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Abstract We use symmetric smoothed particle hydrody-
namics (SSPH) and moving least squares (MLS) basis func-
tions to analyze six linear elastostatics problems by first
deriving their Petrov-Galerkin approximations. With SSPH
basis functions one can approximate the trial solution and
its derivatives by using different basis functions whereas
with MLS basis functions the derivatives of the trial solution
involve derivatives of the basis functions used to approximate
the trial solution. The class of allowable kernel functions for
SSPH basis functions includes constant functions which are
excluded in MLS basis functions if derivatives of the trial
solution are also to be approximated. We compare results for
different choices of weight functions, size of the compact
support of the weight function, order of complete polynomi-
als, and number of particles in the problem domain. The two
basis functions are also used to analyze crack initiation and
propagation in plane stress mode-I deformations of a plate
made of a linear elastic isotropic and homogeneous material
with particular emphasis on the computation of the T-stress.
The crack trajectories predicted by using the two basis func-
tions agree well with those found experimentally.
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1 Introduction

One of the important issues in numerical methods of finding
an approximate solution of an initial-boundary-value prob-
lem (IBVP) is the choice of basis functions. In the finite
element method (FEM) one generally uses complete poly-
nomials defined piecewise on the domain of study, and can
improve the accuracy of the computed solution either by
increasing the number of finite elements or by increasing the
degree of complete polynomials. Basis functions in mesh-
less methods of finding an approximate solution of an IBVP
include those derived by the smoothed particle hydrody-
namics (SPH) method [1], the moving least squares (MLS)
approximation [2], the reproducing kernel particle method
(RKPM) [3], the corrected smoothed particle hydrodynam-
ics (CSPH) method, the radial basis functions (RBFs) [4], the
partition of unity basis functions [5], the modified smoothed
particle hydrodynamics method (MSPH) [6,7] and the sym-
metric smoothed particle hydrodynamics (SSPH) method.
Zhang and Batra [8,9] have discussed relations among the
SSPH and other basis functions and also with the FE basis
functions. Whereas the FE basis functions satisfy the Kro-
necker delta property, most other basis functions do not. Ide-
ally one should solve several IBVPs using different basis
functions to compare their relative performance in terms of
the computational effort, the rate of convergence and the
accuracy of computed solutions. Here we do so for two basis
functions, namely the SSPH and the MLS, and analyze static
problems primarily because lessons learned from them can be
applied to solving IBVPs within each time step. The choice
of basis functions is dictated by the observation that the MLS
basis functions have been widely used to analyze IBVPs and
the SSPH basis functions the least. The choice of BVPs is
guided by our eventual goal of analyzing the failure of adhe-
sively bonded joints. For two problems we also compare the
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performance of the MLS and the SSPH basis function with
that of the pseudo-derivatives proposed by Krongauz and
Belytschko [10]. Like the SSPH basis functions, the pseudo-
derivatives method employs different basis functions for the
trial solution and its derivatives.

Whereas analytical results for error bounds are avail-
able in the literature for approximate solutions of linear
BVPs studied by the FEM, such results are scarce for
solutions derived by a meshless method. In general, the com-
putational effort required to increase the degree of com-
plete polynomials in the MLS basis functions for BVPs
involving 2nd order spatial derivatives of the unknown
function is more than that required in the SSPH basis
functions. A goal of the present work is to determine,
through numerical experiments, if the rate of convergence
of the numerical solution increases with an increase in the
degree of complete polynomials. We refer the reader to
two books [11,12] on meshless methods for the background
material.

The paper is organized as follows. In Sects. 2 and 3 we
briefly review SSPH and MLS basis functions and provide
a weak formulation of a two-dimensional BVP in elastostat-
ics. In Sect. 4 we use these two basis functions to numer-
ically solve the cylindrical bending of a cantilever plate
and compare the two numerical solutions with the analyt-
ical solution of the problem. We thus find the optimum order
of complete polynomials used to generate basis functions,
the choice of the weight function, and the radius of the
compact support of the weight function. We use the opti-
mum values of these variables and the two basis functions to
find the stress concentration factor around a hole in a plate
loaded in tension. The stress intensity factor near a crack
tip in a plate with either one crack at the centroid or two
cracks at the centers of vertical edges is studied in Sect. 5.
In Sect. 6 we show that crack paths computed in an asym-
metric prenotched plate by using the SSPH and the MLS
basis functions agree well with those observed experimen-
tally. Conclusions of the work are briefly summarized in
Sect. 8.

2 Basis functions for meshless methods considered
in this work

2.1 Symmetric smoothed particle hydrodynamics (SSPH)
basis functions

The value of function f(x) having continuous derivatives up
to (m + 1) order at a point ξ = (ξ1, ξ2, ξ3) in the domain of
definition of f(x) can be approximated in terms of the value
of f(x) and of its derivatives at the point x = (x1, x2, x3) by
the following finite Taylor series:

f (ξ) =
m∑

k=0

1

k!
[
(ξ1 − x1)

∂

∂x1
+ (ξ2 − x2)

∂

∂x2

+ (ξ3 − x3)
∂

∂x3

]k

f (x) . (2.1)

Eq. (2.1) can be viewed as expressing f(ξ) in terms of the
complete polynomial of order m in ξ . We set m = 2, and
rewrite Eq. (2.1) in terms of matrices P (ξ , x) and Q (x) as

f (ξ) = P (ξ , x) Q (x) , (2.2)

where

P (ξ , x) = [1, ξ1 − x1, ξ2 − x2, ξ3 − x3, (ξ1 − x1)
2 ,

(ξ2 − x2)
2 , (ξ3 − x3)

2 , (ξ1 − x1)(ξ2 − x2),

(ξ2 − x2)(ξ3 − x3), (ξ1 − x1)(ξ3 − x3)],

Q (x) =
[

f (x) ,
∂

∂x1
f (x) ,

∂

∂x2
f (x) ,

∂

∂x3
f (x) ,

1

2

∂2

∂x2
1

f (x) ,

1

2

∂2

∂x2
2

f (x) ,
1

2

∂2

∂x2
3

f (x) ,
∂2

∂x1∂x2
f (x) ,

∂2

∂x2∂x3
f (x) ,

∂2

∂x1∂x3
f (x)

]
.

