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We determine the basal plane stiffness and Poisson’s ratio of single layer graphene sheets (SLGSs)
in armchair and zigzag directions by using molecular mechanics simulations of their uniaxial tensile
deformations with the MM3 potential, and of their axial and bending vibrations. Both approaches
give the basal plane stiffness equal to ∼340 N/m which agrees well with that reported in the lit-
erature and derived from results of indentation experiments on SLGSs and from the first principle
calculations. The computed value of Poisson’s ratio equals 0.21 in both armchair and zigzag direc-
tions. Assuming that the response of a SLGS is the same as that of a plate made of a linear
elastic, homogeneous, and isotropic material having Poisson’s ratio= 0.21, the in-plane stiffness of
∼340 N/m and the total mass equal to that of the SLGS, the thickness of the SLGS is found to be
∼1 Å. Thus Young’s modulus and the shear modulus of a SLGS equal ∼3.4 TPa and ∼1.4 TPa,
respectively. It is shown that mode shapes corresponding to the several lowest frequencies of the
SLGS differ noticeably from those of an equivalent thin layer made of a linear elastic isotropic
material with Young’s modulus = 3.4 TPa and the shear modulus = 1.4 TPa. Furthermore, a free–
free SLGS vibrates about a plane bisecting its width rather than its thickness as predicted by the
Euler Bernoulli beam theory. We also investigate the effect of pretension on the natural frequencies
of SLGSs using MM simulations and correlate it to that of 1 Å thick linear elastic plate found by
analyzing its three-dimensional deformations. These results will help design SLGS nanomechanical
resonators having frequencies in the THz range.
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1. INTRODUCTION

An atom thick graphene sheet comprised of a hexagonal
network of covalently bonded carbon atoms is expected to
exhibit novel mechanical and electronic properties. These
sheets may be used as reinforcements in composite materi-
als to acquire high specific strength or as nanomechanical
resonators in THz frequency range. Since the discovery of
carbon nanotubes by Iijima1 in an arc discharge evapora-
tion experiment, it has been anticipated that these tubes
could be engineered economically if it were possible to
control the geometry of graphene sheets. Hiura et al.2 used
an atomic force microscope (AFM) tip to cleave highly ori-
ented pyrolytic graphite (HOPG) and imaged two single
layer graphene sheets (SLGSs) separated by 3.4 Å. They
also imaged folding and unfolding of graphitic layers, and
observed that tearing and folding of graphitic layers was
governed by the formation of sp3 like line defects in the
sp2 graphitic networks. Similarly Roy et al.3 studied the

∗Author to whom correspondence should be addressed.

cleaved HOPG and performed folding and unfolding of
atomic layers of graphite using scanning tunneling micro-
scope (STM). They found that the tip vibration of the STM
can tear the graphitic layers. Lu et al.4 patterned the HOPG
surface with oxygen plasma etching to create uniformly
sized islands up to 9 �m in size and peeled graphene sheets
from these islands for further manipulation with AFM tips.
Recently Novoselov et al.5 have prepared SLGSs using
micromechanical cleavage. Stankovich et al.6 have devel-
oped a technique to fabricate graphene-polymer composites
via complete exfoliation of graphite and molecular-level
dispersion of individual, chemically modified graphene
sheets in the host polymer. We review below the perti-
nent literature on the modeling of graphene sheets through
experimental, analytical and numerical approaches.
The structural applications of graphene require that

we know its macroscopic properties. Previous theoretical
and experimental studies have used continuum theories to
determine basal plane stiffness (K =Eh, E: Young’s mod-
ulus, h: wall thickness shown in Fig. 1), Poisson’s ratio
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Fig. 1. Thin plate equivalent in mechanical response to a SLGS.

�, and bending stiffness D = Eh3/12(1-�2) of a SLGS by
representing it as a homogeneous, linear elastic, and trans-
versely isotropic plate7 with the axis of transverse isotropy
perpendicular to the basal plane. A SLGS is an atom thick.
In order to determine its equivalent continuum structure
(ECS) shown in Figure 1, some researchers have either
computed the wall thickness h or have assumed it to be
3.4 Å which is the interlayer separation in bulk graphite.
Table I summarizes values of K, V , h and D reported in

Table I. Values of K, h�D and n computed from atomistic simulations and experiment reported in the literature.

