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Free vibrations of thirty-three armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) of
aspect ratios (length/diameter) between �3 and �15 and having free ends have been studied using
the MM3 potential. It is found that these tubes exhibit Rayleigh and Love inextensional modes of vibra-
tion. The lowest natural frequency of a mode of vibration corresponds to a circumferential wave number
greater than one. Recall that a cylindrical shell of small aspect ratio and comprised of a linear elastic and
isotropic material also exhibits the Rayleigh and the Love inextensional modes of vibration. In order to
quantitatively compare frequencies of a shell with those of a SWCNT, we find geometric and material
parameters for the shell in two ways. In the first approach, we require that the lowest Rayleigh and
the radial breathing mode frequencies and the lowest frequencies of the axial and the torsional modes
of vibration of a SWCNT match with the corresponding ones of the shell having length and mean diameter
equal to those of the SWCNT. In the second technique, we account for the transverse inertia effects, and
equate frequencies of the lowest Love, axial and torsional modes of vibration of a SWCNT to that of a
shell. Each one of these two methods determines Young’s modulus and Poisson’s ratio of the material
of the shell and its thickness, and enables us to explore similarities and differences between vibrations
of a shell and of a SWCNT. It is found that the two techniques give very close results for the material
and the geometric parameters of the shell, and hence of the SWCNT. The SWCNT thickness increases from
�0.88 Å to 1.37 Å when the tube radius is increased from �3.6 Å to 15 Å and stays at 1.37 Å for further
increases in the tube radius. The wall thickness is essentially independent of the tube chirality. We use
these results to provide an expression for the wall thickness in terms of the tube radius and the bond
length in the initial relaxed configuration of a SWCNT.

We also compare higher vibrational modes of shells and hollow cylinders with those of the correspond-
ing SWCNTs. For a shell we use a first-order shear deformable shell theory (FSDST). Frequencies of a shell
using the FSDST and of the hollow cylinder using the three-dimensional linear elasticity theory are com-
puted with the finite element method. It is found that for low to moderate circumferential and axial wave
numbers frequencies and mode shapes of the shell and of the hollow cylinder agree well with those of the
corresponding SWCNT computed with the MM simulations.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction shell [9–18], a hollow cylinder [19], or a solid fiber to study defor-
In order to determine elastic constants of a single-walled car-
bon nanotube (SWCNT) from results of molecular mechanics
(MM) simulations or experimental data, one assumes that the re-
sponse of the SWCNT is equivalent to that of a continuum structure
undergoing deformations similar to those of the SWCNT. For a
SWCNT, in general, one assumes the length of the equivalent con-
tinuum structure (ECS) to be the same as that of the SWCNT being
studied. Usually, methods based on continuum theories deliver re-
sults whose accuracy depends on assumptions made in deriving a
structural model of a SWCNT. For example, using a beam [1–8], a
ll rights reserved.

: +1 540 231 4574.
mations of a SWCNT requires different levels of effort, and yields
quite distinct results that may not be close to those found through
MM simulations. Furthermore, in structural models, one may sim-
ulate a bond between adjoining atoms as a beam, a spring or a
truss [5,20,21]. The inherent difficulty here is to determine
mechanical properties of the material of the beam, the spring,
and the truss from those of the relevant MM/MD potential. Alter-
natively, one can use the Cauchy–Born rule and the inter-atomic
potentials [16] to derive the strain energy density of an elastic
body, and then use the three-dimensional (3-D) elasticity theory
to analyze initial-boundary-value problems. Most researchers have
recognized the ECS of a SWCNT to be a shell or a hollow circular
cylinder. One such ECS is shown in Fig. 1. However, finding the
thickness h of the annular cross section remains an active area of
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Fig. 2. Depictions of variables r, h, h0 and / used in the expression for the MM3
potential.
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research [22], since the SWCNT is ‘one carbon atom’ thick. We
summarize below works that have used either a shell or a hollow
cylinder as the ECS of a SWCNT.

Robertson et al. [9] determined elastic properties of graphitic
tubules of radii less than 9 Å with the local density functional the-
ory (DFT). For h = 0.335 nm, they found that the strain energy rel-
ative to the unstrained graphite sheet varies as 1/R2 (where R is the
radius of the tubule), it is insensitive to tube’s chirality, Young’s
modulus E = 1.06 TPa, and the in-plane (in the zh-plane shown in
Fig. 1) stiffness K(�Eh) = �355 N/m.

Yakobson et al. [10] identified SWCNTs as macroscopic thin
elastic shells, derived the bending stiffness D = Eh3/12(1 � m2) =
0.85 eV, and K = 360 N/m from Robertson et al.’s [9] data of the
strain energy due to bending vs. the radius of a tube and the sec-
ond-order derivative of the strain energy of axial stretching with
respect to the axial tensile strain. Poisson’s ratio m = 0.19 for a
SWCNT was obtained from the reduction in the diameter of the
tube stretched axially in the MD simulations using the Brenner po-
tential. Thus they computed h = 0.66 Å and E = 5.5 TPa. They stud-
ied the buckling of a 6 nm long (7, 7) SWCNT, the bending of an
8 nm long (13, 0) SWCNT and the torsion of a 23 nm long (13, 0)
SWCNT using MD simulations with the Brenner potential. Critical
points in the strain energy vs. deformation curves for these
SWCNTs were found to agree with those obtained from the thin
shell theory using values of E and m found from Robertson et al.’s
[9] data.

Wang et al. [11] used values of E and m computed by Yakobson
et al. [10] and found that the relation G = E/2(1 + m) yields value of
the shear modulus significantly higher than that obtained from
studying torsional deformations using the Tersoff–Brenner (TB)
potential. They thus concluded that the assumption of the shell
material being isotropic used by Yakobson et al. [10] may not be
valid. We note that this anomaly may be due to the absence of the po-
tential corresponding to the dihedral torsional degree-of-freedom (the
angle / in Fig. 2) in the expression of the TB potential.