Elements of matrix Q (x), i.e., the function as well as the first
and the second derivatives of function f(x), are unknowns to
be found. Elements of matrix P (ξ , x) are known and are
complete polynomials of degree 2. In order to find elements
of matrix Q (x) we post-multiply both sides of Eq. (2.2) with
W (ξ , x) P(ξ, x)Tand obtain

f (ξ) W (ξ , x) P(ξ , x)T = P (ξ , x) Q(x)W (ξ , x) P(ξ , x)T,

=
[
P (ξ , x) W (ξ , x) P(ξ , x)T

]
Q (x) , (2.3)

where W (ξ , x) is weight function of compact support asso-
ciated with particle x, as shown in Fig. 1. Let there be N(x)

particles in the compact support of x. Eq. (2.3) is evaluated
for every particle in the compact support of W (ξ , x), and
summed to obtain

N(x)∑

I=1

f
(
ξ I
)

W
(
ξ I, x

)
P
(
ξ I, x

)T

=
N(x)∑

I=1

[
P(ξ I, x)TW

(
ξ I, x

)
P
(
ξ I, x

)]
Q (x) , (2.4)

where ξ I denotes coordinates of the Ith particle in the com-
pact support of W (ξ , x). We set
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x=(x1,x2,x3)

ξ=(ξ1, ξ2, ξ3)

Fig. 1 Distribution of particles in the compact support of W (ξ , x)

associated with point x

H (ξ , x) =
[
PT
(
ξ1, x

)
, PT

(
ξ2, x

)
, . . . , PT

(
ξN(x), x

)]
,

W (ξ , x) =

⎡

⎢⎢⎢⎢⎢⎣

W
(
ξ1, x

)
0 . . . 0

0 W
(
ξ2, x

)
. . .

...
...

...
. . . 0

0 0 . . . W
(
ξN(x), x

)

⎤

⎥⎥⎥⎥⎥⎦
,

FT (ξ) =
[
f
(
ξ1
)

, f
(
ξ2
)

, . . . , f
(
ξN(x)

)]
.

Thus, Eq. (2.4) can be written as

H (ξ , x) W (ξ , x) F (ξ)

= H (ξ , x) W (ξ , x) HT (ξ , x) Q (x) . (2.5)

In Eq. (2.5), values of elements of matrices H (ξ , x) , W (ξ , x)

and F(ξ) depend upon coordinates, the weight function, and
values of the function f(x) at all particles in the compact sup-
port of W (ξ , x). Eq. (2.5) can be written as

C (ξ , x) Q (x) = D (ξ , x) F (ξ) , (2.6)

where C (ξ , x) = H (ξ , x) W (ξ , x) HT (ξ , x) , D (ξ , x) =
H (ξ , x) W (ξ , x).

Thus, Q (x) can be found from Eq. (2.6) by inverting
C (ξ , x). That is,

Q (x) = [
C (ξ , x)

]−1 D (ξ , x) F (ξ) ,

= K (ξ , x) F (ξ) , (2.7)

where K (ξ , x) = [
C (ξ , x)

]−1 D (ξ , x). The sufficient con-
dition for the matrix C (ξ , x) to be invertible is that the num-
ber, N(x), of particles in the compact support of W (ξ , x)

equals at least the number of unknowns in matrix Q(x) [8].
The first two rows and the fifth row of elements of the matrix
Q(x) can be explicitly written as

f (x) =
N(x)∑

i=1

K1iFi, (2.8)

∂f (x)

∂x1
=

N(x)∑

i=1

K2iFi, (2.9)

1

2

∂2

∂x2
1

f (x) =
N(x)∑

i=1

K5iFi. (2.10)

In the FE terminology, functions K1i, K2i and 2K5iare shape
functions for f (x) , ∂f (x) /∂x1and ∂2f(x)/∂x2

1, respectively.
We note that K2i �= ∂K1i/∂x1 and 2K5i �= ∂K2i/∂x1.

2.2 Moving least squares basis (MLS) functions

Consider a function f (x) of variable x defined in the domain
�. The function f (x) can be approximated by the function
fh (x) defined by

fh (x) = PT (x) a (x) , (2.11)

where PT (x) is a complete polynomial of order m and a(x)

is a vector of undefined coefficients. Examples of PT (x) for
a two-dimensional (2-D) problem with x = (x, y) are:

PT (x) = [
1, x, y

]
, n = 3,

first order complete polynomial,

PT (x) =
[
1, x, y, x2, xy, y2

]
, n = 6,

second order complete polynomial.

We define the weighted discrete L2 norm J by

J (a (x)) =
N(x)∑

I=1

WI(x)(PT
(

xI
)

a (x) − ûI)
2, (2.12)

where WI(x) = W
(
x − xI

)
is the weight function of com-

pact support associated with particle I having coordinates
xI, ûI is the fictitious value of the function f (x) at the point
xI and N(x) is the number of particles in the compact sup-
port of WI(x). Values of coefficients a (x) are determined by
minimizing J (a (x)) with respect to a (x). That is,

∂J (a (x))

∂a
= 0 ⇒ A (x) a (x) = B (x) û, (2.13)

where

A (x) =
N(x)∑

I=1

WI(x)P
(

xI
)

PT
(

xI
)

,

B (x) =
[
W1 (x) P

(
x1
)

, W2 (x) P
(

x2
)

, . . . ,

WN(x) (x) P
(

xN(x)
)]

,

ûT =
[
û1, û2, . . . , ûN(x)

]
.

Eq. (2.13) gives

a (x) = A−1 (x) B (x) û. (2.14)
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Substituting for a (x) from Eq. (2.14) into Eq. (2.11) we get

fh (x) =
N(x)∑

I=1

φI(x)ûI, (2.15)

where

φI (x) =
n∑

J=1

PJ (x) [A−1 (x) B (x)]JI,

and φI (x) is the MLS basis function. Unlike the SSPH basis
functions, in which derivatives of function f(x) are expressed
in terms of basis functions that are different from those used
to approximate f(x), in the MLS basis functions the approx-
imation of derivatives of f(x) requires that the MLS basis
functions be differentiable. The spatial derivatives of basis
function φI (x) are given by

φI
,k (x) =

n∑

J=1

{
PJ,k[A−1 (x) B (x)]JI + PJ[A−1 (x) B,k (x)

+(A−1 (x)),kB (x)]JI

}
, (2.16)

where φI
,k (x) = ∂φI (x) /∂xk.

