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We derive an expression relating the axial load, the indentation depth, and the elastic constants of an
orthotropic material, and simplify it to that for a cubic material (e.g., an FCC single crystal). We use this
formula and results of three virtual (i.e., numerical) indentation tests on the same specimen oriented dif-
ferently to find values of the elastic moduli, and show that they agree well with their expected values. We
also give the error in the computed values of the elastic moduli of an FCC crystal caused by the misori-
entation of the specimen during the indentation test. The technique can be generalized to other aniso-
tropic materials.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction loads and the specimen geometry are independent of the axial
Very promising engineering applications of nanocomposites
and nanofilms in miniaturized components have aroused consider-
able interest in finding mechanical properties of these materials. A
commonly used mechanical test for determining elastic moduli of
a material is the indentation test. With continuous improvements
in accurately measuring very small loads and indentation depths,
the technique is being applied to nano-materials which are gener-
ally anisotropic. An interpretation of test results and the extraction
of material moduli are facilitated by analytical expressions relating
the indentation load and the indentation depth. For anisotropic
materials one needs to ascertain values of more than one elastic
constant. Thus either different types of tests (e.g., tension, torsion
etc.) or similar tests on different orientations of the specimen are
needed to find values of the elastic moduli.

Analytical solutions of even linear three-dimensional (3D)
boundary-value problems for elastic bodies are hard to find. Even
though solutions in the form of infinite series (or finite series with
a large number of terms) for some 3D boundary-value problems
are available, they are not easily applicable to test data. A possibil-
ity is to use specimen geometries and test configurations so that
deformations induced can be approximated as either plane strain
or plane stress. The former (latter) is usually applicable when the
specimen dimension in the axial direction is very large (small) as
compared to the other two lateral dimensions, and the applied
ll rights reserved.
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coordinate. Here we study indentation problems when deforma-
tions of the indented body can be approximated as plane strain,
and the indenter can be regarded as rigid. Thus elastic constants
of the indenter material are very large as compared to those of
the material being tested. Furthermore, by restricting indentation
depths to very small values as compared to the smallest dimension
of the specimen, one can use solutions for the half-space to inter-
pret test results.

Doerner and Nix [5] and Oliver and Pharr [12] have analyzed
infinitesimal deformations of a half-space indented by a flat punch,
and a paraboloid indenter, respectively. The Oliver and Pharr [12]
solution has been widely adopted to determine the elastic modulus
of the material from results of indentation tests on nanosize spec-
imens. Doerner and Nix [5] have given an empirical relation to ac-
count for the compliance of the substrate to which the specimen is
perfectly bonded. The deformations of the substrate are usually
considered when the indentation depth exceeds about 30% of the
film thickness. Bhattacharya and Nix [3,4], used the finite element
method to study elasto-plastic deformations during submicron
scale indentations by conical indenters of a thin film bonded to a
substrate. They developed empirical equations to determine the
hardness for both hard-film/soft-substrate and soft-film/hard-sub-
strate systems. Huber and Tsakmakis [7], and Huber et al. [8] used
neural networks, trained by results of the finite element simula-
tions of nanoindentation, to identify values of elastic-plastic and
visco-plastic material parameters.

We note that Vlassak and Nix [17] have provided an expression
for the indentation modulus of an anisotropic solid, and have used
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it to interpret results of indentation experiments. By changing the
orientation of the specimen, they found values of more than one
elastic constant of the material. However, an examination of the
indentation load vs. the indentation depth plots does not reveal
an explicit correlation between the experimental data and the elas-
tic moduli of anisotropic materials. Therefore, an inverse method is
needed to extract values of material elasticities through suitable
post-processing of the test data. Depending upon the number of
independent elastic constants for an anisotropic material, the in-
verse process can be quite complicated. Sasaki et al. [13] combined
the finite element simulation results of nanoindentation tests with
an optimization technique to determine five material parameters
of a transversely isotropic material.

Here we focus on finding values of three elastic constants of a
face centered cubic (FCC) material such as gold, copper, and alumi-
num. By assuming that the specimen can be modeled as a half-
space and its deformations as plane strain, we first derive an
expression for the axial load in terms of elastic constants of the
specimen material and the indentation depth. This relationship
and results of three indentation tests for different orientations of
the specimen enable us to find values of the three elastic constants.
We also quantify the error in values of elastic moduli caused by
misorientation of the specimen during an indentation test.

2. Load-displacement relation for an anisotropic half-space
indented by a rigid circular cylinder

Fan and Hwu [6] and Hwu and Fan [10] have used the Eshelby-
Stroh formalism to analyze a 2D generalized plane strain contact
problem in which a long parabolic cylinder indents a linear elastic,
anisotropic and homogeneous half-space. They found the stress
distribution on the contact surface, and did not provide an explicit
relation between the axial load P and the indentation depth u0. We
derive here such a relation.