Wang et al. [11] argued in favor of orthotropic symmetry when
they found different values of prestrains in the axial and the cir-
cumferential directions in the relaxed configurations of SWCNTs
in their MD simulations using the TB potential. Though the axial
prestrain was found to be negligible and independent of the diam-
eter of a SWCNT, the circumferential prestrain was found to be
�3% for SWCNTs with diameter <1 nm, and both prestrains were
negligible for SWCNTs of diameter >1 nm. From the second-order
derivatives with respect to appropriate strains of the potential en-
ergy due to rolling of a graphene sheet and excess potential ener-
gies in the axial tension, the radial deformation and the axial
torsion, they computed values of E in the circumferential and the
axial directions, the shear modulus and Poisson’s ratios for
SWCNTs of diameters between �0.3 nm and �4 nm. For tubes of
diameter >�1.5 nm elastic constants were found to be indepen-
dent of the tube chirality and the tube diameter, and
Ez = Eh = 5.07 TPa, Ghz = 2.19 TPa and mzh = mhz = 0.165. Also the con-
verged value of the wall thickness reported by them is
Fig. 1. Equivalent continuum structures of a SWCNT.
0.0665 nm. Batra and Sears [38] have proposed that the material
of the ECS of a SWCNT be modeled as transversely isotropic with
the radial line as the axis of transverse isotropy. Their analysis of
uniform radial expansion of a SWCNT revealed that for wall thick-
ness of 0.436 Å, values of material moduli are Ez = Eh = 7.26 TPa,
mhz = mzh = 0.21, Er = 5.29 TPa, and mrh = 0.0007.

Sears and Batra [12] proposed that h for a SWCNT be found by
using the relation E = 2G(1 + m) with E, G, and m measured in the
graphitic plane of a SWCNT. They simulated torsional and axial
compressive/tensile deformations of (16, 0) SWCNT using the
MM3 potential, and computed m from changes in the diameter of
the tube with an increase in the axial strain. For infinitesimal
deformations, they found m = 0.21, E = 7.26 TPa, G = 3 TPa, and
h = 0.4593 Å. However, m, E and G varied with the strain induced
in the tube.

Ru [13] suggested that if h = 0.34 nm for a SWCNT is used to
compute the bending stiffness D of an elastic shell equivalent to
a SWCNT, then D is greater than the 0.85 eV obtained by Yakobson
et al. [10]. He further argued that this discrepancy is due to the
‘straight normal postulate’ of the shell theory. A shell can be di-
vided into several layers and the flexural strains at a point are pro-
portional to the distance of the point from the mid-surface of the
shell. This, however, cannot be done for a SWCNT since it is only
an atom thick. By computing the critical buckling strain for the
SWCNT studied by Yakobson et al. [10], Ru [13] showed that for
the shell one should not separate E and h but should work with D.

Wang et al. [14] employed Donnell’s and Flügge’s shell theories
for analyzing buckling deformations and vibrations of ECSs of
SWCNTs, and took D = 0.85 eV, K = 360 N/m and m = 0.2. Though
authors argue that governing equations for an elastic shell em-
ployed by them are independent of h, they used 3.4 Å for h to com-
pute the mass density/area of an ECS of a SWCNT from the mass
density, 2270 kg/m3, of bulk graphite. They [14] studied buckling
and the frequency regimes of SWCNTs as a combination of the cir-
cumferential wave number i and the axial half wave number j but
did not compare their results with those from either the MM/MD
or the first principle calculations or experimental observations ex-
cept for the radial breathing mode which corresponds to the strain
energy due to stretching deformations. Sears and Batra [38,39] also
used these two shell theories to compare buckling deformations of
SWCNTs and multi-walled carbon nanotubes with those derived
from the shell theories.

Xin et al. [15] calculated strain energies due to rolling, axial
compression/stretching, and bending deformations of SWCNTs by
considering the total energy of all band electrons. Young’s modulus
and the effective wall thickness of a SWCNT are obtained from the
strain energies due to bending of SWCNTs of various radii and the
bending stiffness, D, of a thin shell. They found that E and h for a
SWCNT equal 5.1 TPa and 0.74 Å, respectively, and are independent
of the radius and the helicity of the tube.

Arroyo and Belytschko [16] modeled a SWCNT as a cylindrical
membrane, used the modified Cauchy–Born rule, assumed the
membrane material to be hyperelastic, studied twisting and bend-
ing deformations of armchair SWCNTs, and obtained a good quan-
titative and qualitative agreement between deformations of the



Table 1
Values of parameters in the MM3 potential [23].

Parameter Value

Ks 4.49 mdyne/Å
Kh 0.67 mdyne-Å/rad2

V1 0.185 kcal/mol
V2 0.170 kcal/mol
V3 0.520 kcal/mol
ee 0.027 kcal/mol
rm 2.04 Å
Ksh 0.130 mdyne/rad
K/s 0.059 mdyne/rad
Khh0 0.24 mdyne-Å/rad2
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membrane and of the corresponding SWCNT. Pantano et al. [17]
postulated that stresses are developed when a graphene sheet is
rolled into a SWCNT, incorporated these in an FSDST, considered
van der Walls (vdW) interactions to study the tube/tube, the
tube/substrate and the wall to wall interactions in SWCNTs and
multi-walled carbon nanotubes, and took h = 0.75 Å, E = 4.84 TPa.
Their analysis of bending deformations of a SWCNT did not reveal
effects of vdW interactions till the tube locally buckled.

Tu and Ou-Yang [18] derived, in the continuum limit, the en-
ergy of a deformed SWCNT from the local density approximation
theory, and obtained h = 0.75 Å, E = 4.7 TPa.

Batra and Gupta [19] used the MM3 potential to compute fre-
quencies of axial, torsional, bending and radial breathing modes
of SWCNTs with aspect ratio � 15 and radii ranging from 2 to
10 Å. They equated frequencies of a SWCNT with those of a hollow
cylinder by using the 3-D linear elasticity theory and the FEM, and
found average values of E and h to equal 3.3 TPa and 1 Å, respec-
tively. Thus Eh = 54.08 eV/atom as compared to the 58.2 eV/atom
determined by Robertson et al. [9] using the local density func-
tional theory. In Batra and Gupta’s [19] work, Poisson’s ratio was
found to depend on the helicity and the SWCNT radius.

In summary the most often used ECSs of SWCNTs are shell/hol-
low cylinders with either an assumed value of h or a derived value
of h. When the mass of the ECS is set equal to that of carbon atoms
in the SWCNT, the value of h affects the mass density of the ECS.

Here we use the MM3 [23] potential to explore physics of free
vibrations of relaxed short (3 < aspect ratio 6 6.0) and long (aspect
ratio �15) armchair, zigzag and chiral SWCNTs with radii ranging
from 4 to 16 Å and ends traction free. The MM3 [23] potential con-
siders bond stretching, the change in angles between adjacent
bonds, torsion of the bond, van der Waals forces, and the coupling
among stretching, bending and torsional deformations. The energy
due to bond stretching has terms that are quadratic, cubic and
quartic in the bond length. Thus the strain energy due to bond
stretching is not an even function of the change in the bond length.

