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a b s t r a c t

We use molecular mechanics simulations with the tight-binding potential to study local and global insta-
bilities in initially defect-free nanosize rectangular prismatic specimens of gold deformed in tension/
compression and simple tension/compression. Whereas in simple tension/compression atoms on end
faces are constrained to move axially but are free to move laterally and the cross-sectional dimensions
of end faces can change, in tension/compression all three components of displacements of atoms on
end faces are prescribed and the cross-section of an end face does not change. The three criteria used
to delineate local instabilities in a specimen are: (i) a component of second-order spatial partial deriva-
tives of the displacement field has large value relative to its average value in the body, (ii) the minimum
eigenvalue of the Hessian of the potential energy of an atom is negative, (iii) a relatively high value of the
common neighborhood parameter. A specimen becomes globally unstable when its potential energy
decreases noticeably with a small increase in its deformations. It is found that the three criteria for local
instability are met essentially simultaneously at the same atomic position. Deformations of interior
points of a specimen are different when it is deformed in simple tension/compression from those in ten-
sion/compression. It is found that the initial unloaded configuration (or the reference configuration) of
the minimum potential energy has significant in-plane stresses on the bounding surfaces and non-zero
normal stresses at interior points. This initial stress distribution satisfies Cauchy’s equilibrium equations
for a continuum. In deformations of a nanobar studied here, the yield stress defined as the average axial
stress when the average axial stress vs. the average axial strain curve exhibits a sharp discontinuity
depends upon the specimen size. It is shown possibly for the first time that deformations of the specimen
are reversible if it is unloaded prior to yielding but have a permanent strain if unloaded after it has
yielded. Because of residual stresses in the reference configuration, the average axial stress at yield in
compression is nearly one-half of that in tension. The slope of the average axial stress vs. the average axial
strain curve during unloading after it has yielded is the same as that during initial loading up to the yield
point.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Mechanical properties of materials with one or more dimen-
sions of the order of nanometers are of great interest due to the
potential use of nanosize specimens as reinforcements in fabricat-
ing composites for structural applications and in the development
of electrical, thermal and optical systems. Materials at the nano-
scale have special features related mostly with the prominent
influence of stresses induced in free surfaces and the residual stres-
ses developed in the interior of the body.

The influence of surface and residual stresses can be important
on the mechanical properties of a nanostructure. With a decrease
in cross-sectional dimensions of a nanowire the interatomic spac-
ing between atoms near the free surfaces decreases from that in a
perfect crystal. The variation in the interatomic forces develops
ll rights reserved.

: +1 540 231 4574.
stresses in the specimen that may affect its response to subsequent
loads. It has been observed in molecular mechanics/molecular
dynamics (MM/MD) simulations that in-plane tensile stresses on
the bounding surfaces generate compressive normal stresses in
the interior of a nanowire [1,2].

Diao et al. [1] have used the modified embedded atom method
(EAM) potential [3] to simulate tensile deformations of gold spec-
imens of square cross-section oriented in the [1, 0, 0] and [1, 1, 1]
crystallographic directions. They computed the effective Young’s
modulus E and Poisson’s ratio m for different cross-sectional areas.
For 3 nm thick nanowires oriented in the [1, 0, 0] direction, E
equaled 42.3 GPa. We note that E for the bulk gold material also
equals 42.3 GPa. However, for nanowires less than 1.83 nm thick
E increased to 127 GPa. The local virial stress tensor computed in
the initial unloaded relaxed or the reference configuration gave
in-plane tensile stresses in nanowire’s bounding surfaces and com-
pressive stresses in the interior. For 2 nm thick wires, values of E at
the four corners of the cross-section were 3.5 times of those at
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interior points. For nanowires in the [1, 0, 0] direction, the magni-
tude of the compressive stress at an interior point exceeded
1.6 GPa which is the yield stress in compression for a bulk material.

Gall et al. [4] have studied the effect of free surfaces in rhombic
and multishell nanowires. The rhombic nanowires had [1, 1, 0] axis
orientation and {1, 1, 1} side surfaces while the multishell wires
were composed of a single atomic chain surrounded by a helix of
six atoms. MD simulations of tensile loading using the EAM poten-
tial were performed until yield signified by a sharp discontinuity in
the average axial stress–average axial strain curve. Young’s modu-
lus of a multishell wire was found to be greater than that of a
rhombic nanowire. For a 0.7 nm diameter multishell wire the aver-
age axial yield stress and the average axial yield strain were 13 GPa
and 14%, respectively. For a 2.2 nm diameter rhombic nanowire the
average axial yield stress and the average axial yield strain were
3 GPa and 7%, respectively. Gall et al. [4] explained that the
{1, 1, 1} surfaces contract without the application of an external
load generating compressive stresses in the interior of the wire.
The effect of surface stresses is negligible for macroscopic bodies
but is significant for specimens of diameter less than 10 nm. They
pointed out that the initially compressive stresses cause the exper-
imentally observed asymmetry in the yield stress for small diame-
ter specimens deformed in tension and compression. In a tension
test after the external loads have overcome the internal compres-
sive stress the wire fails due to a tensile stress reaching a limiting
value. Although free surfaces contribute to the generation of inter-
nal compressive stresses that increase the strength of the structure
under tension, points with high compressive stresses and other
geometric irregularities are potential sites for the nucleation of
instabilities.

Diao et al. [5] studied the effect of free surfaces on the yielding
of gold nanowires and proposed that points where the resolved
shear stress reaches a critical value are unstable points, and dislo-
cations nucleate there. Isothermal MD simulations at 2 K of tensile
and compressive deformations of gold specimens of square cross-
section with [1, 0, 0] and [1, 1, 1] axial orientation were performed
using periodic boundary conditions in the length direction which
equaled three times the thickness of the nanowire. For [1, 0, 0]
nanowires less than 2.45 nm in thickness some material points in
the reference configuration had yielded. With an increase in the
axial strain imposed upon the reference configuration of the
4 nm thick nanowire oriented in the [1, 0, 0] direction, the average
axial yield strain and the average axial yield stress equaled ��4.8%
and ��0.7 GPa, respectively, in compression, and �10% and
�4 GPa, respectively, in tension. For the same nanowire oriented
in the [1, 1, 1] direction the average axial yield stress in tension
and compression was �5 GPa. The yielding was attributed to the
nucleation and propagation of {1, 1, 1} [1, 1, 2] partial dislocations
from edges of the nanowires. The Schmidt factor for a bulk material
at the onset of yield for the most favorable slip system in the
[1, 0, 0] nanowire is larger in compression than that in tension
causing the [1, 0, 0] nanowire to yield at a lower value of the axial
stress in compression than that in tension. However, the Schmidt
factor for the most favorable slip system in the [1, 1, 1] nanowire
is larger in tension than that in compression but the residual com-
pressive stresses counteract this effect producing an equal value of
the yield stress in tension and compression. Even though Diao et al.
[5] found that the critical resolved shear stress does not change
appreciably with the cross-sectional area of the nanowire and that
it can be used as a criterion for the nucleation of defects, Liu et al.
[6] and Miller and Rodney [7] have stated that the slip system with
the highest resolved shear stress is not always activated at the
yield point.