A schematic sketch of the contact problem studied here is shown
in Fig. 1. In rectangular Cartesian coordinates, equations governing
generalized plane strain deformations of the half-space are

rij;j ¼ 0; ð1Þ
rij ¼ Cijkluk;l; ð2Þ
Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij: ð3Þ

Here rij is the Cauchy stress tensor, Cijkl an elastic constant of
the material of the half-space, a comma followed by index j indi-
cates partial differentiation with respect to the position xj of a
material point, and a repeated index implies summation over the
range of the index. The length of the cylinder in the x2 -direction
is large as compared to its diameter, the contact width, and the
indentation depth. Hence a generalized plane strain state of defor-
O
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Fig. 1. Schematic sketch of the indentation of an anisotropic half-space by a rigid
circular cylinder.
mation in the x1x3 -plane is considered in the sense that all three
displacement components and the six stress components induced
are presumed not to depend upon x3.

Using Stroh’s formalism [14,15], we can write a general solution
of Eqs. (1)–(3) as

u ¼ AfðzÞ þ AfðzÞ; ð4:1Þ
U ¼ BfðzÞ þ BfðzÞ; ð4:2Þ

where A ¼ ½a1a2a3�; B ¼ ½b1b2b3�; fðzÞ ¼ ½f1ðz1Þ; f2ðz2Þ; f3ðz3Þ�T; za ¼
x1 þ pax2; an overbar over a variable represents its complex conju-
gate, the superscript T denotes the transpose, and pa, (aa,ba)
(a = 1,2,3) are eigenvalues and eigenvectors of the fundamental
elasticity matrix N. That is,
Nf ¼ pf; ð5:1Þ

where f = (a,b) is an eigenvector of the matrix N with eigenvalue p,

N ¼ �T�1RT T�1

RT�1RT � Q �RT�1

" #
ð5:2Þ

and Qik = Ci1k1 = Qki, Rik = Ci1k3 and Tik = Ci3k3 = Tki are 3 � 3 matrices.
The function u represents displacements, and the function U serves
as a potential for stresses. That is

ri1 ¼ �/i;3 ð6:1Þ
ri3 ¼ /i;1 i ¼ 1;3: ð6:2Þ

The holomorphic complex valued function f(z) is to be deter-
mined by satisfying the equilibrium Eq. (1) and the prescribed
boundary conditions.

When the indentation depth u0 is small as compared to the radius
R of the circular cylindrical indenter, the profile of the indenter in the
vicinity of the contact point (0,�u0) in Fig. 1 can be approximated as
parabolic. The pressure on the contact surface between a smooth ri-
gid parabolic indenter x3 ¼ x2

1=2R, and a homogeneous anisotropic
half-space is given by (e.g., see Hwu and Fan [10], Hwu [9])

r33 ¼ �
1
bR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

1

q
; jx1j < a; ð7Þ

where contact extends from x1 = �a to x1 = a, b = (M�1)33, and M�1

= iAB�1. Since the matrix M is Hermitian [16], i.e., M ¼ �MT,
(M�1)33 is a real number. For an orthotropic material

1
b
¼ 1
ðM�1Þ33

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C55ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C33
p

� C13Þ
C11ðC13 þ 2C55 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C33
p

Þ

s
C13 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C33

p� �
ð8Þ

Here Cij is an elastic constant of the orthotropic half-space in the
contracted notation in which the stress and the strain tensors are
written as six dimensional vectors, and the 4th order elasticity ten-
sor Cijkl as a 6 � 6 symmetric matrix. The correspondence between
Cij and Cijkl is given in many books, e.g., see Batra [2].

Barnett and Lothe [1] and Ting [16] have given the following
expression for the displacement field in an orthotropic half-space
due to a line force f ¼ �½ f1 f2 f3 �T.

u ¼ 1
p

ImfAhln z�iB�1fg; ð9Þ

where hln z�i ¼ diag½ln z1; ln z2; ln z3�. For a line load only in the ver-
tical direction, i.e., (f1=f2=0), Eq. (9) gives the following expression
for the vertical displacement of a point of the half-space

u3 ¼ �
f3

p
Im½A31ðB�1Þ13 ln z1 þ A32ðB�1Þ23 ln z2 þ A33ðB�1Þ33 ln z3�:

ð10Þ
Thus for a point on the vertical axis

u3ðx1; 0Þ ¼ �
f3

p
Im½A31ðB�1Þ13 þ A32ðB�1Þ23 þ A33ðB�1Þ33� ln x

¼ f3ðM�1Þ33

p
ln x: ð11Þ
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Fig. 2. (I) Rectangular Cartesian coordinate axes xj aligned with the lattice
directions [100], [010] and [001]; (II)–(IV) rectangular Cartesian coordinate axes
x0i obtained by rotating axes xj through �45� about the x1 -axis, the x2 -axis and the
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For the present contact problem, the displacement of a point on
the vertical axis can be computed from Eq. (11) by setting f3 = r33ds
and integrating the right-hand side of the resulting equation from
�a to +a. The result is

u3ðx; 0Þ ¼ �
ðM�1Þ33

p

Z a

�a
r33ðsÞ ln jx� sjds: ð12Þ

Substituting for r33 from Eq. (7) into Eq. (12), we obtain

u3ðx; 0Þ ¼
1
pR

Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2
p

ln jx� sjds: ð13Þ

Noting that Eq. (13) has been derived without using any displace-
ment type boundary condition, we remove the rigid body transla-
tion by measuring the vertical displacement of a point relative to
that of a reference point (x0,0); e.g., see Johnson [11, p.17]. Thus

u03ðx1;0Þ ¼ u3ðx1;0Þ � u3ðx0;0Þ

¼ 1
pR

Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2
p

ln
x1 � s
x0 � s

����
����ds; ð14Þ

u03ðx0;0Þ ¼ 0, and the prime indicates the displacement of a point
relative to that of the point (x0,0). We choose the reference point
on the free surface of the half-space and far from the contact area,
i.e., x1 >> a.

The indentation depth u0 can be computed from

u0 ¼ �u3ð0;0Þ þ u3ðx0; 0Þ ¼ �
1
pR

Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2
p

ln
jsj

x0 � s
ds

¼ a2

2R
½� ln aþ lnð2x0

ffiffiffi
e
p
Þ� þ O

1
x2

0

� �
ð15Þ

Also, the axial load P per unit length of the indenter found by
integrating Eq. (7) over the contact width is given by

P ¼
Z a

�a
r33ðx1;0Þdx1 ¼

pa2

2bR
: ð16Þ

Solving Eq. (16) for a and substituting for a in Eq. (15), we ob-
tain the following load-displacement relation for the indentation
problem:

�1
b

pu0

P
¼ ln

ffiffiffi
P
p
� ln

ffiffiffiffiffi
P0

p
; ð17Þ

where P0 ¼
2pex2

0
bR .

3. Determination of elasticities of an FCC material

3.1. Method

An FCC single crystal has three independent elastic constants.
With lattice directions [100], [010] and [001] aligned along the
rectangular Cartesian coordinate axes, the 6 � 6 matrix C of elastic-
ities has the form:

C ¼

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

2
666666664

3
777777775

ð18Þ

With respect to rectangular Cartesian coordinate axes x0iði ¼ 1;2;3Þ
obtained by rotating axes xj with the matrix a given by

a ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75; ð19Þ
where aij equals cosine of the angle between x0i and xj, the matrix C0

of elasticities is related to the matrix C by

C0 ¼ QC �Q�1 ð20Þ

where elements of matrices Q and �Q in terms of those of matrix a
are given in Batra [2].

As shown in Fig. 2, besides the xj- axes, we consider three sets of
rectangular Cartesian coordinate axes x0i, namely, those obtained by
rotating the coordinate axes xj through �45� about the x1- axis, the
x2- axis, and the x3- axis. Values of 1/b with respect to these four
sets of coordinate axes are denoted below by (1/b)I, (1/b)II, (1/
b)III, and (1/b)IV, respectively; their values in terms of elements of
the matrix C are given below as Eqs. (21):

1
b

� �
I
¼ 1

b

� �
III
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44ðC11 � C12Þ

C11c

s
C12 þ C11ð Þ ð21:1Þ

1
b

� �
II
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11c=2

p
� C12Þ

C11ðC12 þ 2C44 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11c=2

p
Þ

s
C12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11c=2

p� �
ð21:2Þ

1
b

� �
IV
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C44ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11c=2

p
� C12Þ

cðC12 þ 2C44 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11c=2

p
Þ

s
C12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11c=2

p� �
ð21:3Þ

c ¼ C12 þ 2C44 þ C11 ð21:4Þ

By dividing each side of Eq. (21.3) by the corresponding side of
Eq. (21.2), we obtain

1
b

� �
IV

1
b

� �
II

�
¼

ffiffiffi
2
c

s
: ð23Þ

The three unknowns C11, C12, and C44 can be determined in
terms of (1/b)I or (1/b)III, (1/b)II, and (1/b)IV by simultaneously solv-
ing Eqs. (21.1), (21.2), and (21.3).