Results of our MM simulations reveal that vibrations of short
SWCNTs with free ends are similar to those of a shell in the sense that
both exhibit the Rayleigh and the Love inextensional modes, and the
lowest natural frequency occurs for a circumferential wave number
greater than one. We determine h, E and m for shell’s material by two
alternative methods; first by equating frequencies of the lowest Ray-
leigh, the radial breathing mode, and the axial and the torsional
modes of vibration of a shell with the corresponding ones of a
SWCNT computed with the MM simulations. This approach neglects
the effect of transverse inertia forces. The second technique consid-
ers effects of transverse inertia forces, uses frequencies of the lowest
Love, torsional, and axial modes of vibration, and requires solving
simultaneously two equations for h and m. The two techniques give
essentially the same values of h and m.

In order to find a structural model that will replicate well various
frequencies and mode shapes of SWCNTs, we have compared the
SWCNT frequencies and mode shapes with those of a shell and of a
hollow cylinder with geometries of the SWCNT and material proper-
ties derived by the procedure stated above. For the shell, we have
used a FSDST [24], and deformations of a hollow cylinder have been
studied by using the 3-D linear elasticity theory. It is found that for
low to moderate circumferential wave numbers the vibrational
behavior of the hollow cylinder and the shell using the FSDST agree
well with those of the SWCNT derived from the MM simulations.

The remainder of the paper is organized as follows. In Section 2
we describe the MM3 [23] potential, and summarize frequencies of
different modes of vibration of a shell in Section 3. In Section 4 we
validate our procedure by comparing the presently computed fre-
quencies of the Rayleigh and the radial breathing modes (RBMs)
with those available in the literature. Section 5 briefly discusses
the effect of the aspect ratio on the Rayleigh, the Love and the ra-
dial breathing modes. In Section 6, we find an expression for h as a
function of the tube radius by using the least squares method to fit
a smooth curve through computed values of h. In Section 7 we find
elastic constants of a SWCNT. Section 8 compares the frequency
spectrum of a SWCNT with that of the equivalent shell computed
by using the FSDST, and of the corresponding hollow cylinder using
the 3-D linear elasticity theory. Conclusions of this work are sum-
marized in Section 9.

2. Molecular mechanics simulations

The MM simulations have been performed with the computer
code TINKER [25]. The interaction between carbon atoms is specified
by using the MM3 [23] potential given by Eq. (1) in which Us, Uh and
U/ are the primary bond deformation terms accounting, respectively,
for the change in the bond length, the change in the angle between
adjoining bonds, and the dihedral torsion (the angle / in Fig. 2).
The potential Us has terms that are quadratic, cubic and quartic in
the change of bond lengths, and hence is asymmetric with respect
to the decrease and the increase in the bond length. UvdW is the poten-
tial for the non-bonded van der Waals forces, and its expression
involving terms (rm/r)6 and exp(�12r/rm) is different from that in
the Lennard–Jones potential; UvdW is negligible for rv/r greater than
3 where rv is a material parameter and r the bond length. Ush and
U/s are potentials due to interactions between stretching and bend-
ing deformations, and between stretching and twisting deforma-
tions. Uhh0 represents interactions between different bending modes.

U ¼
X

i

X
j

ðUs þ Uh þ U/ þ Ush þ U/s þ Uhh0 Þ þ
X

i

X
k

UvdW ;

Us ¼ 71:94Ksðr � reÞ2 1� 2:55ðr � reÞ þ
7

12

� �
2:55ðr � reÞ2

� �
;

Uh ¼ 0:021914Khðh� heÞ2 1� 0:014ðh� heÞ þ 5:6ð10Þ�5ðh� heÞ2
h

�7:0ð10Þ�7ðh� heÞ3 þ 9:0ð10Þ�10ðh� heÞ4
i
;

U/ ¼ ðV1=2Þð1þ cos /Þ þ ðV2=2Þð1� cos 2/Þ þ ðV3=2Þð1þ cos 3/Þ;
Ush ¼ 2:51118Ksh½ðr � reÞ þ ðr0 � r0eÞ�ðh� heÞ;
U/s ¼ 11:995ðK/s=2Þðr � reÞð1þ cos 3/Þ;
Uhh0 ¼ �0:021914Khh0 ðh� heÞðh0 � h0eÞ; and

UvdW ¼ eef�2:25ðrv=rÞ6 þ 1:84ð10Þ5 exp½�12:0ðr=rvÞ�g
ð1Þ

Parameters r, h, h0 and / in Eq. (1) are depicted in Fig. 2. A sub-
script, e, on a variable signifies its value in the configuration of the
minimum potential energy, generally referred to as the relaxed
configuration. The total energy of a body equals the sum of poten-
tials of all atoms in the body (indices i and j in Eq. (1) range over
bonded atoms, and the index k over all atoms). Values of constants
Ks, Kh, V1, V2, V3, ee, rm, Ksh, K/s and Khh0 taken from Ref. [23] are
listed in Table 1.
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A SWCNT is first relaxed to find the minimum energy configura-
tion to within 0.001 kcal/mol/Å rms without using any cut-off
distance. Both ends of the tube are taken to be free since there is
no ambiguity in simulating these boundary conditions in a labora-
tory. The module, VIBRATE, in computer code TINKER [25] is used
to calculate frequencies. It computes the Hessian of the system by
finding second-order derivatives of the MM3 [23] potential with
respect to variables appearing in the expression for the potential,
and then diagonalizes the mass weighted Hessian to compute
eigenvalues and eigenvectors of normal modes.

The first six eigenvalues of the Hessian equal zeros and are dis-
carded since they correspond to three translational and three rota-
tional rigid body modes. The eigenvector associated with an
eigenvalue is used to identify the corresponding mode of vibration
of a SWCNT. Furthermore, we find one-to-one correspondence be-
tween modes of vibration of a SWCNT computed through MM sim-
ulations, and those of a linear elastic and isotropic shell [26], and of
a linear elastic and isotropic (3-D) hollow cylinder; the latter are
computed by using the FEM. For free-free short SWCNTs and shells,
some modes of vibration do not involve a change in the axial
length; modes of vibration in which deformations do not vary axi-
ally are called the Rayleigh modes, and those in which deforma-
tions vary linearly in the axial direction are called the Love
modes. Both the Rayleigh and the Love modes of vibration gener-
ally correspond to the axial half wave number j = 0, and are termed
inextensional modes. For a circular hollow cylinder this necessi-
tates that generators of the hollow cylinder remain straight during
vibration, as shown by the red line in Fig. 3a. Fig. 3b and c show the
inextensional Rayleigh and Love modes for (15, 15) SWCNT. The
kinematics of inextensional deformations requires that the mid-
surface of the SWCNT and of either the shell or the hollow cylinder
deform without stretching. The mode of vibration with the circum-
ferential wave number i = 3 and the axial half wave number j = 1 is
shown in Fig. 3d.
Fig. 3. Modes of vibration of (15, 15) SWCNT of aspect ratio 2.237: (a) tube in the relaxe
mode of frequency 13.119 cm�1, and (d) the mode corresponding to i = 3 and j = 1 havin
remains unchanged during inextensional vibrations is shown in red color. In Fig. 3d, thre
bending mode of vibration. (For interpretation of the references to color in this figure le
3. Expressions for frequencies of different modes of vibration of
a shell