Zhang et al. [2] using the linear elasticity theory considered
effects of the surface and the initial stresses to find analytical
expressions for the effective Young’s modulus, strains, stresses,
and the yield stress in tension/compression for an isotropic nano-
wire with a circular cross-section and unit length. They found that
the effective Young’s modulus and, in general, elastic constants of
the nanowire do not depend upon the residual stresses. Assuming
the von Mises yield criterion, they derived an expression for the
yield stress in tension and compression which showed that the ini-
tial stress is responsible for the asymmetry observed in the yield
stress in tension and compression. It was also found that the influ-
ence of elastic properties of the surface and of the initial stresses
on the effective elastic properties of a nanowire and on the yield
stress diminish with an increase in the radius of the nanowire. It
seems that the assumptions of the material being isotropic and
residual stresses being uniform are not realistic for a nanowire.

In the quest for determining the strength of materials at small
scales, an important problem is the investigation of the material
instabilities and the failure of the structures under external loads.
A possibility is to assume that a structural element has failed when
stresses or strains at a material point have just reached the level to
make its deformations inelastic and the material point cannot re-
turn to its original state upon complete unloading of the structure.
In an atomic system, the onset of an irreversible deformation is
termed instability. Although atomic systems are discrete contin-
uum concepts have been used to characterize the onset of irrevers-
ible deformations [6,10,11,16].

In a homogeneous continuous body, a strong singularity is asso-
ciated with either the deformation gradient or the displacement
becoming discontinuous across a surface passing through a mate-
rial point (e.g., see Truesdell and Noll [8]). The singularity is called
weak when both displacements and their first-order spatial deriv-
atives are continuous but a second or a higher-order spatial deriv-
ative of the displacement is discontinuous at one or more points of
the body. The initiation of instability at a point is synonymous with
an acceleration wave not propagating through that point [9]. This
is equivalent to the acoustic tensor evaluated at that point having
a zero eigenvalue or a null determinant. van Vliet et al. [10] and
Steinmann et al. [11], amongst others, have used it to characterize
local instabilities in an atomic system.

The hypothesis of the acoustic tensor becoming singular at the
onset of a local instability is equivalent to assuming that the matrix
of instantaneous values of elasticities, defined as the second-order
derivatives of the strain energy density with respect to the Green-
St. Venant strain tensor, ceases to be positive-definite. In the pho-
non theory the acoustic tensor is called the dynamical matrix and
is a discrete quantity. However, in continuum mechanics the
acoustic tensor is defined at every point in the continuum and is
a continuous function of the deformation gradient. For discrete
systems Lu and Zhang [12] have used an atomistic counterpart of
the continuum acoustic tensor, called the atomic acoustic tensor,
to study the nucleation of local instabilities. It is equivalent to
requiring that the energy of every atom in the system in equilib-
rium be convex for variations of position vectors of other atoms gi-
ven by a mono-mode perturbation.

Energy principles have also been applied to the study of the sta-
bility conditions in atomic structures. The configuration of a sys-
tem in equilibrium is globally stable if its potential energy in
that configuration is the minimum. Kitamura et al. [13] studied
delamination of a nanofilm from a substrate and found that the
displacement at which the minimum eigenvalue of the Hessian
of the potential energy of the system vanished equaled that at
which the load–displacement curve became discontinuous (the
displacement abruptly increased with an small increase in the ap-
plied load). The same criterion has been used to analyze strengths
of thin films and cracked bodies [14].

Instabilities in an atomic system have also been studied by the
normal mode analysis [15] which exploits symmetries of the
system to reduce the number of degrees of freedom (d.o.f.). For a
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system having no spatial symmetries, the normal mode analysis is
equivalent to the method used by Kitamura et al. [13,14]. For a sys-
tem having no symmetries, the reduction in the number of d.o.f. is
not possible. The implementation of a criterion which includes all
d.o.f. is prohibitive for a large system because of difficulties in find-
ing an eigenvalue of a Na � Na sparse matrix, where Na is the num-
ber of d.o.f. after the elimination of all prescribed displacements.
Miller and Rodney [7] and Pacheco and Batra [16] have considered
the Hessian of the potential energy of a subset of atoms to charac-
terize a local instability.

Regions where deformations of an atomic system first become
unstable have also been identified by using geometric measures
of the local atomic structure. For example, for a face-centered cubic
crystal Kelchner et al. [17] used the centrosymmetry parameter
that measures relative positions between six pairs of nearest atoms
situated on opposite sides of the atom whose centrosymmetric
parameter is being calculated. Other quantities used include the
slip vector [18], the atomic bond rotation angle [19], the common
neighborhood parameter (CNP) [20], and invariants of the infini-
tesimal strain tensor [21]. Hartley and Mishin [22] computed the
local deformation gradient by employing the least squares method
and the Cauchy–Born rule, and used contour plots of components
of the Nye tensor to identify screw and edge dislocations in a sys-
tem of copper atoms. Since the integration of the Nye tensor over
an area enclosed by Burger’s circuit equals the Burger vector, Hart-
ley and Mishin [22] asserted that this technique identifies well dis-
locations. Zimmerman et al. [18] used the slip vector for
identifying dislocations and finding an approximation of Burger’s
vector.

Here we use the tight-binding (TB) potential and MM simula-
tions to study deformations of a system of gold (Au) atoms, and
use (i) second-order partial derivatives with respect to space vari-
ables of the displacement field, (ii) the CNP, and (iii) eigenvalues of
the Hessian of the local potential energy to characterize the onset
of local instabilities. We also investigate whether or not these three
criteria are met simultaneously at a point, and the permanent axial
strain induced in the specimen subsequent to the complete re-
moval of the applied load. Deformations simulated include ten-
sion/compression and simple tension/compression of prismatic
specimens of different sizes and aspect ratios. Values of the first-
and the second-order partial derivatives of displacement with re-
spect to space variables are found by using the modified smoothed
particle hydrodynamics (MSPH) method [23]. We find the local
Hessian of the TB potential by considering the bond energy be-
tween an atom and other atoms included in its first shell of neigh-
bors that contains atoms located within one atomic distance from
it. The local instability criterion of the vanishing of an eigenvalue of
the local acoustic tensor is not used here since in shear and simple
shear deformations of a gold crystal Pacheco and Batra [16] found
that it gives results inconsistent with those obtained by using the
other criteria.