2.3 Meshless approximations with consistent
pseudo-derivatives

The approximation uh (x) of the function u (x) is defined by

uh (x) =
N(x)∑

I=1

φI(x)uI, (2.17)

where φI (x) are basis functions, N(x) is the number of basis
functions, and uI are the particle parameters associated with
particle I having coordinates x. In order that basis functions
exactly reproduce a polynomial of degree 1, we must have

N(x)∑

I=1

φI(x) = 1,

N(x)∑

I=1

φI(x)xI = x,

N(x)∑

I=1

φI(x)yI = y, (2.18)

Differentiation of both sides of Eq. (2.18) with respect to x
and y gives

N(x)∑

I=1

φI
,x(x) = 0,

N(x)∑

I=1

φI
,y(x) = 0, (2.19a)

N(x)∑

I=1

φI
,x(x)xI = 1,

N(x)∑

I=1

φI
,y(x)xI = 0, (2.19b)

N(x)∑

I=1

φI
,x(x)yI = 0,

N(x)∑

I=1

φI
,y(x)yI = 1, (2.19c)

where a comma followed by x denotes the derivative with
respect to x.

In the pseudo-derivatives method [10], the derivatives of
uh (x) are approximated by using basis functions that are not
necessarily derivatives of φI (x). Thus,

uh
,x (x) =

N(x)∑

I=1

GI
x(x)uI (2.20a)

uh
,y (x) =

N(x)∑

I=1

GI
y(x)uI, (2.20b)

where GI
x(x) and GI

y(x) are basis functions for the deriva-

tives. Krongauz and Belytschko [10] assume that GI
x(x) and

GI
y(x) are the linear combination of the first-order derivatives

of the Shepard approximation functions φI
0. That is,

GI
x (x) = α1 (x) φI

0,x + α2 (x) φI
0,y, (2.21a)

GI
y (x) = β1 (x) φI

0,x + β2 (x) φI
0,y, (2.21b)

where αI and βI (I = 1,2) are unknown functions to be deter-
mined as outlined below. Note that the Shepard approxi-
mation functions have the property of partition of unity so that
Eqs. (2.19a) are automatically satisfied. Substitution from
Eqs. (2.21) into Eqs. (2.19b) and (2.19c) gives

A(x)B = r, (2.22)

where

A (x) =
[

a(x) 0
0 a(x)

]
,

a (x) =
N(x)∑

I=1

[
φI

0,xxI φI
0,yxI

φI
0,xyI φI

0,yyI

]
,

B =

⎧
⎪⎪⎨

⎪⎪⎩

α1

α2

β1

β2

⎫
⎪⎪⎬

⎪⎪⎭
, r =

⎧
⎪⎪⎨

⎪⎪⎩

1
0
0
1

⎫
⎪⎪⎬

⎪⎪⎭
.

Thus αI and βI (I = 1,2) can be found by solving Eq. (2.22).

3 Weak formulation of two-dimensional elastostatics
problems

With respect to rectangular Cartesian coordinates, the bal-
ance of linear momentum for static 2-D deformations of a
body occupying the domain � is

σij,j + bi = 0, in �, i = 1, 2, (3.1)

where σij is the Cauchy stress and bi is the body force per
unit volume. Henceforth we neglect the body force. For sim-
plicity, we write boundary conditions as

ui = ūi, on �u, (3.2)

σijnj = t̄i, on �t. (3.3)
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Eq. (3.2) is essential boundary condition, ū is prescribed dis-
placement on boundary �u, Eq. (3.3) is natural boundary
condition, t̄ is prescribed traction on boundary �t , and n is a
unit outward normal to boundary �t . The constitutive equa-
tion for 2-D deformations of a linear elastic homogeneous
and isotropic material can be written as

σ = Dε, (3.4)

where D is a matrix of elastic constants and ε is the strain
tensor corresponding to infinitesimal deformations. The 3 ×
3 matrix D and the 3 x 1 matrix ε can be written as

D = E ′

1 − (υ′)2

⎡

⎣
1 υ ′ 0
υ ′ 1 0
0 0 1−υ ′

2

⎤

⎦ , (3.5)

ε =
⎡

⎣
ε11
ε22
2ε12

⎤

⎦ , (3.6)

where E ′ = E
1−υ2 , υ′ = υ

1−υ
for plane strain, and E ′ =

E, υ′ = υ for plane stress deformations, E is Young’s mod-
ulus, and υ is Poisson’s ratio.

The strain-displacement relation can be expressed as

ε = Lu, (3.7)

where the displacement vector u and the matrix operator L
are given by

u =
[

u1

u2

]
, L =

⎡

⎢⎣

∂
∂x1

0
0 ∂

∂x2
∂

∂x2

∂
∂x1

⎤

⎥⎦ . (3.8)

Substitution into Eq. (3.1) for stresses from Eq. (3.4) and for
strains from Eq. (3.7) gives two coupled partial differential
equations for displacements u1 and u2 which are to be solved
under boundary conditions (3.2) and (3.3).