We summarize below frequencies of different modes of vibration
of a shell comprised of a linear elastic, homogeneous and isotropic
material. The reader is referred to Ref. [26] for details of definitions
of different modes of vibration, and expressions for their frequencies
and mode shapes. For inextensional deformations, the circular natu-
ral frequency xR

i of a Rayleigh mode of vibration is given by Eq. (2)
[26] in which q equals the mass density.

xR
i ¼

iði2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði2 þ 1Þ

q
ffiffiffiffiffiffiffiffiffiffi

h2

12r2
e

s
1
re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

qð1� m2Þ

s" #
; i ¼ 2;3;4; . . . ð2Þ

For a shell with aspect ratio of at least �4.0,

xRBM ¼
1
re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

qð1� m2Þ

s
ð2aÞ

where xRBM equals the frequency of a radial breathing mode of
vibration that is identified as a prominent A1g spectral line in the
Raman spectroscope of a SWCNT. For aspect ratios < 4.0, xRBM given
by Eq. (2a) has an appreciable error (Ref. [26]).

The thickness of the shell, corresponding to a SWCNT of a min-
imum aspect ratio of �4, in terms of xR

i and xRBM, is given by

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ði2 þ 1Þ

q
iði2 � 1Þ

xR
i

xRBM

� �
re; i ¼ 2;3;4; . . . ð3Þ

Note that every integer value of i in Eq. (3) must give the same
value of h.

The frequency xL
i of the Love mode of vibration of a shell of an

arbitrary aspect ratio is given by Eq. (4) [26] in which le equals the
length of the shell.
d state, (b) the lowest Rayleigh mode of frequency 11.828 cm�1, (c) the lowest Love
g frequency 40.945 cm�1. A generating line of the cylindrical surface whose length
e circumferential waves and a half axial wave are shown as dashed blue lines for a
gend, the reader is referred to the web version of this article.)
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Eq. (4) implies that with an increase in the aspect ratio the fre-
quency of the Love mode converges to that of the Rayleigh mode.

Frequencies xA
k of the axial modes of oscillations of a shell of

aspect ratio 4, and xT
k of the torsional vibrations of a shell of any

aspect ratio, are given, respectively, by

xA
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ffiffiffiffi
E
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Since E = 2G(1 + m), Eqs. (4) and (5) give the following expres-
sion for m:

m ¼ 1
2

xA
k

xT
k

� �2

� 1; k ¼ 1;2;3; . . . ð7Þ

However, for shells of aspect ratio <4, the transverse inertia ef-
fects are dominant and frequencies of axial vibrations are given by
[27]

xA
k ¼
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1þ m2j2k2p2
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where j is the polar radius of gyration. The consideration of trans-
verse inertia decreases the fundamental frequencies of axial vibra-
tions, and the determination of Poisson’s ratio from frequencies
requires a priori knowledge of the geometry of the shell because
of the appearance of j and le in Eq. (8). Eq. (8) implies that the fre-
quency of the kth mode does not equal k times the frequency of the
first mode of vibration.

The elimination of E from Eqs. (6) and (8) yields the following
quadratic equation in m.

m2 r2
e þ

h2

4

 !
kpxA

k

lexT
k

� �2

� 2mþ xA
k

xT
k

� �2

� 2

" #
¼ 0; k ¼ 1;2;3; . . .

ð9Þ

Similarly, Eqs. (4) and (6) give
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Eqs. (9) and (10) can be solved simultaneously for m and h from
frequencies of the axial, the torsional and the Love modes of vibra-
tion. Whereas Eqs. (9) and (10) incorporate effects of transverse
inertia, Eqs. (3) and (7) do not. Substitution for h from Eq. (10) into
Eq. (9) yields a cubic equation for m which has at least one real root.

For given values of
xL

i
xT

k

� �
, m derived from Eqs. (9) and (10) depends

upon the slenderness ratio, le/re. However,
xL

i
xT

k

� �
depends upon the

radius re of the tube in the relaxed configuration.

4. Comparison of presently found frequencies with those in the
literature

To validate our procedure and the applicability of the MM3 [23]
potential to SWCNTs we have listed in Table 2 frequencies, xRBM



Table 3
Geometries of SWCNTs, their frequencies in various modes of vibration from MM simulations; computed wall thickness, Poisson’s ratio, Young’s modulus; axial and bending stiffnesses; [A.R. = aspect ratio].

Tube (n, m) Radius (re) (Å) A.R. (le/de) xR (i = 2) (cm�1) xL (i = 2) (cm�1) xA (k = 1) (cm�1) xT (k = 1) (cm�1) xRBM (cm�1) m m* h (Å) h* (Å) E (TPa) G (TPa) K (J m�2) D (eV)