Values of the average Cauchy stress tensor are computed by
using four definitions of the average stress tensor. The local Cauchy
stress tensor is found with Hardy’s method [24]. The von Mises
stress and the maximum shear stress at atomic positions where
instabilities were predicted by the vanishing of eigenvalues of
the Hessian of the local energy are found to be much larger than
their average values in the specimen. Unstable points (atoms) are
located, in general, beneath free surfaces in zones of high stress
gradients. The average axial yield stress is found to increase with
a decrease in the specimen size but local stresses are found to be
considerably high in certain zones in large samples.

The global instability of a system is characterized either by a
sharp discontinuity in the average axial stress–the average axial
strain curve or the strain energy density of the system ceasing to
be a minimum. The latter is indicated by a 10-fold increase in
the number of iterations required to find the configuration of the
minimum potential energy.

The present work extends to tensile and compressive deforma-
tions our earlier work [16] on the analysis of local and global insta-
bilities in three Au cubic specimens deformed in shear and simple
shear. We also delineate effects of different boundary conditions
on the end faces of prismatic specimens of aspect ratios (length/
width) varying from 1 to 20, and show the existence of permanent
strains after a yielded specimen has been completely unloaded.
However, there is no residual permanent strain left in a specimen
unloaded from a configuration just before it yields.
2. Molecular mechanics simulations

2.1. Molecular mechanics potential

Interatomic potentials used to study mechanical deformations
of a nanosize specimen include the Finnis–Sinclair potential [25],
the embedded atom method (EAM) [26,27], the effective-medium
theory [28], the glue models [29], and the tight-binding (TB) poten-
tial [30]. We use the TB potential to represent the internal energy
and interatomic forces in an atomic system because it has been
successfully used to characterize the mechanical behavior of Au
nanowires [31–33]. Pu et al. [33] used three semi-empirical poten-
tials, namely, the EAM potential [27], the glue model potential [29],
and the TB potential [30], and compared results of MD simulations
for a tension test on an Au cluster composed of 256 atoms. The
accuracy of a potential was determined by comparing the potential
energy in the reference configuration and the ultimate force at the
breaking point with corresponding values from the Density Func-
tional Theory (DFT). Predictions from the TB potential were found
to agree well with the DFT results and the experimental data of Ru-
bio-Bollinger et al. [34] for the force at the breaking point for an
atomic chain of Au atoms.

The TB potential is given by

V ðiÞ ¼ �
XN

j¼1
j–i

f2 exp �2D
rðijÞ

r0
� 1

� �� �0
BB@

1
CCA

1=2

þ
XN

j¼1
j–i

M exp �~P
rðijÞ

r0
� 1
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: ð1Þ

In Eq. (1), V(i) equals the potential energy of atom i, N the total
number of atoms in the system, r0 the first-neighbor distance
(a0=

ffiffiffi
2
p

, where a0 is the lattice parameter), rðijÞ the magnitude of
the position vector between atoms i and j, and f, D, ~P and M are
constants characterizing a material. These constants are obtained
by minimizing an error function containing differences between
the experimentally obtained material properties and predictions
of the TB potential. For a FCC crystal in equilibrium at 0 K and ori-
ented with the coordinate axes [1, 0, 0], [0, 1, 0] and [0, 0, 1], prop-
erties used in the fitting procedure for these constants are [30]: the
cohesive energy Vc, the lattice parameter a0, the elastic constants,
and the equilibrium equations. Values of material parameters for
Au derived from the fitting procedure are:

M ¼ 0:2061 eV; f ¼ 1:7900 eV; ~P ¼ 10:2290;

D ¼ 4:0360; r0 ¼ 2:8850 Å:

Since V(i) given by Eq. (1) is essentially zero for rðijÞ > 5.5 Å, the
summation in Eq. (1) is carried out for those values of j for which
rðijÞ <6 Å to reduce the computational cost. We note that the TB po-
tential and its partial derivatives with respect to rðijÞ are continuous
at the cut off radius of 6 Å within the accuracy of the machine.
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The potential energy V of a system of atoms equals the sum of
the energy V(i) of all atoms in the system. That is

V ¼
XN

i¼1

V ðiÞ: ð2Þ

The interaction force vector f(ij) between atoms i and j equals
the negative of the partial derivative of the potential energy with
respect to r(ij), or

f ðijÞa ¼ � @V ðiÞ

@rðijÞ
þ @V ðjÞ

@rðjiÞ

 !
rðijÞa

rðijÞ
: ð3Þ

Here and below, the index a ranges from 1 to 3, and f ðijÞa equals the
component of f(ij) along the xa-coordinate axis of a rectangular
Cartesian coordinate system.

2.2. Stresses

For a system comprised of N atoms at 0 K, average values �rab of
components of the Cauchy stress tensor are computed from the
relation

�rab ¼
1

2XT

XN

i¼1

XN

j¼1
j–i

f ðijÞa rðijÞb ; ð4Þ

where XT equals the volume occupied by the system.
Hardy [24] proposed the following expression for the Cauchy

stress tensor for a quasi-static problem:

r ¼ �1
2

XN

i¼1

XN

j¼1
j–i

rðijÞ � f ðijÞBðijÞðRÞ; ð5Þ

where

BðijÞðRÞ �
Z 1

0
WðkrðijÞ þ rðjÞ � RÞdk: ð6Þ

For the case where W is a radial step function, B(ij) represents a frac-
tion of the atomic bond between atoms i and j that is contained in a
representative volume defined around each material point R. The
function W (units of this function are 1/L3) satisfies following con-
ditions [35]:

(i) WðrðiÞ � RÞ has a global maximum at rðiÞ ¼ R.
(ii) WðrðiÞ � RÞ ! 0 as jrðiÞ � Rj ! 1.

(iii) WðrðiÞ � RÞ is smooth and non-negative.
(iv)

R
X WðrðiÞ � RÞdX ¼ 1.

Zimmerman et al. [36] used Eq. (5) to compare the local Cauchy
stress tensor with the local virial stress tensor and analyzed the
influence of two different localization functions. Simple tensile
deformation of a system of 3072 copper (Cu) atoms with energetics
described by the EAM potential were analyzed using periodic
boundary conditions on all bounding surfaces. Two bond functions,
a radial step and a cubic spline, were used. The averaging volume
X(i) in Eq. (5) around each atomic position was taken to be a sphere
of radius RC . It was shown that the Cauchy stresses computed with
the step function decreased to zero as RC was increased, and fluc-
tuations in the normal stress components were significant for RC

equal to the lattice parameter. However, the amplitude of these
fluctuations was effectively suppressed to zero with the cubic
spline function taken as the bond function.