Author(s) Year Potential/Method K (Nm−1� � h (Å) D (eV)

Van Lier et al. [8] 2000 Ab initio ∼377 — 3.4 —
Kudin et al. [9] 2001 Ab initio 345 0.149 0.894 1.5

Aroyo and Belytschko [10] 2004 Brenner
First generation 236 0.412 — 0.846
Second generation 243 0.397 0.690

Huang et al. [11] 2006 Brenner (First generation)
—Uni-axial tension ∼235 0.412 0.618 0.562a

—Uni-axial stretching ∼236 0.412 0.734 0.797a

—Equi-biaxial stretching ∼235 0.412 0.874 1.125a

Brenner (Second generation)
—Uni-axial tension ∼243 0.397 0.574 0.494a

—Uni-axial stretching ∼243 0.397 0.678 0.690a

—Equi-biaxial stretching ∼242 0.397 0.811 0.983a

Reddy et al. [12] 2006 Tersoff-Brenner
Along zigzag edge (direction -1) ∼227 �12 = 0.416 3.4
Among armchair edge (direction -2) ∼276 �21 = 0.465 —

Konstantinova et al. [13] 2006 Density Functional Theory ∼420 — — —
Liu et al. [14] 2007 Ab initio ∼357 0.186 3.4 —
Lee et al. [15] 2008 Nano-indentation (Experimental) 340±50 — — —
Michel and Verberck [16] 2008 Harmonic lattice dynamics theory ∼ 385 0.228 — 1.12

Zhou and Huang [17] 2008 Tersoff-Brenner
Without internal lattice relaxation ∼339 0.158 —
With internal lattice relaxation ∼236 0.414 —

Faccio et al. [18] 2009 Density functional theory 323 0.18 — —
Sakhaee-Pour [19] 2009 Atomistic structural mechanics ∼354 >1.0 3.4 —
Bu et al. [20] 2009 Tersoff-Brenner ∼415 — 3.35 —

Scarpa et al. [21] 2009 Atomistic structural mechanics
AMBER and morse 64–546 0.21–0.85 0.74–0.99 —

Lu et al. [22] 2009 Empirical potential — — — 1.4
Klintenberg et al. [23] 2009 Density Functional Theory 358 — — —
Cadelano et al. [24] 2009 Tight-binding atomistic simulations 312 0.31 — —

aComputed from values of E, h and � provided by the author(s).

the literature using different theoretical and experimental
methods.
Behfar and Naghdabadi25 used the classical plate the-

ory (CPT) to study vibrations of simply supported two-
layered graphene sheets embedded in an elastic medium,
and assumed them to be orthotropic in their planes with
Young’s moduli E1 and E2 in the two principal directions
as 1765 GPa and 1588 GPa, respectively, the in-plane Pois-
son’s ratio �12 as 0.3, the thickness of a SLGS= 3.4 Å,
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and the mass density = 2300 kg/m3. They modeled the
interlayer interaction and the interaction between the outer
layers and the matrix with van der Waals forces. They
found that there are two frequencies for the same pair
of half wave numbers along the length and the width
directions. The mode corresponding to the lower of these
two frequencies has both sheets moving in phase whereas
that corresponding to the higher frequency has both sheets
moving in opposite directions. Furthermore, an increase
in the stiffness between the outer graphene layers and the
polymer matrix enhanced the two frequencies. He et al.26

used the CPT to study the effect of interlayer van der
Waals forces on resonant frequencies of simply supported
multilayer graphene sheets (MLGSs). The interlayer dis-
tance, Young’s modulus, and the mass density are taken
as 3.4 Å, 1.02 TPa and 2250 kg/m3, respectively. They
found that the number of solutions for the natural frequen-
cies equaled the number of layers. The smallest natural
frequency corresponding to a pair of half wave numbers
along the length and the width directions was found to be
independent of the interlayer van der Waals force param-
eter. Liew et al.27 analysis is similar to that of Behfar
and Naghdabadi25 except that the interaction of the outer
graphene sheets with polymeric matrix is modeled using
Pasternak foundation which accounts for the shear and the
normal deformations of the surrounding elastic medium.
They concluded that the elastic medium has a little effect
on the amplitudes of vibrations of the sheets but no effect
on the resonant frequencies. Bunch et al.28 fabricated and
tested SLGSs and MLGSs based electromechanical res-
onators by suspending a micrometer long graphene sheet
over SiO2 trench. The clamping of the opposite edges of
the graphene sheet on the SiO2 trench was due to van der
Waals forces. They experimentally determined frequencies
of SLGSs by actuating them either electrically or optically,
and modeled them as a clamped–clamped Euler Bernoulli
beam with uniform initial tension, assumed its thickness to
be 3 Å, the mass density= 2200 kg/m3, and E = 1.0 TPa.

Using the MM3 potential, we simulate in-plane tensile
deformations of graphene strips to determine their basal
plane stiffness and Poisson’s ratio in zigzag and arm-
chair configurations. This value of the basal plane stiff-
ness is compared with that obtained by studying free axial
and bending vibrations of a SLGS traction free on all
four edges. The thickness of a SLGS is determined by
modeling it as a plate made of a linear elastic, homoge-
neous and isotropic material and equating frequencies of
the plate to those of the SLGS and same boundary con-
ditions applied to the plate and the SLGS; we call the
plate an equivalent continuum structure (ECS). An ECS
of a SLGS enables one to use homogenization techniques
for determining elastic properties of polymeric composites
with SLGSs used as reinforcements. Furthermore, these
ECSs can be used to compute first few natural frequen-
cies of nanomechanical resonators, and find their optimum