(10, 0) 3.713 5.628 53.274 53.378 78.882 49.601 290.810 0.265 0.272 0.878 0.856 3.939 1.548 364.179 1.389
(6, 6) 3.859 5.600 53.709 54.047 74.460 49.122 278.450 0.149 0.151 0.961 0.984 3.284 1.427 330.850 1.668
(10, 2) 4.134 5.673 48.434 49.109 70.965 45.308 261.023 0.227 0.232 0.990 0.978 3.465 1.407 358.011 1.780
(12, 0) 4.454 5.677 42.722 44.649 64.835 41.040 242.576 0.248 0.254 1.013 1.042 3.212 1.280 357.679 2.019
(7, 7) 4.501 5.577 43.891 44.146 64.320 42.270 239.020 0.158 0.160 1.067 1.088 2.983 1.286 333.216 2.053
(9, 6) 4.854 5.827 38.889 38.970 56.610 36.923 221.801 0.175 0.178 1.099 1.125 2.867 1.217 333.135 2.193
(10, 5) 4.910 5.289 37.963 38.099 61.939 40.118 219.504 0.192 0.196 1.096 1.113 2.919 1.220 337.841 2.177
(8, 8) 5.143 5.673 35.957 36.160 55.496 36.335 209.323 0.166 0.169 1.140 1.160 2.809 1.201 335.324 2.345
(14, 0) 5.196 5.771 34.241 34.280 54.999 34.762 207.980 0.252 0.258 1.104 1.081 3.107 1.235 359.850 2.188
(11, 7) 5.832 5.333 29.041 29.519 52.028 33.822 185.142 0.183 0.187 1.181 1.212 2.692 1.134 337.926 2.580
(16, 0) 5.937 6.070 27.767 27.799 45.760 28.989 181.960 0.246 0.251 1.170 1.149 2.918 1.166 357.796 2.456
(10, 10) 6.427 5.626 24.893 25.070 44.915 29.242 167.644 0.180 0.183 1.232 1.249 2.618 1.107 338.170 2.742
(15, 4) 6.437 5.445 24.386 24.489 47.302 30.323 167.720 0.217 0.222 1.208 1.188 2.827 1.157 353.129 2.591
(18, 0) 6.679 5.598 22.837 23.283 43.854 27.895 161.773 0.236 0.241 1.217 1.225 2.718 1.095 353.434 2.757
(20, 0) 7.420 5.671 19.011 19.085 39.112 24.856 145.577 0.238 0.244 1.251 1.234 2.704 1.087 354.809 2.811
(19, 2) 7.448 5.717 18.953 19.127 38.941 24.850 145.013 0.228 0.233 1.257 1.241 2.708 1.098 355.233 2.843
(12, 12) 7.711 5.671 18.042 18.193 37.226 24.144 139.778 0.189 0.192 1.285 1.300 2.521 1.058 340.224 2.989
(18, 6) 8.026 5.692 16.670 16.834 36.120 23.204 134.460 0.212 0.216 1.285 1.279 2.606 1.072 349.587 2.974
(16, 12) 9.026 5.685 13.463 13.572 32.105 20.749 119.462 0.197 0.201 1.313 1.310 2.532 1.054 345.706 3.087
(25, 0) 9.274 5.624 12.712 12.797 31.526 20.089 116.439 0.231 0.237 1.307 1.296 2.568 1.038 352.516 3.079
(15, 15) 9.638 5.624 11.959 12.087 30.091 19.448 111.878 0.197 0.201 1.330 1.343 2.445 1.018 342.187 3.212
(22, 7) 9.723 5.689 11.702 11.820 29.869 19.171 110.990 0.214 0.218 1.323 1.316 2.535 1.040 350.157 3.153
(30, 0) 11.129 5.683 9.046 9.125 25.991 16.590 97.013 0.227 0.232 1.340 1.333 2.493 1.011 351.147 3.244
(18, 18) 11.565 5.644 8.468 8.572 25.028 16.143 93.253 0.202 0.206 1.356 1.368 2.403 0.997 343.466 3.346
(25, 10) 11.583 5.684 8.416 8.515 25.022 16.076 93.153 0.211 0.216 1.351 1.350 2.461 1.012 348.330 3.300
(30, 5) 12.162 5.677 7.652 7.746 23.894 15.301 88.750 0.219 0.224 1.354 1.349 2.468 1.008 350.590 3.319
(33, 0) 12.241 6.239 7.551 7.562 21.542 13.758 87.507 0.226 0.230 1.364 1.340 2.479 1.008 350.719 3.275
(20, 20) 12.850 5.669 6.916 7.006 22.444 14.462 83.935 0.204 0.208 1.367 1.379 2.387 0.988 344.110 3.404
(36, 0) 13.354 5.669 6.396 6.492 21.668 13.863 80.834 0.222 0.226 1.364 1.370 2.417 0.985 348.998 3.407
(36, 5) 14.372 5.443 5.548 5.634 21.099 13.518 75.118 0.218 0.223 1.370 1.368 2.434 0.995 350.441 3.410
(24, 24) 15.419 6.009 4.858 4.920 17.678 11.374 69.941 0.208 0.211 1.383 1.394 2.366 0.977 345.164 3.487
(43, 0) 15.950 6.052 4.528 4.579 17.035 10.895 67.653 0.222 0.227 1.378 1.378 2.407 0.981 349.654 3.453
(33, 16) 16.053 5.443 4.482 4.554 18.866 12.122 67.221 0.211 0.216 1.382 1.383 2.401 0.988 348.374 3.468
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Table 4
Geometries of SWCNTs, their frequencies from MM simulations in various modes of vibration, computed Poisson’s ratio and wall thickness. Entries in columns 11 and 14 equal, respectively, differences between m and m*, and between h
and h*.

Tube (n, m) Radius (re) (Å) A.R. (le/de) xR (i = 2) (cm�1) xL (i = 2) (cm�1) xA (k = 1) (cm�1) xT (k = 1) (cm�1) xRBM (cm�1) m m* |% Diff.| h (Å) h* (Å) |% Diff.|