2.3. Strains

Mott et al. [37] studied three dimensional (3D) deformations of
an atomic system, and interpolated displacements using piece-
wise-linear continuous basis functions defined on a Delaunay tes-
sellation of atomic positions. Falk [38] used the finite-difference
method to compute infinitesimal strains using relative displace-
ments between two neighboring atoms. Zimmerman et al. [39]
used the least squares method to find displacement gradients from
positions of atoms in the current and the reference configurations.

We employ the MSPH method [23] to compute the spatial dis-
tribution of the deformation gradient F and spatial gradients, G, of
F from positions of atoms in the current and the reference config-
urations. The Cauchy–Born rule [40–42] states that for a crystal
with a simple Bravais lattice, relative position vectors r(ij) and
R(ij) between atoms i and j in the current and the reference config-
urations are related by r(ij) = F(i)R(ij), where F(i) is the deformation
gradient at the position of atom i in the reference configuration.
To partially account for non-local interactions in continuum
mechanics, Kouznetsova et al. [43] also considered G in the kine-
matic description of the deformation. We use components of the
tensor G, the second-order spatial derivatives of displacements,
to characterize local instabilities in an atomic system.

While describing below briefly the MSPH method till Eq. (11),
we use X and X(i) to denote, respectively, position vectors of a gen-
eric point and point i in an Euclidean space. In the MSPH method, a
continuously differentiable function u(X) (e.g., the position vector
component rðiÞa ) is first expanded in finite Taylor series. The
three-term Taylor series approximation of u(X) at the point
n = (n1, n2, n3) in the neighborhood of the point X = X(i) =
ðXðiÞ1 ;X

ðiÞ
2 ;X

ðiÞ
3 Þ is

uðnÞ � uðXðiÞÞ þ @u
@XðiÞa

ðna � XðiÞa Þ þ
1
2

@2u
@XðiÞa @XðiÞb

ðna � XðiÞa Þðnb � XðiÞb Þ;

ð7Þ

where @u=@XðiÞa ¼ ð@u=@XaÞjX¼XðiÞ . To evaluate the function u(X) and
its first- and second-order partial derivatives at the point X(i), we
multiply both sides of Eq. (7) with a non-negative kernel function
W(|X � n|, h) of compact support, and by its first- and second-order
partial derivatives, W,a(|X � n|, h) and W,ab(|X � n|, h); here
W;a ¼ @W=@na and W;ab ¼ @2W=@na@nb, and h is the smoothing
length which determines the size of the compact support of the ker-
nel function W. The magnitude of h usually equals three times the
atomic spacing. For a 3D problem one needs at least ten distinct
points within the compact support of W(|X � n|, h). We integrate
the resulting equations with respect to n over the volume XT

R occu-
pied by the system in the reference configuration, employ the posi-
tion X(i) of point i as an integration point, and volumes associated
with it as the corresponding weight to obtain a set of ten algebraic
equations for u(X), u,a(X) and u,ab(X). Setting uðXÞ ¼ rðiÞa gives val-
ues of F and G at the point X(i). Unless the function W(|X � n|, h) is a
constant over its compact support, the influence of displacements of
point j on values of F and G at the point X(i) occupied by the point i
depends upon the relative values of W(|X � n|, h) at points i and j.
For a 3D problem, one needs to solve three systems of ten simulta-
neous linear algebraic equations to find F and G at a point. We recall
that local instabilities are characterized by comparing the value of G
at a point with its average value over the entire domain. Thus it is
not necessary to estimate truncation errors in using the finite Taylor
series (7) during the computation of G.

We use the following cubic spline function for W:

WðsÞ ¼ 1

ph3

1� 3
2 s2 þ 3

4 s3
� �

; s 6 1
1
4 ð2� sÞ3;1 < s 6 2
0;otherwise

8><
>: ; ð8Þ

s ¼ jX � nj
h

¼ r
h
: ð9Þ
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From F(i) at the point x(i), we evaluate there the Almansi–Hamel
strain tensor e(i) from

eðiÞab ¼ ð1=2Þ dab � ðF�1ÞðiÞ/aðF
�1ÞðiÞ/b

� �
; ð10Þ

where dab is the Kronecker delta. The volume averaged value, �e, of
this tensor for the system is defined by

�eab ¼
1
XT

Z
XT

eabðxÞdX ¼
XN

i¼1

XðiÞ

XT eðiÞab; ð11Þ

where XðiÞ and XT equal, respectively, the volume assigned to point i
and the total volume of the system in the deformed configuration.

We set XðiÞ equal to the Voronoi volume associated with atom i.
An approximation of the Voronoi volume is given by (e.g., see [33])

XðiÞ ¼ 4p
3

a3
i ; ai ¼ kv

PNe
j¼1
j–i

ðrðijÞÞ�1

PNe
j¼1
j–i

ðrðijÞÞ�2 : ð12Þ

Here Ne equals the number of atoms in the neighborhood of atom i
for which rðijÞ 6 ð

ffiffiffi
3
p

=2Þa0, a0 is the lattice parameter, and we set the
constant kv = 0.55 found by computing the Voronoi volume of an
atom at the centroid of the specimen, and equating it to the volume
given by Eq. (11).

2.4. Average stresses

For a continuous body, the average value over volume X of the
Cauchy stress tensor defined by

�rab ¼
1
X

Z
X
rabdX; ð13Þ

can be written as

�rab ¼
1
X

Z
@X

ra/xbn̂/dS; ¼ 1
2X

Z
@X
ðtaxb þ tbxaÞdS; ð14Þ

where n̂ is a unit outward normal to the boundary @X of X, t ¼ n̂ � r
is the surface traction, and we have used the divergence theorem
and the balance of linear momentum with null body forces. Thus
the average Cauchy stress tensor multiplied by the volume of the
region occupied by the body equals the first moment of tractions
acting on the bounding surfaces of the body.

For a discrete system, Eq. (14) can be written as

�rab ¼
1
XT

XNb

i¼1

xðiÞb f ðiÞa ; ð15Þ
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Fig. 1. Schematics of the initial, the relaxed (reference), the unrelaxed deformed,
and the current (deformed) configurations of an atomic system.
where Nb equals the number of atoms on the bounding surface of
the region whose deformations are being studied.

Assuming that the volume assigned to each atom is the same,
Eq. (4) becomes

�rab ¼
1
N

XN

i¼1

1

2XðiÞ
XN

j¼1
j–i

f ðijÞa rðijÞb ¼
1
N

XN

i¼1

xðiÞab ð16Þ

where

xðiÞab ¼
1

2XðiÞ
XN

j¼1
j–i

f ðijÞa rðijÞb ð17Þ

is the dipole force tensor [44]. However, for a finite size specimen,
Eq. (16) is approximately valid since the volume assigned to an
atom on the bounding surface equals ½ of that assigned to an atom
in the interior of the body, and the volume of an atom at a vertex of
the region equals 1/8th of that for an interior atom. For a system
having a large number of atoms, Eqs. (4) and (16) will give
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Fig. 2b. For the minimization of the total potential energy with the CG method,
variation with the number of iterations of the L1-norm of the gradient of the total
potential energy of three cubic samples of different sizes.