geometric parameters. The frequency of the fundamental
mode of vibration of a SLGS can be increased to a THz by
inducing in-plane tension in them; we study this by using
MM simulations for a SLGS and the three-dimensional
linear elasticity theory for its ECS.
The rest of the paper is organized as follows. Section 2

describes the MM329 potential and Section 3 details of
our MM simulations of the uniaxial tensile deformations
of a SLGS, computation of the basal plane stiffness and
Poisson’s ratio. The basal plane stiffness found from fre-
quencies of the axial and the bending modes of vibration
are described in Section 4. In Section 5 we determine the
thickness of the ECS of a SLGS based on the basal plane
stiffness and Poisson’s ratio found in Section 3. It is shown
in Section 6 that various modes of vibration of a free
SLGS computed via MM simulations do not agree with
those of its ECS found using the three-dimensional lin-
ear elasticity theory. In Section 7 we investigate effects of
pretension on natural frequencies of SLGSs. Conclusions
drawn from this work are summarized in Section 8.

2. MOLECULAR MECHANICS POTENTIAL

The MM329 class II potential with both higher-order
expansions and cross-terms is appropriate for modeling
SLGSs due to the similarity between graphitic bonds in
the SLGSs and the aromatic protein structures for which
the potential was constructed. The potential is given by
Eq. (1) in which Us, U� and U� are energies due to bond
stretching, bending and torsion respectively; UvdW is the
potential of non-bonded van der Waals forces, and Us�, U�s

and U��′ represent energies of cross interactions between
stretch-bend, torsion-stretch and bend–bend deformations,
respectively. Parameters r , �, �′ and � in Eq. (1) are shown
in Figure 2. A subscript, e, on a variable signifies its value
in the configuration of the minimum potential energy. The
total potential energy of a body equals the sum of poten-
tial energies of all atoms in the body (indices i and j in
Eq. (1) range over bonded atoms, and the index k over all
atoms).

U =∑

i

∑

j

�Us+U� +U�+Us� +U�s+U��′�

+∑

i

∑

k

UvdW

Us = 71�94Ks�r− re�
2

[

1−2�55�r− re�

+
(

7
12

)

2�55�r− re�
2

]

U� = 0�021914K���−�e�
2	1−0�014��−�e�

+5�6�10�−5��−�e�
2

−7�0�10�−7��−�e�
3

+9�0�10�−10��−�e�
4
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Fig. 2. Depictions of variables r� �, �′ and � used in the expression for
the MM3 potential.

U� = �V1/2��1+ cos��+ �V2/2��1− cos2��

+ �V3/2��1+ cos3��

Us� = 2�51118Ks�	�r− re�+ �r ′ − re
′�
��−�e�

U�s = 11�995�K�s/2��r− re��1+ cos3��

U��′ = −0�021914K��′��−�e���
′ −�e

′�� and

UvdW = �e�−2�25�rv/r�
6+1�84�10�5 exp	−12�0�r/rv�



(1)

Values of constants Ks, K�, V1�V2, V3, �e, r� , Ks�, K�s

and K��′ are given in Ref. [29]. Note that the van der
Waals force between two atoms varies as (r�/r�

6 and
exp(−12r /r��. The first term is the same as that in the
Lennard-Jones potential, but the second term is different.
Because of the term �r− re�

3 in the expression for Us, the
potential energy for tensile and compressive deformations
involving equal changes in bond lengths are different.
As listed in Table III of Gupta and Batra30 the MM3

potential used herein gives frequencies of radial breathing
modes of SWCNTs which agree well with their experi-
mental values. Since no structural model is used in this
comparison, the close agreement between the computed
and the experimental values provides one measure of the
validity of the MM3 potential to model SWCNTs. Also,
except for the Coulomb force due to point charges, expres-
sions in the MM3 potential are essentially the same as
those in the Condensed-phase Optimized Molecular Poten-
tials for Atomistic Simulation Studies (COMPASS) often
used to simulate deformations of polymeric materials.31

Another indication of the suitability of the MM3 poten-
tial for SWCNTs is that the computed basal plane stiffness
of 340 N/m is very close to experimental mean value of
340 N/m found by Lee et al.15