(10, 0) 3.713 4.087 53.121 53.574 103.353 64.841 291.131 0.270 0.286 5.754 0.874 0.885 1.262
(6, 6) 3.859 4.088 53.463 54.581 100.818 66.650 278.903 0.144 0.148 2.603 0.954 0.990 3.734
(10, 2) 4.134 4.156 47.730 49.478 92.206 59.298 261.333 0.209 0.217 3.959 0.974 1.023 4.981
(12, 0) 4.454 4.009 42.551 42.953 91.644 57.675 242.977 0.262 0.277 5.755 1.007 0.980 2.623
(7, 7) 4.501 4.022 43.705 44.584 88.233 58.110 239.456 0.153 0.157 2.885 1.060 1.093 3.126
(9, 6) 4.854 5.829 38.889 38.970 56.610 36.923 221.801 0.175 0.178 1.564 1.098 1.124 2.380
(10, 5) 4.910 5.290 37.963 38.099 61.939 40.118 219.504 0.192 0.196 2.130 1.096 1.112 1.495
(8, 8) 5.143 3.972 35.804 36.557 78.425 51.465 209.754 0.161 0.166 3.152 1.133 1.164 2.779
(14, 0) 5.196 4.214 34.143 34.423 74.864 47.275 208.276 0.254 0.266 4.922 1.099 1.074 2.277
(11, 7) 5.832 4.248 29.027 29.631 66.554 43.341 185.076 0.179 0.185 3.109 1.181 1.181 0.000
(16, 0) 5.937 4.026 27.657 27.986 68.478 43.357 182.333 0.247 0.260 5.248 1.163 1.141 1.864
(10, 10) 6.427 4.083 24.811 25.334 61.385 40.043 167.956 0.175 0.181 3.277 1.226 1.253 2.221
(15, 4) 6.437 4.283 24.357 25.135 58.997 37.858 167.922 0.214 0.222 3.806 1.205 1.228 1.901
(18, 0) 6.679 4.183 22.744 23.017 58.631 37.202 162.018 0.242 0.253 4.679 1.210 1.192 1.531
(20, 0) 7.420 4.581 18.951 19.122 48.262 30.659 145.720 0.236 0.248 3.780 1.246 1.228 1.427
(19, 2) 7.448 4.572 18.917 19.377 48.033 30.668 145.158 0.227 0.235 3.541 1.253 1.262 0.687
(12, 12) 7.711 3.704 17.965 18.516 56.408 36.693 140.184 0.182 0.189 4.224 1.276 1.307 2.454
(18, 6) 8.026 4.489 16.621 16.902 45.370 29.153 134.617 0.211 0.218 3.363 1.279 1.283 0.247
(16, 12) 9.026 4.044 13.412 13.821 44.659 28.907 119.708 0.193 0.201 3.771 1.306 1.327 1.618
(25, 0) 9.274 4.098 12.675 12.920 43.056 27.455 116.649 0.230 0.240 4.559 1.301 1.294 0.549
(15, 15) 9.638 3.930 11.924 12.274 42.753 27.695 112.137 0.191 0.199 3.958 1.324 1.350 2.040
(22, 7) 9.723 3.556 11.651 12.080 46.666 30.041 111.354 0.207 0.218 5.432 1.314 1.342 2.158
(30, 0) 11.129 4.321 9.024 9.202 34.059 21.755 97.159 0.225 0.234 3.961 1.335 1.332 0.192
(18, 18) 11.565 4.181 8.448 8.679 33.606 21.713 93.185 0.198 0.205 3.601 1.354 1.374 1.477
(25, 10) 11.583 3.934 8.394 8.653 35.611 22.928 93.365 0.206 0.215 4.331 1.345 1.368 1.700
(30, 5) 12.162 3.763 7.633 7.913 35.484 22.784 88.992 0.213 0.223 4.971 1.347 1.371 1.775
(20, 20) 12.850 3.218 6.806 7.006 39.077 25.305 85.996 0.192 0.204 6.174 1.313 1.349 2.717
(36, 0) 13.354 4.200 6.377 6.534 29.160 18.657 80.576 0.221 0.231 4.099 1.364 1.361 0.267
(36, 5) 14.371 4.082 5.540 5.722 28.078 18.020 75.259 0.214 0.223 4.183 1.366 1.372 0.487
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(in cm�1 = Hertz/speed of light in cm/s), of radial breathing modes
(A1g symmetry mode) of long SWCNTs (aspect ratio �15) com-
puted from MM simulations, and those given in Refs. [28–33]. Of
these the ones from Ref. [33] are experimental values. Rao et al.
[28] computed the lowest frequency of the E2g symmetry mode
for (8, 8), (9, 9), (10, 10) and (11, 11) SWCNTs using the C–C force
constants optimized to fit the experimental phonon dispersion
for a flat graphene sheet. However, they did not observe these
modes in their experiments on the four SWCNTs very likely due
to the scattering of waves. These E2g symmetry modes are the Ray-
leigh inextensional modes corresponding to i = 2 for long SWCNTs,
and their frequencies and mode shapes compare well with those
found in our MM simulations for tubes with aspect ratio of �15.
Thus the MM3 potential represents well deformations of SWCNTs
in the radial breathing mode.
5. Comparison of frequencies of the Rayleigh and the Love
modes

In Tables 3 and 4 we have listed for the thirty-three (11 zigzag, 9
armchair, and 13 chiral) SWCNTs, the tubes’ geometries, and the
lowest frequencies of the Rayleigh, the Love, the axial, the tor-
sional, and the radial breathing modes. Whereas results in Table 3
are for tubes with aspect ratio of �6, those in Table 4 are for tubes
of aspect ratio between 3 and 6 and radii ranging from 4 to 15 Å.
For these SWCNTs, frequencies of the lowest Rayleigh and the low-
est Love modes differ by less than 1%. However, for the (20, 0)
SWCNT having an aspect ratio �1.0, the lowest Rayleigh mode fre-
quency is 17.99 cm�1 while the lowest Love mode frequency
equals 23.998 cm�1 indicating the transverse inertia effects, but,
for the same SWCNT of aspect ratio �5.67, these two frequencies
equal 19.011 cm�1 and 19.085 cm�1 respectively; cf. row 15 of
Table 3.

Gupta and Batra [34] used the MM3 potential and the computer
code TINKER to compute radial breathing mode frequencies of
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Fig. 4. Dependence upon the tube radius of the wall thickness h* of zigzag, chiral and arm
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web version of this article.)
SWCNTs having aspect ratio of �15, and found that the xRBM and
the radius re satisfy xRBM = 1076 (cm�1)/re. Values of xRBM listed
in Tables 3 and 4 lie on the curve xRBM = 1071 (cm�1)/re. Thus
the relation between xRBM and re is unaffected by the aspect ratio
of a SWCNT.
6. Thickness of single-walled carbon nanotubes

Assuming that a SWCNT can be represented as a shell or a 3-D
hollow cylinder, we set the length and the mean radius of the shell
equal to the length le and the radius re of the SWCNT in the relaxed
configuration. We find the wall thickness h of the shell and hence
of the SWCNT from either Eq. (3) or Eq. (10). The wall thickness h
determined from Eq. (3) using frequencies of radial breathing and
Rayleigh modes derived from the MM simulation results is inde-
pendent of values of E, q and m, but may depend upon the radius
of the SWCNT or of the shell. However, the wall thickness h* deter-
mined by simultaneously solving Eqs. (9) and (10) may depend
upon Poisson’s ratio m*. For the 33 SWCNTs studied here, tubes’
geometries (radii, aspect ratios in relaxed configurations) and fre-
quencies of the first axial and the first torsional modes, the first
Rayleigh and the first Love modes, the radial breathing mode,
and values of h and m obtained from Eqs. (3) and (7) respectively,
and of h* and m* computed by solving Eqs. (9) and (10) simulta-
neously are listed in Tables 3 and 4. It is evident that Poisson’s ratio
of a SWCNT computed from Eq. (7) differs from that obtained by
solving Eqs. (9) and (10) by less than �6% for aspect ratios between
3 and 5.5, and by about 1.3% for aspect ratios of �6. The difference
in the wall thickness computed from Eqs. (3) and (10) decreases
with an increase in the SWCNT radius, and the maximum differ-
ence between the two values is 5%.

For SWCNTs of aspect ratio >4, the transverse inertia effects are
negligible and h and m can be computed from Eqs. (3) and (7); these
values are listed in Table 3. A comparison of values listed in Tables
3 and 4 reveals that the two sets of values of h and m agree well
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with each other. For some SWCNTs considered in Table 3 and 4 but
now of aspect ratio �15, values of the wall thickness computed
from the Rayleigh mode are listed in Table 2. From Tables 2–4 it
can be concluded that over the range of aspect ratios from �3 to
�15, values of the wall thickness of the SWCNTs are independent
of the aspect ratio but depend upon the tube radius.

