≤ 2

0 2 < d
(6.7)

The revised Gauss function:

W (d) = G(
h
√

π
)λ

{(
e−d2 − e−4

)
0 ≤ d ≤ 2

0 d > 2
(6.8)

The super Gauss function:

W (d) = G(
h
√

π
)λ

(
5

2
− d2

)
e−d2

(6.9)

Here d = |x − ξ |/h, λ equals the dimensionality of the
space, G is the normalizing constant determined by the con-
dition that the integral of the kernel function over the domain
equals 1.0. For λ = 1, G equals, respectively, 1, 0.75,2/3, 5/8,
and 1.04823 for the linear, the quadratic, the cubic
B-spline, the Quartic spline, and the revised Gauss functions.
In the MSPH and the SSPH methods, the value of G is not
important as it is in the conventional SPH method since in
Eqs. (2.10) and (3.1) it cancels out on both sides.

We note that the value of the super Gauss kernel func-
tion is negative at points where d2 is greater than 5/2. As is
well known, the kernel function determines the contribution
of deformations of a particle to that of its neighbors. Thus,
the kernel function should vanish at a particle if it does not
interact with its neighbors. Accordingly, we modify the super
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Fig. 4 Variation with different
number of non-uniformly
spaced particles of the (a) L2

norm; (b) H1 norm; and (c) H2

norm of the function computed
with the MSPH and the SSPH
methods, and with the RKPM
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Gauss kernel function to

W (d) = G(
h
√

π
)λ

{(
4 − d2

)
e−d2

0 ≤ d ≤ 2
0 d > 2

(6.10)

set G = 2/7 for λ = 1, and call it the revised super Gauss
function. With this modification, it vanishes for d ≥ 2 thereby
ensuring that only particles that lie in the compact support of
particle i influence its deformations.

For a 1D problem, Fig. 5 exhibits plots of the six kernel
functions. Note that they take different values at the origin
because of the normalization condition that the integral of a
kernel function over its compact support equals one. Also,
these kernel functions have different compact property. The
cubic B-spline function has the most compact property, the
revised super Gauss the next and the Quartic the third. We
examine below whether the compact property of the kernel
function has any influence on the accuracy of results, or the
error norms.

We use the six kernel functions in the SSPH method to
approximate the function f (x) = e−x2

and its first derivative
with 20 uniformly spaced particles placed on the domain
[0, 1]. Unless otherwise specified, we take the smoothing
length h = 1.2�.

The L2 and the H1 error norms of kernel estimates of the
function f and of its first derivative fx computed with the six
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Fig. 5 For a one-dimensional problem plots of the six kernel functions

kernel functions are given in Table 3. The number in paren-
theses besides the error norm denotes the ranking of the error
norm with 1 for the smallest, and 6 for the largest. The error
norms are of the same order of magnitude for the six kernel
functions. It is evident that the cubic kernel function gives
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Table 3 Error norms for the six
kernel functions computed with
h = 1.2�

Linear Quadratic Cubic Quartic Revised Gauss Revised super Gauss

‖e‖0 /(E-6) 6.84 (6) 3.01 (4) 1.60 (1) 2.43 (2) 4.30 (5) 2.63 (3)

‖e‖1 /(E-3) 3.12 (6) 2.12 (4) 1.56 (1) 1.70 (2) 2.19 (5) 1.80 (3)

the smallest error norm, which agrees with its most compact
property. But the quartic function gives smaller values of
the L2 and the H1 error norms than the revised super Gauss
function which is opposite to the order of their compact prop-
erty. We note that the quadratic and the linear kernel functions
give reasonably accurate results, the quadratic function gives
smaller value of the error norm than the revised Gauss func-
tion, and the linear and the quadratic kernel functions cannot
be employed in the MSPH method and the RKPM since their
first and second order derivatives, respectively, are constants.

For this 1D-problem, matrices P and Q defined in
Eqs. (2.4) and (2.3) are given by

P =
{

1, ξ − x (i),
(
ξ − x (i)

)2
}

, Q =
{

fi , fxi ,
1

2
fxxi

}T

.