3. MM SIMULATIONS OF UNIAXIAL TENSILE
DEFORMATIONS

Uniaxial tensile deformations of graphene strips of aspect
ratio ∼10 are conducted using the MINIMIZATION mod-
ule of the software TINKER32 by constraining displace-
ments of all atoms at one end in x, y and z—directions
and prescribing incremental displacements of all atoms at
the other end along the length direction and constraining

them to their new positions in x, y and z—directions. Two
configurations, namely armchair and zigzag, depicted in
Figure 3 of graphene strips are considered. For an arm-
chair strip atoms on the edge 1L are constrained while
atoms on the edge 1R have prescribed x-displacement; for
a zigzag strip atoms on the edge 2B are constrained while
atoms on the edge 2T have prescribed y-displacement.
After every incremental prescribed displacement the

minimum potential energy configuration of a SLGS
is obtained to within rms potential gradient of
0.001 kcal/mol/Å without using any cut-off distance. From
the gradient of the potential energy of each atom for which
the displacement is prescribed, forces acting on that atom
are computed. Force per unit length (Nx and Ny for arm-
chair and zigzag strips, respectively) are determined by
dividing the total force acting on atoms on the edge by the
length of the edge. Components of the strain tensor in the
strip are computed from the mean-value of the deformation
gradient33 using three nearest atoms surrounding the one
of interest. For both armchair and zigzag SLGSs the strain
field is found to be uniform except at atoms near the edges
where displacements are prescribed.
For a 262.24 Å×23.53 Å armchair SLGS, we have plot-

ted in Figure 4 components of the strain tensor when atoms
on the edge 1R of the strip are displaced by 1 Å in the
x-direction while keeping atoms on the edge 1L fixed. The
strain component Eyy is negative due to Poisson’s effect,
and the shear strain Exy equals zero indicating that most
of the SLGS is deformed in simple tension. The relation
between Nx and Exx for atoms at the sheet centroidal axis
parallel to the loaded edge is shown in Figure 5. The
straight line fitted through the data by the least-squares
method has a slope of 486.7 kcal/mole/Å2 or 338.11 N/m;
this equals the basal plane stiffness.
For a 22.76 Å× 260.06 Å zigzag graphene strip we

have displayed in Figure 6 components of the strain tensor

1L

2T

1R

2BX

Y

Fig. 3. Segment of a graphene strip with armchair (1L, 1R) and zigzag
(2T, 2B) edges.
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Fig. 4. Distribution of strains in the 262.24 Å× 23.53 Å armchair
graphene strip for 1 Å x-displacement of atoms on the right edge with
atoms on the left edge kept fixed; (a) Exx , (b) Eyy , and (c) Exy .

when atoms on the edge 2T of the strip are displaced by
1 Å in the y-direction while atoms on the edge 2B are
fixed. For this case the strain component Exx is negative
due to Poisson’s effect, and as in the previous case, the
shear strain Exy is zero. The slope of the straight line fit-
ted through (Ny , Eyy) by the least squares method equals
489.54 kcal/mole/Å2, or 340.08 N/m; this equals the basal
plane stiffness.

3.1. Determination of Poisson’s Ratio in the
Basal Plane

From average values of the axial and the lateral strains for
the two SLGSs studied above, the Poisson ratio is found
to be 0.21. Since Kx = Ky and �xy = �yx, we conclude

Nx=486.7Exx

0

0.4

0.8

1.2

1.6

2

Strain, Exx

Fo
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e/
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, N
x(

K
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l/m
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/Å
2 )

0.0040.0030.0020.0010

Fig. 5. Nx versus Exx for the 262.24 Å× 23.53 Å armchair graphene
strip.
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Fig. 6. Distribution of strains in the 22.76 Å × 260.06 Å zigzag
graphene strip for 1 Å x-displacement of atoms on the right edge with
atoms on the left edge kept fixed; (a) Exx , (b) Eyy , and (c) Exy .

the following: it is reasonable to assume that mechanical
deformations of a SLGS are equivalent to those of an ECS
that is isotropic in the plane of the sheet. Thus material
of the ECS and hence the SLGS can be regarded as trans-
versely isotropic with the axis of transverse isotropy per-
pendicular to the plane of the ECS or the SLGS having
the basal plane stiffness K =∼ 340 N/m and Poisson’s
ratio =∼ 0.21. These values agree well with the experi-
mental and numerical values from ab initio computations
listed in Table I.

4. EVALUATION OF BASAL PLANE
STIFFNESS FROM FREE
VIBRATIONS OF SLGSs

As for the static axial deformations the SLGSs of aspect
ratio ∼10 are first relaxed to find the minimum energy con-
figuration to within 0.001 kcal/mol/Å rms without using
any cut-off distance. The aspect ratio of ∼10 of the
SLGS and hence of its ECS minimizes transverse iner-
tia effects thus enabling us to use the 1-D wave equation
to study axial vibrations, and the Euler-Bernoulli beam
theory (EBBT) to study the fundamental mode of bend-
ing vibrations. The module VIBRATE in computer code
TINKER32 is used to calculate eigenvalues and eigenvec-
tors of the mass weighted Hessian matrix of the equili-
brated SLGSs with all edges kept free of any applied load.
The eigenvector associated with an eigenvalue is used to
identify the corresponding mode of vibration; these are
compared with the natural frequencies of the ECS for the
same mode of vibration by assuming the material of the
ECS to be linear elastic, homogeneous and isotropic. We

J. Comput. Theor. Nanosci. 7, 1–14, 2010 5
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Table 2A. Frequencies of axial and bending modes of vibrations of a
free–free SLGS of aspect ratio 10, and values of the basal plane stiffness
computed from these frequencies.