In Fig. 4, we have plotted the variation of the thicknesses h* and
h of a SWCNT with its radius re in the relaxed configuration. These
results show that for the same radius the thickness of an armchair
tube is the largest and that of a zigzag tube the smallest, and the
thickness of a chiral tube has an intermediate value. The exponen-
tial function

h�ðreÞ ¼ 1:3749� 1:8515e �0:5156re
aeð Þ ð11Þ

fitted through the data by the least squares method is shown as a
red dashed curve in Fig. 4. In Eq. (11) ae is the equilibrated bond
length (1.346 Å). For re < 7.5 Å, Eq. (11) gives the SWCNT thickness
that differs from its value derived from Eq. (2) or Eq. (6) by less than
4% except for the (10, 0) SWCNT that has a difference of �8%. For
15 Å > re > 7.5 Å the difference in values of h* and h is between 1%
and 1.5%. For re > 15 Å, the exponential term in Eq. (11) equals
essentially zero, and the thickness has a nearly uniform value of
1.37 Å that is independent of tube’s chirality. Recalling that
re = 1.1026 ae (m2 + n2 + mn)1/2, Eq. (11) can be written in terms of
the lattice vector parameters (m, n). Eq. (11) coupled with expres-
sions for frequencies of a shell will enable designers to compute natural
frequencies of a nano-mechanical resonator rather quickly and select
an appropriate SWCNT for a particular application. If desired, the selec-
tion can be refined by using the computationally intensive ab initio or
MM simulations.

We note that computed values of h for all 33 SWCNTs of differ-
ent chiralities are less than the diameter 1.42 Å of a carbon atom
which complies with the Vodenitcharova–Zhang proposal [35] that
the wall thickness be less than the diameter of a carbon atom.
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ν  = 0.0435ln (r e ) + 0.094
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Fig. 5. Variation of Poisson’s ratio with the radius of a relaxed SWCNT. Poisson’s ratio com
while that computed from Eq. (7) is represented by filled squares, triangles and diamond
and zigzag tubes computed from the two approaches are shown; re in these expressions
values.
7. Elastic constants of single-walled carbon nanotubes

In Table 3 we have listed values of Young’s modulus E computed
from Eq. (8) using values of the wall thickness h* and Poisson’s ratio
m*. Values of Poisson’s ratio determined from Eqs. (7) and (9) are
also listed in Tables 3 and 4. The mass density q* of the shell and
the hollow cylinder material is found from

q� ¼ mcnc

2preh�le
ð12Þ

where mc is the mass (1.992 � 10�26 kg) of a carbon atom, and nc

equals the number of carbon atoms in the SWCNT. Whereas values
found from Eqs. (8)–(10) are valid for SWCNTs of all aspect ratios,
those from Eqs. (3), (5), and (7) are generally valid for tubes of as-
pect ratio 4. Values of both E and G depend upon the tube radius
and converge to 2.4 TPa and 1.0 TPa, respectively, as the tube radius
is increased to 15 Å. For the lowest radius (10, 0) SWCNT considered
in these simulations, E = 4.0 TPa, and G = 1.55 TPa.

We note that Poisson’s ratios m and m* of SWCNTs vary with the
tube radius and depend upon tube’s helicity. In Fig. 5 values of m
and m* for SWCNTs listed in Tables 3 and 4 are plotted against
the tube radius in the relaxed configuration. It is found that, in gen-
eral, for a given radius of a SWCNT the value of Poisson’s ratio is the
highest for a zigzag tube and the lowest for an armchair tube. With
an increase in the radius of a SWCNT, the value of Poisson’s ratio
appears to converge to 0.218 for tubes of all helicities. Poisson’s ra-
tios of zigzag and armchair SWCNTs vary rather smoothly with a
change in their radii but those of chiral SWCNTs do not lie on a
smooth curve. Sanchez-Portal et al. [36] computed Poisson’s ratio
from ab initio calculations and reported a similar trend. Gupta
and Batra [34] studied vibrations of free-free SWCNTs of aspect ra-
tio �15 and also found a trend similar to that shown in Fig. 5 for
Poisson’s ratio, and it converged to 0.20, 0.21 and 0.23 for arm-
chair, chiral and zigzag tubes.
(r e ) + 0.2977: Zigzag

 0.307: Zigzag

6: Armchair

ν∗  = 0.0449ln (r e ) + 0.095: Armchair

0.0 12.0 14.0 16.0 18.0

s, r e (Å)

Zigzag

Chiral

Armchair

ν*
ν
ν*
ν
ν*
ν

puted from Eqs. (9) and (10) is represented by open squares, triangles and diamonds
s. Expressions of least squares fits to data for values of Poisson’s ratio for armchair
is in Å. For chiral tubes a smooth curve could not be fitted through the computed



Table 5
Frequencies of various vibrational modes, and values of elastic moduli of (36, 5) SWCNT for simulations with structural models.

SWCNT
(m, n)
nc

Aspect ratio
(le/de)

# Torsional mode
(cm�1)

Axial mode
(cm�1)

Love mode (i = 2)
(cm�1)

Rayleigh mode (i = 2)
(cm�1)

Thickness
(h*) (Å)

Poisson’s
ratio m*

Young’s modulus
(E) TPa

(36, 5)
6004

5.443 1 13.518 21.099 5.634 5.548 1.368 0.223 2.434

2 27.033 41.813

nc: No. of carbon atoms in MM simulations.
#: Mode no.
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We have also given in Table 3 computed values of the axial stiff-
ness, K, and of the bending stiffness, D. The axial stiffness is found
to vary with the tube radius, and for a given tube radius it is the
highest for a zigzag tube and the lowest for a chiral tube. The aver-
age value of K equals 347.52 J/m2 which is about 3.46% less than
the 360 J/m2 reported in Ref. [22]. The bending stiffness is found
to vary between 1.4 eV and 3.5 eV; it increases with an increase
in the tube radius and converges to 3.5 eV. As mentioned in the
Introduction, Robertson et al.’s [9] data gives D = 0.85 eV,
K = 360 J/m2, and m = 0.19. This rather low value of D resulted in
Yakobson et al.’s [10] getting h = 0.66 Å.
8. Comparison of natural frequencies of SWCNT with those of a
shell and a hollow cylinder

We now compare frequencies of different modes of vibration of
an arbitrarily chosen (36, 5) SWCNT having aspect ratio 5.443
determined through MM simulations with those of a shell and a
Table 6
FE meshes yielding converged frequencies during the modal study of shear
deformable shell and hollow cylinder models of (36, 5) SWCNT employing the
computer software ABAQUS.

Tube No. of 20-node brick elementsa No. of 8-node shell elements

Along the
circumference

Along
the axis

Along the
circumference

Along
the axis

(36, 5) 45 74 46 78

a One element in the thickness direction.