The meshless local Petrov-Galerkin (MLPG) formulation
is used to find an approximate solution of the above men-
tioned BVP. Consider a finite number of particles distributed
in the domain �. For the particle I with coordinates xI

i , we
derive a local weak form of Eq. (3.1) by taking the inner
product of both sides of Eq. (3.1) with a weight function WI

i
of compact support �q with the boundary �q and integrating
the resulting equation. The result is
∫

�q

WI
iσij,jd� = 0. (3.9)

Essential boundary condition (3.2) is satisfied by using the
penalty method. We take the inner product of Eq. (3.2) with
WI

i , integrate the resulting equation on �u
q , multiply with the

penalty parameter α, and combine it with Eq. (3.9) to arrive at

∫

�q

WI
iσij,jd� − α

∫

�u
q

WI
i (ui − ūi) d� = 0. (3.10)

Here �u
q = �q ∩ �u. In Eq. (3.10) we have taken, for sim-

plicity, α to be the same for every particle on �u
q . However,

it could have been taken to be function of x. We integrate the
first term on the left-hand side of Eq. (3.10) by parts, use the
divergence theorem, and boundary condition (3.3) to obtain
∫

�q

WI
iσij,jd� =

∫

�q

WI
iσij,njd� −

∫

�q

WI
i,jσij,jd�. (3.11)

Substituting from Eq. (3.11) into Eq. (3.10), the following
weak form is obtained
∫

�q

WI
iσijnjd� −

∫

�q

WI
i,jσijd� − α

∫

�u
q

WI
i (ui − ūi) d� = 0.

(3.12)

Let �q = �u
q ∪�t

q ∪�I
q, �t

q = �q ∩�t, �I
q = �q −�u

q −�t
q.

Recalling that weight function WI
i vanishes on boundary �I

q,

Eq. (3.12) can be simplified to
∫

�q

WI
i,jσijd� + α

∫

�u
q

WI
iuid� −

∫

�u
q

WI
iσijnjd�

=
∫

�t
q

WI
i t̄id� + α

∫

�u
q

WI
i ūid�. (3.13)

Eq. (3.13) in the matrix form can be written as
∫

�q

(LW)TDLud� + α

∫

�u
q

Wud� −
∫

�u
q

WNDLu d�

=
∫

�t
q

Wt̄d� + α

∫

�u
q

Wūd�, (3.14)

where matrices W and N are given by

N =
[

n1 0 n2

0 n2 n1

]
, W =

[
WI 0
0 WI

]
.

Eq. (3.14) is the local weak form of the BVP defined by Eqs.
(3.1) through (3.8).

Let φI be either the SSPH or the MLS basis function asso-
ciated with particle xI. Then trial solutions for displacements
u1 and u2 can be expressed as

uI =
[

uI
1

uI
2

]
= φIû =

[
φI

1 0
0 φI

1

· · ·
. . .

φI
N 0

0 φI
N

]

⎡

⎢⎢⎢⎢⎢⎢⎣

û1
1

û1
2

...

ûN
1

ûN
2

⎤

⎥⎥⎥⎥⎥⎥⎦
,(3.15)

where N = N(x) is the number of particles in the compact
support of WI . For the SSPH basis functions, we substitute
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for φI from Eq. (2.8) and get

uI =
[

KI
11 0

0 KI
11

· · ·
. . .

KI
1N 0

0 KI
1N

]

⎡

⎢⎢⎢⎢⎢⎢⎣

û1
1

û1
2

...

ûN
1

ûN
2

⎤

⎥⎥⎥⎥⎥⎥⎦

=
N∑

J=1

{[
KI

1J 0
0 KI

1J

][
ûJ

1

ûJ
2

]}
. (3.16)

Since the SSPH basis function for spatial derivatives of a
function are different from those for the function, we have

LuI =
N∑

J=1

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
KI

2J 0
0 KI

3J
KI

3J KI
2J

⎤

⎥⎦

[
ûJ

1

ûJ
2

]⎫⎪⎬

⎪⎭
. (3.17)

Substitution from Eqs. (3.16) and (3.17) into Eq. (3.14) gives

N∑

J=1

K′
IJûJ = FI, (3.18)

where

K′
IJ =

∫

�q

(LWI)TDVJd�+α

∫

�u
q

WIMJd�−
∫

�u
q

WINDVJd�,

FI =
∫

�t
q

WI t̄ d� + α

∫

�u
q

WIū d�,

VJ =
⎡

⎢⎣
KI

2J 0
0 KI

3J
KI

3J KI
2J

⎤

⎥⎦ , MJ =
[

KI
1J 0
0 KI

1J

]
.

We derive an algebraic equation similar to Eq. (3.18) for each
particle in the domain �, thereby obtain the number of equa-
tions equal to the number of unknowns. There is no assembly
of equations required in a meshless method.

For the MLS basis functions the local weak form of the
BVP defined by Eqs. (3.1) through (3.8) has been derived,
amongst others, by Ching and Batra [14] and the derivation
is omitted here.

4 Numerical results for example problems

4.1 Plane stress deformations of a cantilever beam

Consider plane stress deformations of a cantilever like beam
of length L = 8.0 mm, H = 1.0 mm, and width = 1.0 mm,
as shown in Fig. 2. The beam material is assumed to be lin-
ear elastic and isotropic having E = 1GPa,υ = 0.25. The
analytical solution [15] for displacements and stresses is

x1

x2

t2

L

H

Fig. 2 A cantilever like beam subjected to tangential tractions at the
right edge

u1 = − F

6EI
(x2 − H

2
) [3x1 (2L−x1)+(2 + υ) x2 (x2−H)] ,

u2 = F

6EI

[
x2

1 (3L − x1) + 3υ(L − x1)(x2 − H

2
)2

+4 + 5υ

4
H2x1

]
, (4.1)

I = H3

12
,

σ11 = −F

I
(L − x1)

(
x2 − H

2

)
,

σ22 = 0, (4.2)

σ12 = −Fx2

2I
(x2 − H) ,

where F is resultant of tangential tractions applied at the
unclamped end and I is the second moment of area of cross-
section of the beam about the x3-axis passing through the
centroid of the cross-section. Displacements (4.1) at parti-
cles on the left edge are applied. Surface tractions are given
by

t1 = 0, t2 = 0, on the bottom and the top surfaces,

t1 = 0, t2 = −Fx2

2I
(x2 − H) , on the right surface.

Results have been computed for F = 1N and the penalty
parameter α in Eq. (3.10) is set equal to 109.