(6.11)

Because each kernel function is even and particles are
uniformly spaced, we have

K12 = K21 = 0, K23 = K32 = 0, (6.12)

at an inner particle where the matrix K is defined in Eq. (3.3).
When the particle i has only four other particles, i − 2,

i −1, i +1 and i +2, in the compact support of its kernel func-
tion, we obtain from Eq. (3.6) the following expressions for
the kernel estimate and the first derivative of the function f :

fi = ( fi ) +
Wi,i+2

Wi,i

1 + 16 Wi,i+2
Wi,i+1

+ 18 Wi,i+2
Wi,i

× [
12( fi+1 + fi−1) − 3( fi+2 + fi−2) − 18 fi

]

≡ ( fi )+c1
[
12( fi+1+ fi−1)−3( fi+2 + fi−2)−18 fi

]

(6.13)

fxi = fi+1 − fi−1

2�

+
Wi,i+2
Wi,i+1

Wi,i+2
Wi,i+1

+ 1
4

(
fi+2 − fi−2

4�
− fi+1 − fi−1

2�

)

≡ fi+1 − fi−1

2�
+ c2

(
fi+2 − fi−2

4�
− fi+1 − fi−1

2�

)

(6.14)

Here ( fi ) stands for the value of the function f at x (i),
and we have used the fact that the kernel function is even,
i.e., Wi,i−1 = Wi,i+1 and Wi,i−2 = Wi,i+2. Equation (6.13)
implies that when c1 is zero the SSPH method reconstructs
the function. For nonzero values of c1 the difference between
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Fig. 6 For the six kernel functions, variations of (a) c1; and (b) c2 with
the smoothing length, h

the value of the function and its kernel estimate is propor-
tional to c1. Also, the difference between the kernel estimates
of fx and its value computed by the central difference method
is proportional to c2.

Values of c1 and c2 for the six kernel functions and the
smoothing length h varying from 1.1 � to 1.5 � are exhibited
in Fig. 6. These values of h ensure that an inner particle i
has four other particles in the compact support of its kernel
function. For h = 1.2�, the ranking of values of c1 and c2

for the six kernel functions is the same as that of the error
norms in Table 3. From Fig. 6, we find that with the increase
in the smoothing length, the order of coefficients for the six
kernel functions will vary. For example, values of c1 for the
quartic and the revised super Gauss functions will change
their order around h = 1.23�. We have computed another
case when the initial smoothing length is 1.4� and list the
error norms in Table 4. By comparing results in Table 4 and
Fig. 6 we conclude that the two rankings match very well.
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Table 4 Error norms for the six
kernel functions computed with
h = 1.4�

Linear Quadratic Cubic Quartic Revised Gauss Revised super Gauss

‖e‖0 /(E-6) 7.82 (6) 4.86 (2) 4.44 (1) 5.43 (4) 6.36 (5) 5.06 (3)

‖e‖1 /(E-3) 3.50 (6) 2.80 (5) 2.20 (1) 2.47 (3) 2.78 (4) 2.40 (2)

When the compact support of the kernel function for an
inner particle i contains only three particles, that is, Wi,i+2 =
0, coefficients c1 and c2 become zero, and Eqs. (6.13) and
(6.14) simplify to

fi = ( fi ) (6.15)

fxi = fi+1 − fi−1

2�
(6.16)

Thus for particles inside the domain the SSPH method
exactly reconstructs the original function, and the kernel esti-
mate of the first derivative of the function equals the value of
the first derivative given by the central-difference method.

We now investigate if the performance of the revised super
Gauss kernel function can be improved by increasing the
coefficient a in the following equation.