We propose the following procedure for finding the three elastic
constants of an FCC material. Perform indentation tests on a sam-
ple of the material with lattice vectors coincident with the three
sets of coordinate axes x0i given above, and find the corresponding
values of (1/b) by using slopes of the axial load vs. indentation
x3 -axis, respectively.
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Fig. 4. Plot of the indentation load vs. the indentation depth for four virtual
experiments on a gold crystal with specimens misoriented by less than 6�.
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curves and Eq. (17). Then solve simultaneously Eqs. (21.1), (21.2),
and (21.3) for C11, C12 and C44.

3.2. Application of the method

We use the proposed method to find three elastic constants of a
single crystal of gold. We perform four virtual (i.e., numerical)
indentation tests on a gold crystal of dimensions 204 ÅA

0

� 102 ÅA
0

with lattice vectors oriented as stated above in Section 3.1. The ra-
dius of the cylinder is taken to be 40 ÅA

0

. The bottom surface of the
layer is kept fixed, the left and the right surfaces are traction free,
and the top surface is indented with a parabolic indenter. During
all simulations, the indentation is kept less than 10.2 ÅA

0

, (i.e., 10%
of the height of the specimen) and the contact width less than
20 ÅA

0

(i.e., less than 10% of the specimen width). These constraints
should minimize the effect of boundary conditions on the left
and the right surfaces, and ensure that the relation (17) between
the axial load and the indentation depth for the half-space derived
in Section 2 is valid.

We assume that a gold crystal can be modeled as a continuum,
and plot results of our virtual tests in the form of the indentation
load vs. the indentation depth curves as shown in Fig. 3. Eq. (17)
implies that the plot of ln

ffiffiffi
P
p

vs. pu0/P should be a straight line.
Accordingly, we fit straight lines by the least squares method to
the data plotted in Fig. 3 and find slopes of the lines with the fol-
lowing results

ð1=bÞI ¼ 40:1GPa
ð1=bÞII ¼ 53:3GPa
ð1=bÞIII ¼ 41:0GPa
ð1=bÞIV ¼ 49:0GPa

ð24Þ

Since results for tests 1 and 3 should be the same, we take aver-
age of values of (1/b)I and (1/b)III, and set (1/b)I = (1/b)III = 40.55 G-
Pa. Substitution from Eq. (24) into Eqs. (21.1)–(21.3) and solving
simultaneously the three resulting equations, we get

C11 ¼ 179:3GPa; C12 ¼ 154:5GPa; C44 ¼ 45:3GPa

which differ by less than 3% from the values of C11, C12 and C44 used
as input into the code.

3.3. Effect of misorientation of the specimen

In a laboratory, there may be errors introduced in rotating the
specimen through the desired angle. Accordingly, we conducted
another set of numerical tests in which the angle of rotation was
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Fig. 3. Plot of the indentation load vs. the indentation depth for four virtual
experiments on a gold crystal.
set randomly between �39� and �51�. Results of these simulations
are depicted in Fig. 4, and values of material parameters deter-
mined from results of these simulations are C11 = 166.1 GPa,
C12 = 142.6 GPa, C44 = 47.4 GPa, which differ from their values in-
put into the code by less than 10.3%. Thus the misorientation of
the crystal by 6� in the indentation tests can affect values of the
three elastic constants by 10%.

3.4. Remarks

One possible difficulty in adopting the proposed procedure to
physical experiments is to use a long cylindrical indenter. For com-
monly used conical and spherical indenters, deformations of the
indented body can not be approximated as 2D. Whereas one can
deduce the load-indentation plots through numerical experiments,
the identification of material elasticities becomes an iterative pro-
cess. For finding all three elastic constants of an FCC metal, the iter-
ative process can become computationally expensive. The situation
is further compounded if the lattice orientation cannot be deter-
mined a priori.

The proposed technique can also be applied to find elastic
constants of materials of other symmetries. For example, one will
need five (nine) suitably selected linearly independent orienta-
tions of the specimen for a transversely isotropic (an orthotropic)
material so that all elastic constants appear at least once in the
expression for the slope of the load vs. indentation curve. Since
b given by Eq. (8) is a nonlinear function of the material elastic-
ities, one will need to solve simultaneously a system of five or
nine nonlinear algebraic equations to evaluate the material elas-
ticities. If necessary, these equations can be solved by an iterative
method.

4. Conclusions

We have developed an expression relating the axial load to
the depth of indentation for plane strain deformations of an
anisotropic half-space indented by a rigid parabolic indenter.
This expression involves material elasticities. By using results
of three indentation tests on a face centered cubic material with
each test performed on a differently oriented specimen, we ob-
tain three linearly independent equations for the three elastic
constants. It is shown that when the indentation depth and
the contact width are less than 10% of the thickness and the
width of the thin layer of the specimen bonded to a relatively
rigid substrate, then the proposed inverse method yields very
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good values of the three elastic constants of a face centered cu-
bic material.
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