Table 1
Values of the average axial stress and the average axial strain at the yield point for
specimens with different L/H ratios deformed in tension and compression.

L/H Number of atoms Tension Compression

ryield
yy (GPa) eyield

yy (%) ryield
yy (GPa) eyield

yy (%)

1 3430 7.317 9.597 �3.698 �7.789
3 9928 6.481 9.745 �1.783 �6.182
5 6787 6.344 9.809 �1.788 �6.764
10 32,671 6.256 9.883 �1.704 �5.460
20 65,883 6.242 9.942 �1.209 �3.245
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essentially the same values of average stresses. However, for a small
system with a large number of atoms on the bounding surfaces
compared to those in the interior, average stresses computed from
these two equations will differ.

2.5. Molecular mechanics simulations

We start numerical simulations by assigning the initial position
vector XðiÞl of each atom in the system in a perfect lattice configu-
ration (cf. Fig. 1). Without applying any external force, each atom
is allowed to move freely till the potential energy of the system
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Fig. 3. Evolution with the average axial strain e of the average values of
components of the Cauchy stress tensor for the tension/compression tests for
different L/H ratios. (a) ryy; (b) rxx.
has been minimized by using the conjugate gradient (CG) with
warranted descent technique [45]. The minimization procedure is
stopped when the magnitude of each component of the gradient
of the internal energy at every atom in the system equals at most
1 � 10�8 eV/ÅA

0

. The position vector of an atom in this relaxed con-
figuration is denoted by XðiÞR , and this configuration is taken as
the reference configuration. This is similar in principle to annealing
a macroscopic specimen before conducting a mechanical test.
However, for a nanosize structure, this relaxation process may in-
duce residual stresses whereas the annealing process is designed to
eliminate them.

For three cubic specimens of Au oriented with crystallographic
planes of the {1, 0, 0} family and different number of atoms Fig. 2a,
b shows the variation with the number of iterations in the CG
method of the total energy fraction and the norm of the gradient
of the total potential energy during the minimization process.
The energy fraction equals the ratio of the total potential energy
Vls in the current iteration to that (VI) in the initial configuration.
The general trend is that as the size of the sample increases the
total potential energy fraction decreases. For the specimen with
3480 atoms the total potential energy in the relaxed configuration
differs by �0.37% from that in the initial configuration. A vanishing
L1-norm of the gradient of the total potential energy is an
-0.05 0 0.05 0.1-2

-1

0

1

2

3

4

5

6

7

Axial strain [ Å/Å ] 

A
xi

al
 s

tre
ss

 σ
yy

 [G
P

a]

Eq. (2.5)
Eq. (3.10)
FORCE/AREA

(4)
(16)
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Table 2
Values of the average axial stress and the average axial strain at the yield point for
specimens with different L/H ratios deformed in simple tension and compression.

L/H Simple tension Simple compression

ryield
yy (GPa) eyield

yy (%) ryield
yy (GPa) eyield

yy (%)

1 5.134 7.928 �2.498 �8.345
3 5.050 8.119 �1.784 �6.643
5 4.996 8.117 �1.810 �6.897
10 4.990 8.086 �1.671 �5.157
20 4.618 7.584 �1.387 �3.874
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indication that all particles (atoms) in the specimen have reached
their equilibrium positions. In general, the number of iterations
needed to minimize the potential energy increases with an in-
crease in the specimen size.

Subsequently, after each increment in the prescribed displace-
ments of atoms on the end faces of the specimen, the total poten-
tial energy is minimized. The change in the potential energy of the
system from that in the reference configuration equals the strain
energy required to deform the body or the system of atoms. The
process is continued till atoms on the end faces have been given
the desired axial displacement.

In problems studied here, either an atom on a bounding surface
has a displacement component prescribed or the corresponding
component of the external force applied there is zero.

3. Instabilities in tensile and compressive deformations

We simulate tensile and compressive deformations of Au crys-
tals having a square cross-section of side H = �37 Å and length L
with the aspect ratio L/H varying from 1 to 20; the number of
atoms in a specimen is listed in Table 1. Each specimen is oriented
with the coordinate planes {1, 0, 0}, {0, 1, 0} and {0, 0, 1}. For the
tension/compression tests, atoms in the reference configuration lo-
cated on planes Y = Ymin and Y = Ymax are constrained from moving
in the X- and the Z-directions while the Y-displacement is
prescribed in increments of 0.25 Å. For the simple tension/com-
pression tests, atoms on planes Y = Ymin and Y = Ymax have Y-dis-
placement prescribed; those located on the centroidal line
parallel to the X-axis also have null Z-displacements, and atoms
located on the centroidal line parallel to the Z-axis also have null
X-displacements. Thus all cross-sections of a specimen are allowed
to expand or contract. Once a discontinuity in the strain energy
density vs. the average axial strain curve is observed simulations
are restarted from the immediately preceding displacement incre-
ment with the prescribed Y-displacement incremented by 0.1 Å. In
all simulations, there are no external forces applied on the four lat-
eral surfaces.

3.1. Average stresses and strains

3.1.1. Tension/compression
For different L/H ratios Fig. 3a and b shows the variation with

the average axial strain e (change in length per unit initial length)
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Fig. 6. For different values of L/H, evolution with the average axial strain e of the
average value of ryy component of the Cauchy stress tensor for the simple tension/
compression tests.
of average values of rxx and ryy components of the Cauchy stress
tensor computed using Eq. (4). It is observed that the variation
with e of the average ryy stress is the same for L/H P 3. For L/
H = 1 all normal stresses are of the same order of magnitude show-
ing a very different behavior as compared to that for samples hav-
ing L/H P 3. For a square cross-section rzz equals rxx. Note that
atoms on the end faces are constrained to move axially only; thus
these cross-sections do not change. With an increase in L/H, the
average values of rxx and rzz decrease and are nearly 1/10th of
the average value of ryy. The average values of all shear stresses
are negligible till discontinuities in the ryy vs. e curve are observed.
Subsequent to the occurrence of these discontinuities, values of lo-
cal shear stresses are comparable to values of the local normal
Fig. 7. For L/H = 10, comparison between different measures of the average Cauchy
stress tensor in the simple tension/compression tests; Eqs. (4) and (16) and the
mechanics of materials approach (force/area).
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stresses in regions close to edges and vertices of the specimen. In
Table 1 we have listed, for different values of L/H, average values
of ryy and e at yield identified by a sharp drop in the average axial
stress for an infinitesimal increase in the average axial strain. Val-
ues of the average axial yield stress and the corresponding average
axial strain for L/H P 3 for tension are �6.2 GPa and �9.8%, respec-
tively. However, values of the average axial stress and the average
axial strain at the yield point in compression for specimens with L/
H = 1 and 20 differ noticeably from those for specimens with L/
H = 3, 5 and 10. In compression, the magnitude of the average yield
stress varies from 3.7 GPa to 1.2 GPa, and of the average axial strain
at yield from 7.8% to 3.2%; the higher values are for L/H = 1.