Graphene strip
(Size) Mode �A �B (Eh)Axial (Eh)Bending
(C-atoms) No. (cm−1� (cm−1� (N/m) (N/m)

Armchair 1 12.741 2.364 344.1 348.0
(23.53 Å×262.24 Å) 2 25.467 6.220 343.7 317.2
(2652) 3 38.162 11.467 343.0 280.5

Zigzag 1 12.656 2.321 347.4 360.9
(22.76 Å×260.06 Å) 2 25.303 6.098 347.1 327.8
(2652) 3 37.923 11.247 346.5 290.2

Armchair 1 8.628 1.620 339.9 331.6
(35.98 Å×389.16 Å) 2 17.246 4.269 339.5 303.1
(5886) 3 25.843 7.861 338.8 267.4

Zigzag 1 8.560 1.673 341.3 338.4
(37.12 Å×388.66 Å) 2 17.114 4.374 341.1 304.2
(6204) 3 25.647 8.017 340.5 265.9

have listed in Table II the first three frequencies of axial
and bending modes of oscillations for two armchair and
the two zigzag SLGSs of different sizes. As for frequen-
cies of the ECS, we note that for each SLGS studied, fre-
quencies of the 2nd and the 3rd axial modes of vibration
are very close to twice and three times the correspond-
ing frequency of the 1st mode. It is thus reasonable to
assume that an ECS is a prismatic strip, and its length
and breadth equal that of the relaxed graphene strip. We
now postulate that the thickness, Young’s modulus and the
shear modulus of the ECS are such that its frequencies of
free vibrations equal those of the corresponding SLGS for
axial and bending modes of vibration.
Frequencies �nA (rad/sec) of the nth axial mode, and

�nB (rad/sec) of the nth bending mode of vibration of the
ECS are given by34

�nA = n�

le

√
E

�
n= 1�2�3� � � � (2)

Table 2B. Frequencies of bending modes of vibrations of a free–free
SLGS of aspect ratios 15 and 20, and values of the basal plane stiffness
computed from these frequencies.

Graphene strip
(Size) Mode �B (Eh)Bending
(C-atoms) No. (cm−1� (N/m)

Armchair 1 1.285 357.787
(23.53 Å×358.64 Å) 2 3.467 342.928
(3612) 3 6.551 318.508

Zigzag 1 1.234 344.628
(23.34 Å×359.66 Å) 2 3.312 326.659
(3654) 3 6.262 303.778

Armchair 1 0.651 347.946
(23.35 Å×496.59 Å) 2 1.774 340.229
(5040) 3 3.409 326.904

Zigzag 1 0.713 348.251
(23.53 Å×478.36 Å) 2 1.984 354.882
(4812) 3 3.813 340.996

Table 3. Frequencies of various bending modes of vibrations of nearly
square SLGSs and values of the thickness computed from Eq. (4).

Equivalent
Size of graphene Modes Frequency thickness
Sheet (C-atoms) (r , s)a (THz) ‘h’ (Å)

(A) 20.31 Å×19.42 Å (1,1) 0.677 0.82
(180) (1,2) 1.637 0.97

(2,1) 1.722 1.02
(2,2) 2.602 1.05

(B) 32.33 Å×31.83 Å (1,1) 0.259 0.80
(464) (1,2) 0.623 0.95

(2,1) 0.656 1.00
(2,2) 1.006 1.04
(1,3) 1.222 1.04

(C) 67.15 Å×66.99 Å (1,1) 0.074 0.97
(1881) (1,2) 0.157 1.01

(2,1) 0.160 1.03
(2,2) 0.248 1.08
(1,3) 0.307 1.10

a r and s are the number of half waves along the x- and the y- axes
respectively.

�nB =
�2
n

l2e

√
EI

�A
� n= 1�2�3 � � � � (3)

where E, � and le equal, respectively, the axial Young’s
modulus, the mass density and the length of the ECS, and
I is the second moment of area of cross section A of the
ECS. The expression for frequencies in Eq. (3) assumes
that the structure can be modeled as an Euler-Bernoulli
beam, and for the first three bending modes �1 = 4.730,
�2 = 7.853 and �3 = 10.996.
Equating �nA and �nB to the corresponding frequencies

of the SLGS found through MM simulations, we evalu-
ate the basal plane stiffness of the ECS; these values are
listed in Table II(A). We note that values of K computed
from �nA for the four SLGSs studied here are nearly the
same, 342± 0.3 N/m., and agree well with that obtained
from the uniaxial tensile tests on SLGSs. The experimen-
tally determined15 value of K is 340± 50 N/m. However,
values of K computed from �nB decrease with an increase
in the mode number, n. The first bending mode frequency
for the four cases gives K = 344±12.7 N/m, but the 2nd
and the 3rd bending mode frequencies yield K ≈ 317 and
280 N/m, respectively. This most likely is due to the inap-
plicability of the EBBT to a beam of aspect of aspect ratio
∼10 for finding frequencies of the 2nd and the 3rd mode.