We compare results computed by using the SSPH and the
MLS basis functions, and ascertain the effect on the com-
puted results of the weight function, the number N of par-
ticles, the order m of the complete polynomials in the basis
functions, and the size of the compact support as determined
by the smoothing length h and the compact support parameter
β. The smoothing length, h, equals the distance between the
particle of interest and its nearest neighboring particle, and β

is the scaling factor for determining the domain of influence
for the weight function.
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4.1.1 Effect of the weight function WI

A set of 21 × 5 particles with 21 uniformly spaced particles
along the x1-direction and 5 uniformly spaced particles along
the x2-direction is used. The integrals on � appearing in Eq.
(3.14) are evaluated by using the 9 x 9 Gauss integration rule
and those on � by employing the 9 Gauss point integration
rule. The compact support domain factor βis taken to be 4.0.
Second order (m = 2) complete polynomials are employed
to generate the MLS basis functions and the first three terms
are kept in the Taylor series (2.1). Three different weight
functions, namely, the cubic spline [16], the quartic spline
[17], and the Gaussian function [18] are used to generate the
SSPH and the MLS basis functions.

Cubic spline function:

WI (d) = 2

3

⎧
⎨

⎩

1 − 6d2 + 6d3,

2 − 6d + 6d2 − 2d3,

0,

0 ≤ d ≤ 0.5,

0.5 ≤ d ≤ 1,

1 < d.

(4.3)

Quartic spline function:

WI (d) = 5

8

{
1 − 6d2 + d3 − 3d4,

0,

0 ≤ d ≤ 1,

1 < d.
(4.4)

Gaussian function:

WI (d) = 1

1 − e−4

{
e−4d − e−4

0
,

0 ≤ d ≤ 1,

1 < d,
(4.5)

where d = ∣∣ξ − xI
∣∣ /βh.

In Fig. 3 we have compared, for the three weight func-
tions, the variation of the displacement u2 along the top edge
of the beam by using the SSPH and the MLS basis functions.

It is evident from these plots that in each case the computed
results agree well with the analytical solution of the problem.
In order to quantify the difference between the analytical and
the numerical solutions, we define the error norm, Eu

0 and Eσ
0 ,

in terms of the displacement and the stress field, respectively.

Eu
0 =

√√√√√

∑M
i=1(u

i
numerical − ui

analytical)
2

∑M
i=1(u

i
analytical)

2
,

Eσ
0 =

√√√√√

∑M
i=1(σ

i
numerical − σi

analytical)
2

∑M
i=1(σ

i
analytical)

2
. (4.6)

where M is the number of particles in the entire domain.
From values of Eu

0 and Eσ
0 for the six sets of results listed

in Table 1, we conclude that the Gaussian weight function
gives the least value of Eu

0 for the u2 displacement and Eσ
0

for the σ11 stress. We note that both the cubic and the quartic
spline weight functions also give reasonably accurate values
of the u2-displacement, and the σ11 stress. For each weight
function the MLS basis functions give a smaller value of Eu

0
and Eσ

0 than that given by the SSPH basis functions.
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Fig. 3 For the three weight functions, namely, the cubic spline, the
quartic spline and the Gaussian, comparison with the analytical solu-
tion of the displacement u2 along the top surface computed by using
a the MLS, and b the SSPH basis functions

Table 1 The error norm (a) Eu
0 and (b)Eσ

0 in the u2-displacement and
the σ11 stress for the three weight functions

Basis function WI

Cubic Quartic Gaussian

(a)

MLS 0.0204 0.0190 0.0182

SSPH 0.0322 0.0410 0.0306

(b)

MLS 0.0295 0.0165 0.0141

SSPH 0.0248 0.0295 0.0166

4.1.2 Effect of the number of particles

For the Gaussian weight function (4.5), we have listed in
Table 2 values of Eu

0 and Eσ
0 for particles placed in uniform

rectangular grids of 21 × 5, 33 × 5, and 33 × 9 particles.
As expected the error norm decreases monotonically with
an increase in the number of particles along the x1- and the
x2- directions. For each distribution of particles, the error
norms have smaller values for the MLS basis functions as
compared to those for the SSPH basis functions. In the fol-
lowing analysis, 33 × 9 particles are used to find an approx-
imate solution of the problem.
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Table 2 For the two basis functions, the error norm (a) Eu
0 and (b) Eσ

0 in
the u2-displacement and the σ11 stress for three distributions of particles

Basis function N1 × N2

21 × 5 33 × 5 33 × 9

(a)

MLS 0.0182 0.0157 0.0108

SSPH 0.0306 0.0278 0.0242

(b)

MLS 0.0141 0.0119 0.0106

SSPH 0.0166 0.0145 0.0129
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Fig. 4 Variation of the a log(Eu
0), and b log(Eσ

0) for the u2-displace-
ment and the σ11 stress with the compact support domain parameter β

4.1.3 Effect of the size of the compact support

For second order (m = 2) complete polynomials used
to generate the SSPH and the MLS basis functions, the
support domain parameter β should be large enough for
�I to include at least six particles to ensure that matrix
C (ξ , x) is non-singular. In Fig. 4 we have plotted log(Eu

0)

for the u2 displacement and log(Eσ
0 ) for the σ11 stress vs.

β for the two basis functions. It is clear that in each case
the error norm decreases rather rapidly when β is increased
from 3.0 to 4.0. However, for β > 4 the error norm remains

Table 3 For the two basis functions, the CPU time (in seconds) for
different values of β

Basis function β

3.0 3.5 4.0 4.5 5.0 6.0 8.0

MLS 24.89 29.88 33.92 38.13 41.05 47.53 59.94

SSPH 23.67 26.09 28.16 30.30 32.42 36.28 43.30
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Fig. 5 Variation of the a log(Eu
0), and b log(Eσ

0) for the u2-displace-
ment and the σ11 stress with the order, m, of the complete polynomials
used to generate basis functions

essentially unchanged. The CPU times for different values
of β are listed in Table 3. We note that the computational
cost noticeably increases with an increase in the value of β,
and is higher by 5% for β = 3 and 38% for β = 8 for the
MLS basis functions than that for the SSPH basis functions.
Results presented below are computed by taking β = 4.0.