For the same L/H ratio asymmetry in the yield stress in tension
and compression is apparent from values listed in Table 1 as was
also found by Diao et al. [1] and Zhang et al. [2]. This asymmetry
is attributed to initial stresses in the reference configurations of
the specimens. The internal compressive stresses induced by the
surface tension cause a local critical stress in compression to be
reached at a smaller value of the average axial strain than that in
an initially stress free specimen. Whereas the average axial stress
vs. the average axial strain curve is essentially linear in tension that
in compression is non-linear. For the specimen with L/H = 20, we
have not examined closely details of deformation fields to ascer-
tain if any other instability (e.g., buckling) initiated up to an aver-
age compressive axial strain of 3.245%.

Fig. 4 depicts ryy vs. e curves by computing average values of
stresses with definition (4) of the virial stress, Eq. (16) for the first
moment of forces on bounding surfaces, and the mechanics of
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Fig. 9. For L/H = 10, variation with the averaging length (Lg) in simple tension and
compression of (a) the effective Young’s modulus E, and (b) Poisson’s ratio.
materials approach (force/area) in which forces along the Y-direc-
tion of atoms on an end face of the specimen have been considered.
The three values are in good agreement with each other. Although
they are used for the mechanical characterization of atomic sys-
tems the average values of the stress components do not give
any information about its local values.

The evolution of the average values of normal components of
the Almansi–Hamel strain tensor with the average axial strain e
(change in length per unit length) for a specimen with L/H = 10 is
plotted in Fig. 5; curves for exx vs. e and ezz vs. e overlap each other.
The equality of e and eyy suggests that, on the average, geometric
non-linearities can be neglected up to the yield point. Normal
strains in the transverse direction have opposite sign to that in
the axial direction giving a positive value of Poisson’s ratio. The
averaged components of the shear strains are negligible. A similar
behavior is observed for other specimens having L/H P 3.

3.1.2. Simple tension/compression
For different L/H ratios, Fig. 6 depicts the variation with e of the

average value of ryy component of the Cauchy stress tensor found
by using Eq. (4). In agreement with results for the tension/com-
pression simulations reported above, it is observed that the
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variation with e of the average value of ryy is the same for speci-
mens with L/H P 3. However, for the simple tension/compression
simulations, the average values of rzz and rxx are negligible as
compared to the average values of ryy. The applied boundary con-
ditions allow atoms on the end faces to move freely in the X- and
the Z-directions; consequently, edge effects are negligible and
averaged values of rzz and rxx are very small.

As in the tension/compression tests the average values of all
shear stresses are negligible up to the discontinuity in the ryy vs.
e curves. In Table 2 we have listed, for different L/H ratios, values
of the average ryy stress and the average axial strain at the yield
point. Values of the axial yield stress and the average axial strain
at yield for 10 P L/H P 3 for the simple tension case are �5 GPa
Fig. 12. For the simple compression test, distribution of the minimum eigenvalue of
eigenvalue, e = �5.15%; (b) minimum eigenvalue, e = �5.16%; (c) CNP on the mid-secti
e = �5.15%; and (f) kGk at unstable points, e = �5.16%; In Fig. (d) atoms on the bounding
the interior of the specimen.
and �8%, respectively; the corresponding values for the tension
test listed above are �6.2 GPa and �9.8%. In simple compression,
a dependence of the average axial stress and the average axial
strain at yield on the L/H ratio is also observed. For a given value
of L/H, the yield stress in simple tension is higher than that in sim-
ple compression. Because of residual stresses in the reference con-
figuration, the difference in the yield stress in simple tension and
simple compression cannot be attributed to the Bauschinger effect.

As evidenced from results exhibited in Fig. 7a good agreement
between three measures of average stresses is found but in this
case there is more scatter in the average stresses derived from
the first moment of forces on bounding surfaces than that from
the other two methods.
the local Hessian, the CNP and kGk in the specimen with L/H = 10; (a) minimum
on X = 18 Å, e = �5.15%; (d) CNP, e = �5.16%; (e) kGk on the mid-section X = 18 Å,
surface have been removed to clearly depict values of the CNP at unstable points in
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For L/H = 10, the evolution of the average normal components of
the Almansi–Hamel strain tensor with the average axial strain is
plotted in Fig. 8. Curves for exx vs. e and ezz vs. e overlap each other,
and eyy is almost equal to e till the specimen yields. Thus the effect
of geometric non-linearities can be ignored until the yield point.

For an FCC material the effective Young’s modulus E in the load-
ing direction [0, 1, 0] is given by

E ¼
~C2

11 þ ~C12
~C11 � 2~C2

12
~C11 þ ~C12

;

where ~C11 and ~C12 are elastic constants in the stress–strain relation
for an FCC metal written in Voigt’s notation. From the elastic con-
Fig. 13. For the simple tension test, distribution of the minimum eigenvalue of the local
e = 8.08%; (b) minimum eigenvalue, e = 8.15%; (c) CNP on the mid-section X = 18 Å, e = 8.0
unstable points, e = 8.15%; in Fig. (d) atoms on the bounding surface have been removed
stants of Au at 0 K used to find values of constants in the TB poten-
tial, E in the Y-direction should equal 46.5 GPa. For the computation
of E from results of the MM simulations a representative (or the
gage) length Lg was defined around the mid-section of each speci-
men. The average axial stress–the average axial strain curves ob-
tained by taking contributions of atoms inside the length Lg were
used to find E. The simple tension/compression tests were per-
formed up to e = 1% and slopes of the stress–strain curves were
computed by linear regression. For the specimen having L/H = 10,
Fig. 9a shows the variation with Lg/a (recall that a is the lattice
parameter) of E in simple tension and compression. For Lg/a < 10
the value of E varies between 46.8 GPa and 47.9 GPa; the difference
Hessian, the CNP and kGk in the specimen with L/H = 10; (a) minimum eigenvalue,
8%; (d) CNP, e = 8.15%; (e) kGk on the mid-section X = 18 Å, e = 8.08%; and (f) kGk at

to clearly show values of the CNP at unstable points in the interior of the specimen.