Table 4. Frequencies of the axial and the bending modes of oscillations
computed from the MM simulations and the FE method with the ECS
modeled as a thin shell.

Graphene strip Mode MM �A FEM �A MM �B FEM �B

(Size) (C-atoms) No. (cm−1� (cm−1� (cm−1� (cm−1�

Armchair 1 12.741 12.673 2�364 2�276
(23.53 Å×262.24 Å) 2 25.467 25.337 6�220 5�998
(2652) 3 38.162 37.982 11�467 11�106

6 J. Comput. Theor. Nanosci. 7, 1–14, 2010



R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Gupta and Batra Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets

(a)

(b)

(c)

(d)

Y

X
Z

Fig. 7. Beam type bending modes of free–free 23.53 Å× 262.24 Å armchair graphene strip; (a) equilibrated structure, (b) first bending mode,
(c) second bending mode, and (d) third bending mode. Bending deformations occur in the plane of the strip.

Accordingly, we studied vibrations of a free–free SLGS
of aspect ratio 20, and the corresponding results listed in
Table II(B) evince that indeed the aspect ratio of the sheet
plays a significant role in deciding whether or not to use
the EBBT for studying higher order modes of vibration
of the sheet. An unanticipated result is that the free–free
SLGSs vibrate about the plane bisecting the width rather
than the thickness as predicted by the EBBT.
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Fig. 8. Comparison of strains from the MM simulation results (left) and the analysis of the ECS (right); (a), (b) and (c) for the first bending mode
and (d), (e) and (f) for the second bending mode.

5. THICKNESS OF SLGSs FROM
FREQUENCIES OF FREE VIBRATIONS

In an attempt to find the thickness of a SLGS, we study
free vibrations of clamped square SLGSs of different
dimensions following the procedure outlined above. The
Hessian computed from the TINKER software is exported
to MATLAB35 for mass weighting, applying essential
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boundary conditions, and computing frequencies and mode
shapes.
The bending mode frequencies for various combinations

of half waves along the x- and the y- axes are listed
in Table III for the clamped SLGSs, and are compared
with frequencies of their ECSs using the CPT. Frequen-
cies of bending modes of vibration, f P

rs (Hz), of thin plates
(a/h > 15, where a and h are the length of the smallest side

Mode–4

7.134 cm–1

Mode–5
7.231 cm–1

Mode–9
8.088 cm–1

Mode–7
7.455 cm–1

Mode–3
6.220 cm–1

Mode–6
7.364 cm–1

Mode–8
7.731 cm–1

Mode–10
8.587 cm–1

Mode–11
9.190 cm–1

Mode–13
10.174 cm–1

Mode–12
9.853 cm–1

Mode–14
10.773 cm–1

Mode–15
11.467 cm–1

Mode–1
(a)

2.364 cm–1 Mode–2

3.721 cm–1

Fig. 9. Continued.

and the thickness, respectively) made of a linear elastic,
homogeneous and isotropic material of uniform thickness
are given by34

f P
rs =

�2
rs

2�a2

[(
Eh3

12��1−�2�

)]1/2

� r = 1�2�3� � � �

and s = 1�2�3� � � � (4)
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Mode-6
1.331 cm–1

Mode-1

(b)

0.099 cm–1

Mode-2
0.274 cm–1

Mode-3
0.538 cm–1

Mode-4
0.685 cm–1

Mode-5
0.890 cm–1

Mode-7
1.377 cm–1

Mode-8
1.860 cm–1

Mode-9
2.083 cm–1

Mode-10
2.275 cm–1

Mode-20
5.994 cm–1

Mode-30
11.089 cm–1

Fig. 9. (a) Modes of free–free 23.53 Å×262.24 Å armchair graphene strip computed from MM. For modes 1, 2 and 15 bending deformations occur
in the plane of the strip. (b) Modes of ECS of free–free 23.53 Å×262.24 Å armchair graphene strip computed from the 3D-LET. For modes 10, 20
and 30 bending deformations occur in the plane of the ECS similar to modes 1, 2 and 15 shown in Figure 9(a).

where r and s are number of half waves along the x-
and the y- directions, respectively, the frequency parameter
�rs depends on the aspect ratio, Poison’s ratio and bound-
ary conditions, and � is the areal mass density (mass/area)
of the plate. For clamped and square plates with Pois-
son’s ratio = 0.21, �2