W (d) = G(
h
√

π
)λ

(
4 − d2

)
e−ad2

. (6.17)

For a =1.0, 1.2, 1.4 and 1.6, Fig. 7 evinces variations of c1

and c2 with the smoothing length. It is evident that values of
c1 and c2 decrease with an increase in the values of a. When
the value of a is increased from 1.0 to 1.2, c1 and c2 for the
super Gauss function are smaller than those for the quartic
function for most values of the smoothing length. For most
values of the smoothing length in the range [1.1�, 1.5�], and
a = 1.4, the cubic function has larger values of c1 and c2 than
the revised super Gauss function. For a = 1.6, both c1 and
c2 for the revised super Gauss function have the least values
for all h in the range [1.1�, 1.5�]. Thus the super Gauss
function with a = 1.6 is expected to give smallest values
of error norms, which is confirmed by their values listed
in Table 5. The error norms follow the ranking predicted
by values of coefficients c1 and c2. Even though values of
coefficients c1 and c2 continue to decrease with an increase
in the value of the parameter a, one can not take a to be very
large since the effect of enough particles must be included to

h/∆

h/∆

c 1
c 2

1.1 1.2 1.3 1.4 1.5
0

0.004

0.008

0.012

0.016

0.02
Cubic
Quartic
RevisedSuperGauss(a=1.0)
RevisedSuperGauss(a=1.2)
RevisedSuperGauss(a=1.4)
RevisedSuperGauss(a=1.6)

1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4
Cubic

Quartic

RevisedSuperGauss(a=1.0)

RevisedSuperGauss(a=1.2)

RevisedSuperGauss(a=1.4)

RevisedSuperGauss(a=1.6)

(a)

(b)

Fig. 7 For a = 1.0, 1.2, 1.4 and 1.6, variations of (a) c1; (b) c2 with
the smoothing length h for the revised Super Gauss kernel function.
Values of c1 and c2 for the cubic and the quartic kernel functions are
also plotted for comparison

ensure accuracy of results. We propose that the revised super
Gauss function with a = 1.6 be used as a kernel function.

For two different values of the smoothing length h = 1.2�

and h = 1.4�, we have plotted in Fig. 8 the variation with the
smallest distance between adjacent two particles of the H1

Table 5 For two values of the
smoothing length, error norms
for the quartic and the cubic
kernel functions, and the revised
super Gauss kernel function
with a= 1.0, 1.2, 1.4 and 1.6

Numbers in parentheses give
ranking of error norms for these
kernel functions

Cubic Quartic Revised super Gauss

a=1.0 a=1.2 a=1.4 a=1.6

h =
1.2�

‖e‖0 /(E−6) 1.60 (3) 2.43 (5) 2.63 (6) 1.77 (4) 1.14 (2) 0.71 (1)

‖e‖1 /(E−3) 1.56 (3) 1.70 (5) 1.80 (6) 1.64 (4) 1.52 (2) 1.44 (1)
h =
1.4�

‖e‖0 /(E−6) 4.44 (4) 5.43 (6) 5.06 (5) 4.14 (3) 3.30 (2) 2.55 (1)

‖e‖1 /(E − 3) 2.20 (4) 2.47 (6) 2.40 (5) 2.18 (3) 1.99 (2) 1.83 (1)
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(a)

(b)

Fig. 8 For a h = 1.2� and b h = 1.4�, H1 error norms in kernel
estimates computed with different kernel functions versus the smallest
distance between adjacent particles

error norms of the function computed by the six kernel func-
tions, namely, the linear, the quadratic, the cubic B-spline,
the quartic, the revised Gauss, and the revised super Gauss
with a = 1.6. Slopes of these curves are listed in Table 6. It
can be seen that the convergence rates are not affected by the
choice of the kernel function. A larger smoothing length will
give smaller convergence rate.

6.3 Stress concentration in a plate

We use the SSPH method to analyze stress concentration near
a circular hole in a semi-infinite isotropic and homogeneous
linear elastic plate deformed statically by equal and opposite
axial tractions at its two opposite edges. As shown in Fig. 9,
the plate with a central hole of radius b is subjected to a
constant axial tensile traction, σ0, on the left and the right
edges that are at infinity. In cylindrical coordinates (r, θ)

with the origin at the center of the hole, the analytic solution
[32] for the stress field σ and the displacement field u is