970 R.C. Batra, A.A. Pacheco / Computational Materials Science 46 (2009) 960–976
between the maximum and the minimum values of E is only 2.3%.
For 10 < Lg/a < 40 the value of E equals �47.1 GPa. For Lg/a >40 a
small increase in the values of E is found. Boundary effects are re-
flected in changes of the distribution of interatomic forces but their
influence along the axial direction goes up to 1 or 1.5 times the
specimen width in agreement with Saint-Venant’s principle. The
computed value, 47.1 GPa, of E in the Y-direction is 1.3% higher than
the 46.5 GPa obtained from elastic constants of the material. This
small difference in the computed and the expected values of E could
be due to the fact that unstrained specimens in the reference con-
figurations in our simulations had residual stresses but those used
to fit constants in the TB potential had perfect lattice configurations
and were stress free. Even though we have used average values of
Fig. 14. For the compression test, distribution of the minimum eigenvalue of the local
e = �5.46%; (b) minimum eigenvalue, e = �5.52%; (c) CNP on the mid-section, X = 18 Å, e
(f) kGk at unstable points, e = �5.52%; In Fig. (d) atoms on bounding surfaces have been
specimen.
axial stresses and axial strains in computing E, effects of residual
stresses may have not been completely mitigated.

Recalling that the average values of rxx and rzz equal zero, we
get the following expression for Poisson’s ratio:

m ¼ � exx

eyy
¼

~C12

~C11 þ ~C12

For the specimen with L/H = 10, Fig. 9b exhibits the variation of m
with Lg/a. For 10 < Lg/a < 30, the computed value 0.478 of m agrees
well with 0.453 obtained from values of ~C11 and ~C12 used to find
constants in the TB potential.

We note that E and m can be computed from the average values
of stresses and strains, and not from the plots of local values of ryy,
Hessian, the CNP and kGk in the specimen with L/H = 10; (a) minimum eigenvalue,
= �5.46%; (d) CNP, e = �5.52%; (e) kGk on the mid-section, X = 18 Å, e = �5.46%; and
removed to clearly show values of the CNP at unstable points in the interior of the
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eyy and exx since the stress state locally is not that of uniaxial ten-
sion/compression.

In Fig. 10 we have plotted the average axial stress vs. the aver-
age axial strain during unloading from two configurations – one
just before the drop in the average axial stress vs. the average axial
strain curve and the other just after this drop. When the specimen
is unloaded from the configuration just before the average axial
stress drops noticeably, the average axial stress vs. the average
axial strain curve during unloading overlaps that during loading
suggesting that the specimen deformed elastically. However, when
the specimen is unloaded from the configuration just after the
severe drop in the axial stress, there is a residual average axial
strain at zero average axial stress. It confirms that the specimen
deformed plastically during the instant the average stress dropped,
and the permanent average axial strain equals 4.5%.

3.2. Analysis of local instabilities

3.2.1. Simple tension/compression
For different values of L/H, Fig. 11 exhibits the evolution of the

minimum eigenvalue of the local Hessian H(i) among all atoms in
the system for simple tensile/compressive deformations. For sim-
Fig. 15a. For the simple tension test, distributions of the changes in the components of t
H = 10; (a) Dux; (b) Duy; (c) Duz (displacements in Å).
ple compression, the minimum eigenvalue continuously decreases
and remains positive until the strain level where the sharp drop in
the average axial stress–the average axial strain curve occurs. The
strain levels at which local instabilities, signified by the minimum
eigenvalue of H(i) becoming negative, appear correspond to eyield

yy

(see Table 2). No local instability occurred prior to this strain level.
However, for simple tensile deformations, and for all values of L/H
considered here, a group of atoms in each of the eight corners of
the sample become unstable at an average axial strain of �6%
when curves in Fig. 11 exhibit the first discontinuity. The mini-
mum eigenvalue remains negative and continuously decreases
up to �8% average axial strain when the minimum magnitude of
the negative eigenvalue drops noticeably; at this strain level the
discontinuities in the average axial stress vs. the average axial
strain curves also occur (cf. Fig. 6). Values of eyield

yy listed in Table
2 correspond to the initiation of the second sharp drop in the
magnitude of the minimum eigenvalue of H(i). These local instabil-
ities do not cause, on the average, permanent deformations since
overall deformations are reversible as should be clear from results
exhibited in Fig. 10.

For L/H = 10, Fig. 12 shows distributions of the minimum
eigenvalue of H(i), the CNP parameter and kGk for the simple
he displacement field on the bounding surfaces at e = 8.08% in the specimen with L/
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compression at e = eyield
yy and at e slightly greater than eyield

yy . Negative
eigenvalues of H(i) occur at points located in planes {1, 1, 1} of high
atomic density. The unstable atoms are not distributed symmetri-
cally about the mid-section, Y = L/2, of the specimen (see Fig. 12b)
possibly due to the asymmetry in the boundary conditions applied
to the end faces and numerical truncation errors. Whereas atoms
on one face are kept stationary, those on the other end face are dis-
placed axially. Fig. 12d displays the distribution of the CNP at e
slightly greater than eyield

yy . The CNP equals either zero or has very
small values at stable points but has large values at generally the
same interior atomic positions where the local instability was pre-
dicted by the negative eigenvalues of H(i). At e = eyield

yy values of the
CNP parameter are negligible everywhere except at some points
located on the bounding surfaces.

Fig. 12e and f exhibits the distribution of ||G|| at e slightly higher
than eyield

yy . High values of kGk occur at points close to the lateral
surfaces and at points located near the end faces where displace-
ments are prescribed. Values of ||G|| vanish at points in the interior
of the specimen whose distance from the end faces exceeds �37 Å,
Fig. 15b. For the simple tension test, distributions of the changes in the components of
specimen with L/H = 10; (a) Dux; (b) Duy; (c) Duz (displacements in Å).
i.e., the width of the sample. For e > eyield
yy high values of kGk occur at

the same atomic positions where the minimum eigenvalue of H(i) is
negative (cf. Fig. 12f) implying that deformations are highly inho-
mogeneous in the neighborhoods of atoms that have become
unstable.

The sudden appearance of instabilities during an incremental
axial strain of 0.01% suggests that either none of the three criteria
used to characterize instability is robust enough to detect a gradual
progression to an unstable state or the output time interval should
have been considerably reduced. The latter option requires running
the simulations several times with output at successively smaller
intervals in order not to exceed the memory allocation in the com-
puter. However, it has not been followed since for practical pur-
poses instability strain within 0.01% is reasonably accurate.