11, �
2
12 = �2

21, �
2
22, �

2
13 = �2

31 equal
35.99, 73.41, 108.3 and 131.6, respectively.34 Equating
the frequency in Eq. (4) for a particular (r , s� mode to
that derived from the MM simulations for the SLGS, tak-
ing Eh = 340 N/m, Poisson’s ratio � = 0.21, areal mass

density = (mass of carbon atoms in the SLGS)/�ab�, we
find the thickness of the ECS or equivalently of the SLGS.
These values of h, listed in Table III, equal ∼1 Å. There-
fore the bending stiffness, D�of a SLGS equals 1.86 eV.
Values of D for graphene sheets reported in the literature
vary from 0.69 to 1.5 eV. Arroyo and Belytschko10 have
used the first and the second generation Brenner poten-
tials and found D equal to 0.85 and 0.69 eV, respectively.
We note that the Brenner potential does not account for
the dihedral torsion term. Lu et al.22 have shown that the
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consideration of the dihedral torsion term in the second
generation Brenner potential increases the value of D, and
found it to equal 1.4 eV which is close to the 1.5 eV
computed by Kudin et al.9 using an ab initio method. The
larger value of D in the present computations may be
attributed to the consideration of cross interactions among
various degrees of freedom in the MM3 potential given by
Eq. (1) that are not considered in the Brenner potential.
In order to verify values of elastic constants (E =

3.4 TPa, � = 0.21) and the thickness (h= 1 Å) of a SLGS,
we compute frequencies and mode shapes of free–free
ECS of the 23.53 Å×262.24 Å armchair SLGS using the
commercial finite element (FE) software ANSYS.36 We
use 4-node Shell-63 FE with the membrane and the bend-
ing deformations, mass density= 8561 kg/m3 computed by
dividing the total mass of C-atoms in the SLGS by its vol-
ume (V = a×b×h, Fig. 1). From progressive refinement
of the FE mesh, a 100× 10 FE mesh (along the length
and the width directions, respectively) of uniform elements
was found to give converged values of natural frequencies.
As should be clear from values listed in Table IV, the first
three frequencies of the axial and the bending modes com-
puted from the MM simulations and the FE method differ
at most by ∼3%.
Figure 8 shows for the first two bending modes, the dis-

tribution of strains computed from the mean-value atom-
istic deformation gradient33 applied to the MM simulation
results, and the analysis of the ECS modeled as a shell.
A reasonable agreement in the distribution of strains from
the two approaches indicates that frequencies of the ECS
of an SLGS can be found by regarding it as a shell. Strains
plotted in Figure 8 are scalable since they are computed
from eigenvectors of the mass weighted Hessian in the
MM simulations, and eigenvectors of the ECS.

6. COMPARISON OF FREQUENCIES OF
SLGS COMPUTED FROM MM
SIMULATIONS WITH THOSE FROM THE
LINEAR ELASTICITY THEORY

We now explore if the vibrational response of the 23.53 Å×
262.24 Å SLGS is similar to that of its ECS made

Table 5. Comparison of frequencies of different modes of stretched
SLGS B determined from the three-dimensional linear elasticity theory
(3-D LET) and the MM simulations.

Size of the MM simulation MM simulation 3D-LET
SLGS (No. Mode (THz) (THz) (THz)
of C-atoms) (r , s) (�= 0.0 Å) (�= 0.2 Å) (�= 0.2 Å)

32.33 Å× (1,1) 0.259 0�579 0�635
31.83 Å

(464) (1,2) 0.623 1�056 1�065
(2,2) 1.006 1�437 1�432
(1,3) 1.222 1�651 1�643

of a homogeneous and isotropic linear elastic mate-
rial with E = 3.4 TPa, � = 0.21 and mass density � =
8561 kg/m3. The mode shapes and the corresponding fre-
quencies obtained with the MM simulations and using the
three-dimensional linear elasticity theory are depicted in
Figures 9(a) and (b) respectively. Mode shapes for the
lowest 15 frequencies computed with MM simulations are
exhibited in Figure 9(a). Mode shapes corresponding to
the first 10 lowest frequencies and those for modes 20
and 30 obtained by using the linear elasticity theory using
ANSYS36 are shown in Figure 9(b); other modes are not
displayed for the sake of brevity. It is clear that for the three
bending modes displayed in Figure 7 the two approaches
give essentially the same frequencies. However, MM simu-
lations and the analysis of three-dimensional deformations
of the ECS made of a homogeneous linear elastic mate-
rial have dissimilar mode shapes and unequal frequencies
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Fig. 10. Distribution of forces on edges (a) 2B and (b) 1R of the
32.33 Å× 31.83 Å graphene sheet and its ECS due to � = 0.2 Å. Red
filled circles represent magnitude of force computed from the MM sim-
ulations and blue filled circles represent magnitude of force computed
from the 3D-LET at nodal locations matching with those of atoms in the
SLGS.
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implying that a continuum theory cannot predict all mode
shapes of a free–free SLGS. It is reported in Ref. [37]
that with an increase in the circumferential wave number
frequencies of inextensional modes of vibration of (n, 0)
zigzag SWCNT saturate at (n-1)/2 or n/2 for odd or even
n, but those of the continuum hollow cylinder composed of
a linear elastic material do not.
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Fig. 11. Distribution of strain components (a) Exx , (b) Eyy , and (c) Exy in the 32.33 Å×31.83 Å graphene sheet and its ECS, for �= 0.2 Å prescribed
on all edges. Distributions of Exx and Eyy are uniform except at points near the edges. The value of Exy is found to be negligible as compared to that
of Exx and Eyy except at the corners. The values of gray contours in strain distribution plots of the ECS are printed on the contours.