Fig. 9 Schematic sketch of a plate with a central hole loaded in tension

σrr = σ0

2

(
1 − b2

r2

)
+ σ0

2

(
1 + 3

b4

r4 − 4
b2

r2

)
cos 2θ,

σθθ = σ0

2

(
1 + b2

r2

)
− σ0

2

(
1 + 3

b4

r4

)
cos 2θ,

σrθ = −σ0

2

(
1 − 3

b4

r4 + 2
b2

r2

)
sin 2θ,

u1 = 1 + ν

E
σ0

(
1

1 + ν
r cos θ + 2

1 + ν

b2

r
cos θ

+1

2

b2

r
cos 3θ − 1

2

b4

r3 cos 3θ

)
,

u2 = 1 + ν

E
σ0

( −ν

1 + ν
r sin θ − 1 − ν

1 + ν

b2

r
sin θ

+1

2

b2

r
sin 3θ − 1

2

b4

r3 sin 3θ

)
, (6.18)

where E = E
1−ν2 , ν = ν

1−ν
, E = Young’s modulus, ν =

Poisson’s ratio for the material of the body, and u1 and u2

are components, respectively, of the displacement vector u
along the horizontal and the vertical directions.

Due to symmetry of the problem about the horizontal and
the vertical centroidal axes, we analyze deformations of a
quarter of the finite domain shown in Fig. 10, and assume
that a plane strain state of deformation prevails in the plate.
Boundary conditions in rectangular Cartesian coordinates are
listed below:

u1 = 0, t2 = 0 on boundary 1

t1 = 0, t2 = 0 on boundary 2

t1 = 0, u2 = 0 on boundary 3

t1 = t̄1, t2 = t̄2 on boundaries 4 and 5

Since boundary surfaces 4 and 5 are not taken to be far
away from the circular hole, we apply tractions on them with
t̄1 and t̄2 determined from t̄1 = σ11n1 +σ12n2, t̄2 = σ21n1 +
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Table 6 The convergence rate
of error norms for the six kernel
functions with smoothing length
h = 1.2� and h = 1.4�

Linear Quadratic Cubic Quartic Revised Gauss Revised super Gauss

h = 1.2� 1.9902 2.0006 2.0140 2.0096 1.9993 2.0189

h = 1.4� 1.9882 1.9926 1.9993 1.9956 1.9927 2.0064

x 1

x 2

1

2

3

4

5

(3,0)

(0,3) (3,3)

(0.5,0)

(0,0.5)

Fig. 10 The plate used in the simulation

σ22n2 where n is a unit outward normal to the boundary,
and t is the traction vector, and values of σ11, σ22 and σ12

are found from the analytical solution (6.18) by using tensor
transformation rules; e.g. see [33]. Plate’s deformations are
governed by

σi j, j + gi = 0 in �, i = 1, 2, (6.19)

σi j = λ̂εkkδi j + 2µ̂εi j , (6.20)

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (6.21)

where a repeated index implies summation over the range
of the index, g is the body force vector which is zero in our
work, ε is the strain tensor, λ̂ = Eν

(1+ν)(1−2ν)
and µ̂ = E

2(1+ν)

are the Lame constants. Here E is Young’s modulus and ν

the Poisson ratio. Substitution from Eqs. (6.20) and (6.21)
into Eq. (6.19) gives
(
λ̂ + 2µ̂

)
∂2u1
∂x2

1
+ µ̂ ∂2u1

∂x2
2

+
(
λ̂ + µ̂

)
∂2u2

∂x1∂x2
= 0

(
λ̂ + µ̂

)
∂2u1

∂x1∂x2
+ µ̂ ∂2u2

∂x2
1

+
(
λ̂ + 2µ̂

)
∂2u2
∂x2

2
= 0

(6.22)

for the unknown components u1 and u2 of the displace-
ment vector. By writing Eq. (2.15) of the MSPH method
or Eq. (3.6) of the SSPH method as

Q = K−1T =
(

K−1B
)