4.1.4 Effect of the order of the complete polynomials
in the basis functions

We note that for β = 4, one can consider up to third order
complete polynomials (i.e., m = 3) in the basis functions and
still satisfy the invertibility of matrix C (ξ , x) appearing in
Eq. (2.7). Values of log(Eu

0) and log(Eσ
0 ) for m = 1, 2 and
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Table 4 For the two basis functions, the CPU time (in seconds) for
different values of m

Basis function m

1 2 3

MLS 12.72 33.92 88.63

SSPH 10.48 28.16 71.55

0.0
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0.6

0.8

1.0

0 2 4 6 8

(m
m

)

(mm)

Fig. 6 Background mesh (40 elements with 297 particles) for the can-
tilever beam problem used only to evaluate the domain integral in Eq.
(4.7)

3 plotted in Fig. 5 reveal the expected result that the error
decreases with an increase in the value of m. The CPU time
for different values of m is listed in Table 4. Of course, the
computational cost increases with an increase in the value
of m, and is about 20% higher for the MLS basis functions
than that for the SSPH basis functions. Henceforth, we set
m = 2 as a compromise between the computational cost and
the error in the computed solution.

4.1.5 Convergence rate

To find the rate of convergence of numerical solutions with
respect to the distance between adjacent particles, we use the
strain energy error norm defined as

Ee

=
√√√√
∫

�

1

2

(
εnumerical − εanalytical

)
:
(
σnumerical − σanalytical

)
d�,

(4.7)

where ε and σ are strain and stress tensors, respectively,
and “:” implies the inner product between two 2nd order
tensors. The integral is evaluated by using the background
mesh depicted in Fig. 6.

The problem is also analyzed using the pseudo-derivative
(PD) basis functions (2.21). The plot of strain energy error
norm versus the minimum distance h between two adjacent
particles for the three basis functions is shown in Fig. 7. We
note that the convergence rate equals 1.43, 1.44 and 1.47,
respectively, for the PD, the SSPH and the MLS basis func-
tions.
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Fig. 7 Convergence of strain energy error norm for the SSPH, MLS
and PD basis functions

(a) 

(b) 

=

= = =

= =

Fig. 8 a An infinite plate with a hole at the center subjected to surface
tractions in the x1-direction at the edges, and b boundary conditions
applied at edges of a quarter of the plate

4.2 Stress concentration in an infinite square plate
with a circular hole at the centroid and subjected
to uniform tensile tractions at opposite edges

Consider an infinite square plate, shown in Fig. 8a, made
of a linear elastic, homogeneous and isotropic material
with a circular hole of radius a at the plate centroid and
subjected to uniform axial tensile tractions of magnitude
S at opposite edges that are at infinity. The analytical
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solution [15] for the stress fields in cylindrical coordinates
(r, θ) with the origin located at the hole center and based
on the assumption of a plane strain state of deformation
is

σrr = S

2

(
1 − a2

r2

)
+ S

2

(
1 + 3a4

r4 − 4a2

r2

)
cos 2θ,

σθ θ = S

2

(
1 + a2

r2

)
− S

2

(
1 + 3a4

r4

)
cos 2θ, (4.8)

σrθ = −S

2

(
1 − 3a4

r4 + 2a2

r2

)
sin 2θ.

Due to symmetry of the problem about the horizontal and
the vertical centroidal axes, deformations of only a quarter
of the finite plate are analyzed. Boundary conditions arising
from symmetry of the problem are applied to the left ver-
tical and the bottom horizontal edges and the hole surface
is traction free. Since we analyze a finite size specimen,
the normal and tangential surface tractions in rectangular
Cartesian coordinates applied on the edges in Fig. 8b are
found from Eq. (4.8) by using tensor transformation rules,
and the BVP is numerically solved with the SSPH, MLS
and PD methods for E = 1MPa, υ = 0.25, and S = 1MPa.
Parameters for generating the SSPH and the MLS basis func-
tions are: m = 2, Gaussian weight function, β = 4.0,
h = distance between the particle of interest and its near-
est neighbor, 9 × 9 Gauss integration rule for area integra-
tion, and 9 Gauss points for line integration. Fig. 9 depicts
the distribution of 135, 297 and 369 particles with 18, 15
and 9 particles on the quarter circle, respectively. Varia-
tions of the displacement u2 and of the stress σ11 along
the x2-direction are exhibited in Figs. 10 and 11, respec-
tively.

It is clear from the results presented in Figs. 10 and 11
that the numerical solutions computed by using the SSPH,
MLS and PD basis functions agree well with the ana-
lytical solution. Also, computed values 3.058, 3.032 and
2.971 of the stress concentration factor (SCF) at point O
in Fig. 8b by using the SSPH, MLS and PD basis func-
tions, respectively, differ from the analytical value 3.0 by
less than 2%. The error norms, Eu

0 for the u2-displace-
ment and Eσ

0 for the σ11 stress defined by Eq. (4.8) for
369 particles, equal, respectively, 0.0303 and 0.0142 for the
SSPH, 0.0118 and 0.0050 for the MLS, and 0.0234 and
0.0157 for the PD basis functions. When using the SSPH
basis functions, the stress distributions computed with the
three particle distributions converge to that for the analyt-
ical solution of the problem with an increase in the num-
ber of particles from 135 to 396 as shown in Fig. 12. One
can conclude from the plot of strain energy error norm ver-
sus the minimum distance between adjacent particles that
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Fig. 9 Distribution of a 135, b 297, and c 369 particles in the domain

the rate of convergence for the strain energy equals 1.35,
1.36 and 1.43 for the PD, SSPH and MLS basis functions
(Fig. 13).
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Fig. 10 Comparison of the analytical solution for the displacement u2
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PD basis functions (369 particles)
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5 Computational fracture mechanics

5.1 Plate with a crack at the center

We now study deformations of a rectangular plate with a
crack symmetrically located at the plate centroid, as shown
in Fig. 14a, and subjected to uniform tensile axial tractions
at edges parallel to the crack face. The plate is made of a
linear elastic, isotropic and homogeneous material. Values
assigned to different parameters are H = 3.0 mm, B = 1.0
mm, E = 70GPa, υ = 0.3, and the half-crack length is
varied from 0.1 to 0.8 mm. Because of the symmetry of the
problem about the horizontal and the vertical centroidal axes,
deformations of only a quarter of the plate in the first quadrant
are analyzed. Fig. 14b depicts uniformly distributed particles
in parts 1, 2 and 3 of the domain and the minimum distance
between adjacent particles in these parts equals 0.025 mm,
0.05 mm and 0.1 mm, respectively. In order to capture the
stress singularity near the crack tip, a refinement region, 0.1
mm×0.1 mm, is placed around the crack tip and the dis-
tance between neighboring particles in the refinement region
equals 0.005 mm. The stress intensity factor (SIF) is eval-
uated by using the interaction integral [19], M(1,2), given
by