7. FREQUENCIES OF BI-AXIALLY
STRETCHED AND CLAMPED SLGS

In experiments of Bunch et al.28 and Lee et al.15 graphene
sheets had possibly been stretched due to van der
Waals interaction of carbon atoms with the silicon atoms
of the substrate. This interaction is unavoidable while
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Fig. 12. Mode shapes of the clamped 32.33 Å×31.83 Å graphene sheet prestretched by ∼1.2% in the x—and the y-directions.

making devices like nanomechanical resonators. Further-
more, some applications (THz nanomechanical resonators)
may require significant pretension to increase the transverse
stiffness of a graphene sheet which will enhance its natural
frequencies.
We have investigated the effect on natural frequencies

of pretension in sheet B of Table V. The graphene sheet is
stretched by prescribing equal and opposite axial displace-
ment � to atoms on opposite faces of the sheet. That is,
all atoms on edges 1R and 1L are displaced, respectively,
in the positive and the negative x-direction by �, and all

atoms on edges 2T and 2B are displaced in the positive
and the negative y-direction by �. The minimum poten-
tial energy configurations of graphene sheets for incre-
mental values of � are found to within rms gradient of
0.001 kcal/mole/Å. Figures 10(a) and (b) exhibit the dis-
tribution of in-plane forces, Fy and Fx respectively, acting
perpendicular to edges 2B and 1R of sheet B for � =
0.2 Å. Three-dimensional deformations of the ECS under
the same boundary conditions as applied to the SLGS
are analyzed with ANSYS36 using 20-node solid elements
to accurately capture the singularity in strains at corners.
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The distributions of reaction forces computed at nodes on
edges 2B and 1R and having the same spatial locations as
atoms in the SLGS are shown in Figure 10. It is found
that forces on atoms or nodes at the clamped edge from
the two approaches differ by ∼10% for atoms near the
middle of the edge, and the differences between the two
sets of results are large for atoms at the corners. Further-
more, the distribution of forces at points near the middle
of the edges is uniform, while their magnitudes increase
for corner atoms. Also we note that the total force acting
on atoms on edges 2B and 1R is approximately the same.
Figure 11 shows distribution of strains Exx, Eyy and Exy in
the stretched sheet computed from the mean-value defor-
mation gradient33 and for its ECS obtained with the FEM;
the two sets of results agree with each other qualitatively
but distributions near the edges are somewhat different.
We find that Exx and Eyy are distributed uniformly in the
central region of the sheet and �Exy� is negligible as com-
pared to �Exx� and �Eyy�. Except for the frequency of the
fundamental mode, frequencies of (1, 2), (2, 2,) and (1, 3)
modes of vibration of the stretched SLGS from the MM
simulations and of its linear elastic ECS agree well with
each other; these are listed in Table VI. The fundamental
mode frequency of the stretched ECS is ∼9.7% more than
that of the stretched SLGS; the reasons for this discrep-
ancy are unclear to us. It is found that for an average axial
stretch of ∼ 1.4% in the x- and the y-directions, the fun-
damental mode frequency of the SLGS and of its ECS has
increased by 100% as compared to that of its unstretched
state. The corresponding mode shapes computed from the
MM simulations are shown in Figure 12.

8. CONCLUSIONS

The basal plane stiffness of armchair and zigzag single
layer graphene sheets (SLGSs) has been determined by
studying their uniaxial tensile deformations and free axial
and bending mode vibrations with the MM3 potential.
The basal plane stiffness is found to be ∼340 N/m which
agrees well with that reported in the literature for inden-
tation experiments on graphene sheets. Assuming that the
mechanical deformations of a SLGS can be modeled by
that of a thin plate having the same dimensions as the
SLGS and made of a linear elastic, homogeneous and iso-
topic material, Poisson’s ratio and the wall thickness of the
ECS and hence of the SLGS are 0.21 and ∼1 Å, respec-
tively. It is found that the bending vibrations of graphene
strips of aspect ratio ∼10 are in their plane which is coun-
terintuitive. Furthermore, mode shapes corresponding to
the several lowest frequencies of the free–free SLGS found
using the MM simulations differ noticeably from those of
the ECS determined by using the linear elasticity theory.
The frequencies of vibration of higher modes of a stretched
and clamped 1 Å thick plate equal in size to a graphene
sheet and made of a linear elastic material computed by

using the three-dimensional elasticity theory match well
with those of the graphene sheet computed through MM
simulations, but the fundamental frequencies from the two
approaches differ by 10%. The analysis of free vibrations
of a bi-axially stretched clamped square SLGS indicates
that an axial stretch of ∼1.2% along the two edges almost
doubles the fundamental frequency.
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