F, (6.23)

where

BI J = M J
I m J /ρJ for the MSPH method,

BI J = W PI m J /ρJ for the SSPH method,

F = { f1, f2, · · · , fNtotal}T ,

it can be seen that derivatives of u1 and u2 can be expressed
in terms of values of u1 and u2 at particles in the domain. We
thus arrive at 2Ntotal(Ntotal equals the total number of parti-
cles) simultaneous linear algebraic equations for values of u1

and u2 at all particles. For boundary particles, boundary con-
ditions should be satisfied. For a particle on boundary1, the
two Eqs. (6.22) for the particle are replaced by the boundary
conditions

u1 = 0
t2 = 0

(6.24)

where t2 = σ21n1 +σ22n2. Substitution from Eq. (6.20) into
Eq. (6.24) gives

u1 = 0

µ̂
(

∂u1
∂x2

+ ∂u2
∂x1

)
n1 +

[
λ̂ ∂u1

∂x1
+

(
λ̂ + 2µ̂

)
∂u2
∂x2

]
n2 = 0

(6.25)

Similarly, equations for all boundary particles are modi-
fied. We then assemble equations for all particles and solve
them simultaneously for displacements.

Figure 11 depicts the placement of 188 particles in the
domain of study with 11 particles on the quarter of the cir-
cular hole. The distribution of particles gets coarser with
the distance from the circular hole. Results are computed
with the revised super Gauss kernel function (6.17) with
a = 1.6, λ = 2, and the smoothing length hi = 1.5�i

where �i is the smallest distance between particle i and other
particles in its compact support. Values assigned to material
parameters of the plate and the tensile traction are

E = 1, ν = 0.25, σ0 = 1.

Along the x2-axis, the analytical solution gives

u1|θ=π/2 = 0, u2|θ=π/2

= 1 + ν

E
σ0

(
−ν

1 + ν
x2 − 1 − ν

1 + ν

b2

x2
− 1

2

b2

x2
+ 1

2

b4

x3
2

)
.

Values of u2 computed with the SSPH and the MSPH basis
functions are compared with those from the analytical solu-
tion in Fig. 12. It is clear that the displacement given by
the SSPH method is closer to the analytic solution than that
obtained with the MSPH method. The error norm defined as
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Fig. 11 Locations of 188 particles in the domain studied

x2/b

u 2
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-0.5

-0.4
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SSPH
MSPH

Fig. 12 Comparison of the displacement u2 along the x2 axis in a plate
with a circular hole computed by the SSPH and the MSPH methods with
that obtained from the analytical solution (188 particles)

√∫ (
ucompute

2 − uanalytical
2

)2
dx2 equals 0.0216 and 0.0304

for the SSPH and the MSPH methods respectively. The CPU
time equals 0.16 s for both the MSPH and the SSPH methods.
Although the matrix K is symmetric for the SSPH method,
which can reduce the storage requirement, we do not take
advantage of this symmetry and use the same algorithm as
for the MSPH method to solve the system of linear alge-
braic equations. Thus the CPU time is the same for the two
methods. Figure 13 exhibits the placement of 686 particles

Fig. 13 Placement of 686 particles in the domain with 21 particles on
quarter of the circle

with 21 particles on the quarter of the circle, and Fig. 14
compares the displacement u2 computed with this place-
ment of nodes with the analytical solution of the problem.
The CPU time increases to about 9 s since the number of
equations is increased from 376 to 1,372 and inversion of
the 1372 × 1372 matrix takes more time than that required
to invert the 376 × 376 matrix. We can decrease the CPU
time by optimizing the algorithm for solving a system of
sparse linear algebraic equations as is done in the FEM, but
this is not the focus of our work. The error norms of 0.0044
and 0.0050 for displacements computed with the SSPH and
the MSPH methods, respectively, indicate that the solution
is significantly improved by increasing the number of parti-
cles. The corresponding values of the non-dimensional stress
σ11/σ0 along the x2-axis, exhibited in Fig. 15, reveal that the
three sets of values are very close to each other. Both the
SSPH and the MSPH methods accurately predict the stress
concentration of 3.0.

We note that here a strong form of differential equations
(6.19) is solved, and the technique can be viewed as the col-
location method employing the SSPH basis functions.