M(1,2) =
∫

�

[
W(1,2)

δ1j − σ
(1)

ij
∂u(2)

i

∂x1
− σ

(2)

ij
∂u(1)

i

∂x1

]
njd�,

(5.1)

KI = 2

E′ M
(1,2), (5.2)

where W(1,2) = 1
2

(
σ

(1)

ij ε
(2)

ij + σ
(2)

ij ε
(1)

ij

)
is the mutual strain

energy density, superscripts 1 and 2 in parentheses rep-
resent two different states of a cracked body. State 1,
(σ

(1)

ij , ε
(1)

ij , u(1)
I ), corresponds to the present state and state 2,

(σ
(2)

ij , ε
(2)

ij , u(2)
I ), is an auxiliary state chosen as the asymptotic
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Fig. 14 a Specimen with a horizontal crack (a/B = 0.2), and b the
distribution of particles in the quarter of the plate

fields for Mode I or Mode II. In Eq. (5.1) the contour
� encloses the crack tip. For a finite-size plate, Aliaba-
di and L’opez [20] gave the following relation for find-
ing the stress intensity factor (SIF) as a function of the
crack length ratio r = a/B and the applied axial tensile
stress S.

KI = S
√

πa
[
1 + 0.043r + 0.491r2 + 7.125r3 − 28.403r4

+ 59.583r5 − 65.278r6 + 29.762r7
]
. (5.3)

In Table 5, we have compared the normalized values,
I = KI/S

√
πa, found from solutions of the problem

obtained by using the MLS and the SSPH basis func-
tions with that from Eq. (5.3). It is clear that both basis
functions predict accurate values of I with the maximum
percentage error of less than 2% even for a rather long
crack.

Table 5 Normalized SIF, I, and the percentage error in I for the problem
shown in Fig. 14

a/B

0.1 0.2 0.4 0.6 0.8

I (SSPH) 1.0237 1.0692 1.2336 1.5038 2.0540

I (MLS) 1.0243 1.0673 1.2314 1.5026 2.0501

% Error (SSPH) 0.95 1.34 1.43 1.52 1.87

% Error (MLS) 1.01 1.16 1.25 1.43 1.68

5.2 Double edge notched (DEN) specimen

We now study deformations of a plate with two horizontal
cracks emanating from opposite vertical edges and loaded by
uniform axial tensile tractions S on the horizontal bounding
surfaces parallel to the crack faces with the goal of deter-
mining the T-stress ahead of the crack tip; see Fig. 15a. Val-
ues assigned to different parameters are: H = 3.0 mm, B =
1.0 mm, the crack length ratio a/B = 0.2, E = 70GPa and
υ = 0.3. Because of the symmetry of the problem about the
x2-axis, deformations of only the left half of the plate are
analyzed. The uniform distribution of particles is exhibited
in Fig. 15b. The minimum distance between particles in the
refinement region, and parts 1, 2 and 3 of the domain is 0.005
mm, 0.025 mm, 0.05 mm and 0.1 mm, respectively.

In cylindrical coordinates (r, θ) with the origin at the crack
tip, the stress field around the crack tip can be expressed [21]
as
[
σ11 σ12

σ12 σ22

]
= KI√

2πr
cos

θ

2

×
⎡

⎣1 − sin
(

θ
2

)
sin
(

3θ
2

)
sin
(

θ
2

)
sin
(

3θ
2

)

sin
(

θ
2

)
sin
(

3θ
2

)
1 + sin

(
θ
2

)
sin
(

3θ
2

)

⎤

⎦

+
[

T 0
0 0

]
+ O

(√
r
)
, (5.10)

where T is the T- stress along the crack tip. Setting θ = 0 in
Eq. (5.10) gives

T = σ11 (r, 0) − σ22 (r, 0) . (5.11)

Values of T/S at r= 0.005 mm found from solutions of the
problem by using the SSPH and the MLS basis functions for
different crack length ratios, a/B, compare well with those
obtained by Kfouri [22] as shown in Fig. 16.

6 Comparison with test results for crack propagation

We now study crack propagation in the double cantile-
ver poly-methyl-metha-acrylate (PMMA) beam specimen
exhibited in Fig. 17a with the ratio of the specimen height
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Fig. 15 a Double edge notched specimen (a/B = 0.2), and b the
distribution of particles in the left half of the plate
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Fig. 16 Comparison of the values, T/ σ, with the ratio, a/B, computed
by using the MLS and SSPH basis functions

above the notch to that below it equal to 2. Values assigned
to material parameters are: E = 3.10 GPa and υ = 0.3.

Fig. 17b displays the layout of the particles. Additional par-
ticles, shown in Fig. 17c, are added around the crack tip to
increase the accuracy of the computed SIF. As the crack prop-

(b)

(a)

(c)

Prescribed displacement, u2

Prescribed displacement, u2

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

X
2
-c

o
o

rd
in

at
e 

(m
m

)

X1- coordinate (mm)

-1.0 

-0.5 

0.0 

0.5 

1.0 

-1 -0.5 0 0.5 1

X
2
-c

o
o

rd
in

at
e 

(m
m

)

X1-coordinate (mm)

Fig. 17 a PMMA specimen asymmetric about the notch axis with w =
25.4 mm (1′′), a = 12.7 mm (0.5′′), and the ratio of the specimen height
above the notch to that below it equal to 2. (All dimensions in mm);
b the particles distribution; c particles distribution near the crack tip

agates, these additional particles are moved with the advanc-
ing crack tip.