Fig. 13 depicts, for L/H = 10, distributions of the minimum
eigenvalue of H(i), the CNP and kGk for simple tensile deformations.
At e slightly less than eyield

yy there are very few atoms near the eight
vertices of the specimen that have become unstable. However, at e
just greater than eyield

yy , several atoms have become unstable. The
the displacement field at points where instabilities have initiated at e = 8.15% in the
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distribution of unstable points has a serrated pattern along speci-
men’s Y-centroidal line formed by atoms located on planes of high
atomic density. The instabilities under compression and simple
compression do not propagate through all of the specimen length.
A similar serrated pattern was reported by Liang and Zhou [46]
who performed MD simulations of tensile deformations of Cu
nanowires at 300 K with specimens having the same crystallo-
graphic orientations as in the present work.

The distribution of unstable points predicted by the non-vanish-
ing values of the CNP also coincides with that predicted by the min-
imum eigenvalue of the local Hessian (see Figs. 13b and 13d)
becoming negative. The distribution of kGk depicted in Fig. 13e
shows patterns symmetric with respect to the Y-centroidal line of
the specimen. At e = eyield

yy values of kGk increase from almost zero
at the centroidal line of the specimen to �0.07 at atoms located
on the traction free lateral surfaces. The regions of high values of
kGk located at points close to the end faces of the specimen observed
in compression and simple compression are not present in speci-
Fig. 16a. For the simple compression test, distributions of the changes in the component
(c) Duz (displacements in Å).
mens deformed in tension. At e = eyield
yy high values of kGk occur at

numerous points where the minimum eigenvalue of H(i) is negative.

3.2.2. Tension/compression
Fig. 14 depicts, for L/H = 10, distributions of the minimum

eigenvalue of H(i), the CNP parameter and kGk for the compressive
deformations. The distributions of unstable points predicted by the
minimum eigenvalue of H(i) becoming negative differ from those
observed for simple compressive deformations shown in Fig. 13b.
Similarly, the distribution of points in Figs. 14e and 12e with high
values of kGk at e = eyield

yy for compression and simple compression
are quite different. We recall that the only difference between
the compressive and the simple compressive simulations is in
the boundary conditions at the two end faces. Park et al. [47] per-
formed MD simulations of tensile and compressive deformations of
Au, Cu and Ni nanowires with different crystallographic orienta-
tions. However, their results cannot be compared with the present
ones because of inertia effects included in [47].
s of the displacement field on the bounding surfaces at e = �5.15%; (a) Dux; (b) Duy;
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3.3. Displacements of atoms during instabilities

For simulations of the simple tension and the simple compres-
sion deformations of the sample with L/H = 10, we have plotted in
Figs. 15a,b and 16a,b incremental displacements in going from the
configuration just prior to the system yielding to the configuration
in which it yields, and incremental displacements in going from
the just yielded state to the immediately next configuration. In or-
der to clearly show results incremental displacements of only
unstable atoms are shown in Figs. 15b and 16b. Before yielding ini-
tiates displacements of atoms in the transverse directions equal
nearly one-tenth of that (0.25 A) in the axial direction. However,
in going from the just prior to the yielded state to the one just after
yielding, several atoms that have become unstable undergo dis-
placements in all three directions whose magnitude is of the order
of the lattice parameter, i.e., 2 Å. Atoms with large X-incremental
displacements are located on planes different from those with
large Y-incremental displacements, and these two planes do not
pass through the same material point. One can find the slip vector
Fig. 16b. For the simple compression test, distributions of the changes in the component
(a) Dux; (b) Duy; (c) Duz (displacements in Å).
introduced by Zimmerman et al. [18] to deduce information on
Burger’s vectors and dislocations. The slip vector for an atom i
equals the average of relative displacements of atom i with respect
to those of its nearest neighbors; see Ref. [18] for details. It is clear
that different groups of atoms are displaced significantly during
yielding in simple tension and in simple compression. In simple
tension, planes of unstable atoms are distributed along the entire
length of the specimen, but in simple compression these planes
are concentrated near the middle of the specimen.

3.4. Global instabilities

3.4.1. Tension/compression
Fig. 17a exhibits the variation with the average axial strain of

the strain energy density. The ryy vs. e curves show discontinuities
at the same strain level where the energy density for the entire sys-
tem decreases noticeably. The variation with e of the strain energy
density of the specimen with L/H = 1 is different from that for spec-
imens with L/H P 3.
s of the displacement field at points where instabilities have initiated at e = �5.16%;
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3.4.2. Simple tension/compression
Results exhibited in Fig. 17b reveal that the variation with the

average axial strain of the strain energy density for 3 6 L/H 6 20
is essentially independent of the aspect ratio L/H in tension but
not in compression. The average axial strain when the system be-
comes globally unstable in simple compression depends strongly
upon the value of L/H. We note that in [48,49] the drop in the po-
tential energy of a carbon nanotube for an infinitesimal increase in
the incremental axial displacement is taken as the criterion for the
tube to buckle.

4. Conclusions

We have used molecular mechanics simulations with the tight-
binding potential to study local and global instabilities in initially
defect-free nanospecimens of gold deformed in tension/compres-
sion, and simple tension/compression. The criteria used to delin-
eate local instabilities are: (i) a component of second-order
spatial partial derivatives of the displacement field having large
values relative to its average value in the body, (ii) the minimum
eigenvalue of the Hessian of the potential energy of an atom
becoming non-positive, and (iii) a high value of the common neigh-
borhood parameter. The system’s configuration is said to be glob-
ally unstable when its potential energy density changes
significantly with an infinitesimal increase in the average axial
strain.

Conclusions from this work are:

	 The three criteria for the initiation of a local instability are met
essentially simultaneously at the same atomic positions.

	 The average values of the Cauchy stresses derived from different
definitions of the Cauchy stress tensor agree well with each
other.

	 The response of a specimen in tension and compression is very
different. This can be attributed to the presence of non-uni-
formly distributed stresses in the reference configuration.

	 Boundary conditions at the end faces affect the response of a
specimen even when its aspect ratio is large.

	 For specimens deformed in either tension or simple tension, the
average axial strain at the initiation of local instabilities is
noticeably less than that when the specimen yields or that when
it becomes globally unstable.

	 Atoms on the end faces do not become unstable. Furthermore,
atoms that become unstable are located away from the end faces
where essential boundary conditions are imposed.

	 The average axial stress vs. the average axial strain curve up to
the yield point is non-linear but deformations are elastic in
the sense that the curve is reproduced during unloading. How-
ever, after the specimen has yielded (or has become globally
unstable) there is a permanent axial strain induced in the spec-
imen (�4.5% for L/H = 10). The slope of the average axial stress
vs. the average axial strain curve during unloading is the same
as that of the curve during loading.

	 The average axial stress at yield in compression (or simple com-
pression) is considerably less than that in tension (or simple
tension).

	 The local instabilities do not induce, on the average, plastic
deformations and the average axial stress vs. the average axial
strain curve is reproduced during unloading.
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