6.4 Elastodynamic problem

In the elastostatic problem studied above, it is shown that the
SSPH method gives better results than the MSPH method.
We now only use the SSPH method to solve a linear elastody-
namic problem. Whereas a 3D problem has been formulated,
the solution is given only for a 1D problem, namely, wave
propagation in a bar.
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Fig. 14 Comparison of the displacement u2 along the x2 axis in a plate
with a circular hole computed by the SSPH and the MSPH methods with
that obtained from the analytical solution (686 particles)
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Fig. 15 Comparison of the non-dimensional stress σ11/σ0 along the
x2 axis in a plate with a circular hole computed by the SSPH and the
MSPH methods with that obtained from the analytical solution (686
particles)

In the absence of body force, deformations of a body are
governed by the following equation expressing the balance
of linear momentum:

ρ
d2ui

dt2 = σi j, j (6.26)

where ρ is the mass density. Substituting into Eq. (6.26) for
stresses in terms of strains from Hooke’s law (6.20) and for

strains in terms of displacements from Eq. (6.21), we get

ρ

⎧⎨
⎩

ü1
ü2
ü3

⎫⎬
⎭

=

⎡
⎢⎢⎢⎣
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1
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∂x1∂x2

(
λ̂+µ̂

)
∂2

∂x1∂x3(
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∂2
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2
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(
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)
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)
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(
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∂x2
3
+µ̂∇2

⎤
⎥⎥⎥⎦

⎧
⎨
⎩
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⎫
⎬
⎭

(6.27)

where ∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

is the Laplace operator, and a

superimposed dot indicates time derivative.
The boundary conditions are

ui = ūi on �u, (6.28)

σi j n j = t̄i on �t . (6.29)

The natural boundary condition (6.29) can be written in
terms of displacements as
[(

λ̂ + 2µ̂
) ∂u1

∂x1
+ λ̂

∂u2

∂x2
+ λ̂

∂u3

∂x3

]
n1 + µ̂
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∂x2
+ ∂u2
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)
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)
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) ∂u1
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+ λ̂

∂u2

∂x2
+λ̂

∂u3

∂x3

]

n2 + µ̂
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∂u2

∂x3
+ ∂u3

∂x2
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n3 = t̄2

µ̂
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∂u1

∂x3
+ ∂u3

∂x1

)
n1 + µ̂

(
∂u2

∂x3
+ ∂u3

∂x2
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n2 +
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) ∂u1

∂x1
+ λ̂

∂u2

∂x2
+ λ̂

∂u3

∂x3

]
n3 = t̄3

(6.30)

Equations (6.27) are integrated with respect to time by
employing the explicit central difference method. For nodes
on the boundary, Eqs. (6.27) are replaced by either Eq. (6.28)
or Eq. (6.29). Expressions for displacement derivatives in
terms of displacements of particles are derived by using the
SSPH basis functions as was done for the elastostatic problem
studied above.

These equations are used to study wave propagation in a
linear elastic bar subjected to an impulsive load, and values
assigned to the three material parameters are

E = 200G Pa, ν = 0.3, ρ = 7865 Kg/m3

We assume that a 0.1 m long linear elastic bar is subjected to
an axial compressive step traction of 1 GPa magnitude and
3 µs duration at the right end, while its left end is kept traction
free. The bar is discretized into 800 uniformly distributed
particles. The analytical solution of the problem is plotted in
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Fig. 16 with a dash-dot-dot curve, and the numerical solution
computed with the SSPH method is depicted in Fig. 16 with
a solid curve. It is clear that the SSPH method captures the
shock wave very well except for some oscillations near the
shock front which can be controlled by introducing artificial
viscosity. The wave travels with a speed of 5 mm/µs. The
compressive wave at the left end is reflected back as a tensile
wave. The numerical results clearly show that there is no
tensile instability.

The MSPH method was used in [34] to study wave prop-
agation in a functionally graded bar with material properties
varying continuously, in [35] to analyze crack propagation
in a linear elastic plate; and in [36] to investigate the Taylor
impact test. We anticipate that the SSPH method will give
equally good results for these problems.