The SSPH and the MLS basis functions provide a smooth
approximation of a function and of its spatial derivatives.
However, the displacement field is discontinuous across a
crack. The visibility criterion proposed by Belytschko et al.
[13] is used to simulate the discontinuity in displacements
by treating the crack as an opaque surface. When the domain
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Crack surface 
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Ray of light 

Fig. 18 Domain of influence of particle I by the visibility criterion

of influence for the weight function is constructed, the line
from a point to a particle of interest is imagined as a ray of
light. If the ray encounters the opaque surface, such as the
crack surface, it is terminated and the point is not included
in the domain of influence. Figure 18 shows the domain of
influence of particle I near the crack tip and the domain that
is excluded.

Plane strain deformations of the specimen are analyzed by
using the two sets of basis functions and adopting the failure
criterion proposed by Erdogan [23], i.e., the crack begins to
propagate in the direction θ0 for which the hoop stress reaches
a material dependent critical value. In cylindrical coordinates
with the origin at the crack tip, stresses at a point near the
crack tip are given by

σrr = 1√
2πr

cos
θ

2

[
KI(1 + sin2 θ

2
)

+KII(
3

2
sin θ − 2tan

θ

2
)

]
+ Tcos2θ,

σθ θ = 1√
2πr

cos
θ

2

[
KI cos2 θ

2
− 3

2
KII sin θ

]
+ Tsin2θ,

σrθ = 1√
2πr

cos
θ

2
[KI sin θ + KII(3 cos θ − 1)] + Tsin2θ,

(6.1)

where KI and KII are the mode I and the mode II stress
intensity factors, respectively, and T is the non-singular axial
stress ahead of the crack tip. The crack propagation angle θ0
is found from

∂σθ θ

∂θ
= 0 ⇒ θ = θ0,

or equivalently from (recall Eq. (6.1)2)

[
KIsinθ0 + KII(3 cos θ0 − 1)

]

−16T
√

2πrc

3
sin

θ0

2
cos θ0 = 0, (6.2)

where the critical distance rc from the crack tip is taken to be
rc/a= 0.02. Once the position of the point (rc, θ0) has been

ascertained, we substitute for rc and θ0 in Eq. (6.1)2 and arrive
at
√

2πrc(σθ θ)c = cos
θ0

2

[
KI cos2 θ0

2
− 3

2
KII sin θ0

]

+Tsin2θ0, (6.3)

where (σθ θ)c is the critical value of the tangential (or the
hoop) stress at the critical distance rc.

For pure mode I failure, the angle θ0 in Eq. (6.3) equals
zero; thus the critical value (σθ θ)c is given by
√

2πrc(σθ θ)c = KIc, (6.4)

where KIc is the material fracture toughness. Knowing the
experimental value [24] of KIc (=1.056 MPa

√
m for the

PMMA) we get the value of (σθ θ)c when a crack initiates.
The crack propagation analysis involves the following

steps:

Step 1. The stress and strain fields are analyzed by using
the meshless method.

Step 2. The angle θ0 for which σθ θ is maximum at rc/a =
0.02 is found.

Step 3. If (σθ θ)max < (σθ θ)c, increase the applied vertical
displacement until (σθ θ )max = (σθ θ)c.

Step 4. The crack is assumed to propagate when (σθ θ)max
= (σθ θ)c at rc/ a = 0.02 along the path making
angle θ0 with the x1-axis.

Step 5. The crack is advanced through the critical distance,
rc.

Step 6. Move additional particles from the old crack tip to
the new crack tip.

Step 7. Steps1 through 6 are repeated until the crack is fully
developed.
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Fig. 19 Comparison of the computed crack trajectories from the SSPH
and the MLS basis functions with the average experimental one for the
asymmetric compact tension specimen of Fig. 17a
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men of Fig. 17a

Figures 19 and 20 show a comparison of the predicted
crack paths and the axial force vs. the crosshead displacement
from the SSPH and the MLS basis functions with the exper-
imental ones. It is clear that the predicted crack trajectories
and the load obtained from both methods are in good agree-
ment with the experimental results [24].

7 Remarks

In Sects. 4 and 5 we have verified the software by comparing
the computed solution for several BVPs with their analytical
solutions. Alternatively, one could use the method of manu-
factured solutions, e.g., see the material after Eq. (20) of [27]
to verify the software.

We note that crack propagation in a linear elastodynamic
problem using the SSPH basis functions has been studied in
[28].

8 Conclusions

We have used basis functions derived by the moving least
squares (MLS), the smoothed symmetric particle hydrody-
namics (SSPH), and the pseudo-derivatives methods to ana-
lyze two dimensional elastostatics problems and compared
these solutions with those obtained by employing either ana-
lytical or experimental techniques. The SSPH method has an
advantage over the other two methods because basis func-
tions used to approximate the function and its derivatives are
derived simultaneously, and do not involve derivatives of the
weight function. Thus piece-wise constant weight or kernel
functions can be used to deduce the SSPH basis functions.
The CPU time required to derive the SSPH basis functions is

less than that needed to deduce the MLS basis functions.
However, for the same particle distribution, results compared
with the MLS basis functions have less error than that in
results from the SSPH basis functions. The rate of conver-
gence for the energy norm for the SSPH and the PD basis
functions are nearly the same and a little better than that for
the MLS basis functions.

By conducting numerical experiments with the bending
of the beam problem and comparing the computed solutions
with the analytical one, we have found optimal values of
parameters for the weight function, the size of the compact
support, and the order of the complete polynomials. It is
found that the Gauss weight function and the radius of the
compact support of the weight function associated with a par-
ticle equal to four times the smallest distance of the particle
from its nearest neighbors provide better results than those
with other choices of these variables. A good compromise
between the accuracy of the computed solution and the com-
putational cost is to use complete polynomials of degree two
to generate the MLS and the SSPH basis functions.

We have also analyzed the stress concentration around a
circular hole and the stress singularity at a crack tip in a
plate deformed in plane strain tension and shown that the
three basis functions successfully predict the stress concen-
tration around the hole and the stress intensity factor at a crack
tip. The crack paths in an asymmetric prenotched specimen
loaded in tension predicted by using the SSPH and the MLS
basis functions are found to agree well with that observed
experimentally.
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