Table 7
Comparison of frequencies of various modes of vibration of (36, 5) SWCNT found from MM
the 3-D linear elasticity theory.

Axial half wave number SWCNT (36

Circumferential wave number 1 (c

1 MM 8.23
|% Error| w.r.t. MM 3D-FEM 0.06

FSDST 0.00

2 MM 17.9
|% Error| w.r.t. MM 3D-FEM 0.15

FSDST 0.07

3 MM 28.0
|% Error| w.r.t. MM 3D-FEM 0.28

FSDST 0.19

4 MM 36.8
|% Error| w.r.t. MM 3D-FEM 0.30

FSDST 0.21

Inextensional modes
Rayleigh mode MM –

|% Error| w.r.t. MM 3D-FEM –
FSDST –

Love mode MM –
|% Error| w.r.t. MM 3D-FEM –

FSDST –
3-D linear elastic hollow cylinder found by using the FEM and
the commercial computer code ABAQUS [37]. The shell and the
hollow cylinder materials are taken to be linear elastic, homoge-
neous and isotropic with values of material parameters equal to
those of the corresponding SWCNT found above. Table 5 lists val-
ues of various material parameters needed to compute natural fre-
quencies and corresponding mode shapes.

For the shell we use the FSDST [24] with the shear correction
factor of 5/6. However, 3-D deformations of the hollow cylinder
are analyzed. When using the FSDST [24], the FE mesh for the shell
is comprised of 8-node shear deformable elements (S8R) and is re-
fined successively till the computed frequencies have converged to
0.01% of their values. The hollow cylinder is divided into 20-node
brick elements (C3D20R) and the FE mesh is refined to obtain con-
verged values of frequencies. The FE meshes for a shell and a hol-
low cylinder that gave converged frequencies are listed in Table 6.

Frequencies of SWCNTs computed through MM simulations, and
of the shell and the hollow cylinder computed with the FEM are gi-
ven in Table 7 and are plotted in Fig. 6 to depict the variation of the
frequency for various axial half wave numbers with the circumferen-
tial wave number. In Fig. 6, results from the MM simulations overlap
those from the FSDST [24] and the analysis of the hollow cylinder.
We compare in Table 7 frequencies of modes (i, j) for the (36, 5)
SWCNT with those of the shell and the hollow cylinder. It is clear that
frequencies of inextensional and bending modes of the hollow cylin-
der for all circumferential and axial wave numbers agree very well
with those of the SWCNT with the maximum difference between
any two corresponding values being 1.28%. For a shell, the FSDST
[24] gives frequencies that differ from the corresponding MM results
simulations with those of the shell using the FSDST and of the hollow cylinder using

, 5)

m�1) 2 (cm�1) 3 (cm�1) 4 (cm�1) 5 (cm�1)

5 6.697 16.161 30.266 48.281
9 1.108 0.572 0.872 1.275
6 1.338 0.951 1.389 1.950

43 10.075 17.246 31.063 48.976
3 0.724 0.706 0.858 1.141
3 0.907 1.084 1.383 1.825

38 15.434 19.218 32.325 50.081
5 0.418 0.883 0.936 1.150
9 0.572 1.242 1.467 1.844

33 21.659 22.164 34.115 51.619
2 0.170 1.019 1.068 1.282
7 0.308 1.346 1.600 1.983

5.548 15.592 29.550 46.766
0.623 0.625 0.332 0.745
0.871 0.995 0.844 0.064

5.634 15.642 29.570 46.971
0.638 0.260 0.038 0.519
0.885 0.635 0.554 0.162
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by at most 1.98%. Frequencies of the (36, 5) SWCNT for moderate val-
ues of the circumferential and the axial wave numbers, plotted in
Fig. 6, show that the lowest natural frequency does not correspond
to j = 1 and i = 1 as would be the case if the SWCNT were modeled
as a beam, but corresponds to i = 2 for the first four axial half wave
numbers. For j = 3 and 4, the lowest frequency in Fig. 6 occurs for
2 < i < 3 because of the smooth curve plotted through the data. The
knowledge of this lowest frequency is important in tuning a resona-
tor during the sweep of frequencies from low to high values. Calcu-
lations based on modeling a SWCNT as a beam will overestimate
fundamental frequencies of the SWCNT. However, SWCNTs of large
aspect ratios may have the lowest natural frequency corresponding
to j = 1 and i = 1. Furthermore, the MM simulation results reveal that
with an increase in the circumferential wave number, frequencies of
bending modes of vibration approach those of the inextensional
modes which generally holds for a shell made of a linear elastic iso-
tropic material.

9. Remarks

Subsequent work [40] on SWCNTs has shown that for a free-free
zig-zag (n, 0) SWCNT, frequencies of inextensional modes of vibra-
tion saturate at a circumferential wave number of either (n�1)/2 or
n/2 for odd and even values of n. However, this does not occur both
for a thin shell and a hollow cylinder. Thus all results obtained by
using a structural theory may not correspond with those of
SWCNTs as is often assumed.

10. Conclusions

Vibrations of thirty-three free-free SWCNTs of aspect ratios be-
tween�3 and�15 have been studied through MM simulations using
the MM3 potential. In order to compare the frequency spectrum of a
SWCNT with that of a shell, the thickness of a SWCNT/shell is derived
by equating analytical frequencies of the lowest inextensional either
Love or Rayleigh, torsional and axial modes of a shell to those of a
SWCNT found through MM simulations. The wall thickness of a
SWCNT is found to increase with an increase in its radius and con-
verges to 1.37 Å for SWCNTs of radii >15 Å. Thus SWCNTs of radii
exceeding 15 Å have the same wall thickness of 1.37 Å which is
slightly smaller than the diameter, 1.42 Å, of a carbon atom. The
functional relationship between the tube thickness and its radius
has been derived by fitting a smooth curve through the computed
data by the least squares method.
Vibration modes of a SWCNT computed through MM simula-
tions have been compared with those of a shell whose length
and mean diameter equal, respectively, those of the relaxed
SWCNT. Frequencies of the shell have been computed with the
first-order shear deformation shell theory and by regarding the
SWCNT as a three-dimensional hollow cylinder comprised of an
isotropic linear elastic material. Frequencies of the shell and the
hollow cylinder are determined by the finite element method. It
is found that for first four axial half waves and up to six full circum-
ferential waves vibration modes of a SWCNT from MM simulations
agree well with those of the equivalent shell and hollow cylinder.

For the design of very high frequency nano-resonators, this
work provides a useful tool to accurately predict the lowest natural
frequency of a SWCNT by using a computationally less expensive
structural model.
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