6.5 Comparison of SSPH and FE methods

The SSPH and the FE methods are compared in Table 7.
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Fig. 16 Comparison of the axial stress (solid curve) in a bar computed
by the SSPH method with that (dash-dot curve) obtained from the ana-
lytical solution

Table 7 Comparison of SSPH
and FE methods

SSPH FE

Weak form Not required Global

Information needed about nodes Locations only Locations and
connectivity

Subdomains Circular/rectangular
(correspond to supports
of kernel functions),
not necessarily disjoint

Polygonal and disjoint

Basis functions Polynomials, require
more CPU time to find
them

Polynomials, easy to find

Derivatives of trial solution Easy to evaluate Require more CPU time
to evaluate them

Integration rule Not needed in the collo-
cation method

Depends upon the degree
of polynomials in basis
functions

Mass/stiffness matrix Asymmetric, large band-
width that can not be
determined a priori

Symmetric, banded,
mass matrix posi-
tive definite, stiffness
matrix positive defi-
nite after imposition
of essential boundary
conditions

Assembly of equations Not required Required

Stresses/strains Smooth everywhere Good at integration
points

Addition of nodes/particles Easy Difficult

Determination of time step size Easy Easy

Computation of total strain energy Difficult (requires a back-
ground mesh)

Easy

Data preparation effort Little Extensive

Imposition of essential boundary conditions Easy Easy
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7 Conclusions

We have presented a symmetric smoothed particle hydrody-
namics (SSPH) method that uses only locations of particles
to generate basis functions. It has the following three advan-
tages over the modified smoothed particle hydrodynamics
(MSPH) method: (i) the matrix to be inverted is symmetric,
(ii) a larger class of kernel functions can be used, and (iii) it
yields more accurate results at least for the problems studied
herein.

We have also compared kernel estimates of a function from
the SSPH method with those from the reproducing kernel
particle method (RKPM) and shown that these two methods
give identical values of the kernel estimate of a function but
different values of the kernel estimates of the first and the
second derivatives of a function. For the example problem
studied, the H1 norm of the error for the RKPM is smaller
than that for the SSPH method but the reverse holds for the
H2 norm of the error.

When comparing the SSPH basis functions with the mov-
ing least squares (MLS) basis functions we found that kernel
estimates of derivatives of a function in the SSPH method
are evaluated by solving a system of algebraic equations but
in the MLS approximation they are determined by differen-
tiating the MLS basis functions. Thus the kernel function in
the MLS basis functions must be differentiable.

Numerical experiments with approximating a sine func-
tion defined on a one-dimensional domain show that the
kernel estimates of the function, and its first and second deriv-
atives computed with the SSPH method agree well with their
analytical values.

We have also delineated the dependence of the L2 error
norms in the kernel estimates of the function and its first two
derivatives upon the smallest distance between two adjacent
particles for a uniform and a non-uniform distribution of par-
ticles.

Effects of six kernel functions on the accuracy of kernel
estimates of a function, and its derivatives have been stud-
ied. The linear and the quadratic kernel functions that cannot
be used in some meshless methods including the SPH and
the MSPH methods, and the RKPM give good results for
the SSPH method. It is found that two coefficients c1 and
c2 whose values depend upon the rate of decay of a kernel
function determine the accuracy of computed results. The
ranking of the L2 and the H1 error norms is the same as that
of values of these two coefficients for the six kernel func-
tions. We recommend that the revised super Gauss function
with the coefficient a = 1.6, which has the least value of the
error norms be used as the kernel function. The convergence
rate of the error norm for the SSPH method is the same for
each one of the six kernel functions studied herein.

The displacement and the stress fields computed with the
SSPH method in a rectangular elastic plate with a central hole

and pulled axially on two opposite edges are found to agree
well with those obtained from the analytic solution. The error
norm for the solution with the SSPH method is less than that
for the solution computed with the MSPH method.

The numerical solution of the one-dimensional wave prop-
agation in a bar agrees well with the analytical solution of
the problem revealing that the SSPH method captures well
the shock and does not exhibit tensile instability.
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