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Abstract

Infinitesimal deformations of a homogeneous and isotropic thick elastic plate have been analyzed by using a meshless local Petrov–
Galerkin (MLPG) method and a higher-order shear and normal deformable plate theory (HONSDPT). Radial basis functions (RBF) are
employed for constructing trial solutions, while a spline function is used as the weight function over a local subdomain. The present
method uses a number of randomly distributed nodes in the domain and is truly meshless. Two types of RBFs, i.e. multiquadrics
(MQ) and thin plate splines (TPS), are employed and effects of their shape parameters on the quality of the computed solution are exam-
ined for deformations of thick plates under different boundary conditions. It is found that the present MLPG formulations give results
very close to those obtained by other researchers. A benefit of using RBFs is that no special treatment is needed to impose the essential
boundary conditions, which substantially reduces the computational cost.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Plates are widely used in a variety of applications; they
may be homogeneous, laminated or functionally graded
and their thickness depends upon the applications. The
classical Kirchhoff thin plate theory, which ignores trans-
verse shear effects, provides reasonable results for relatively
thin plates, and suffices for computing the first few modes
of bending vibrations. However, it may not give good val-
ues of higher modes of vibration for moderately thick
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plates. In order to remedy this situation, a number of shear
deformable plate theories have been developed. The sim-
plest one is the first-order shear deformation plate theory
such as the Reissner–Mindlin theory which assumes that
the transverse shear strains are constant in the thickness
direction and requires a shear correction factor to correct
the discrepancy between the actual transverse shear stress
distribution and that calculated using the plate theory.
The value of the shear correction factor depends on geo-
metric parameters, the loading and the boundary condi-
tions. Second and higher-order shear deformation plate
theories [1–4] use higher-order polynomials in the expan-
sion of displacement components through the thickness
of the plate and require no shear correction factor. Among
them, the higher-order shear and normal deformable plate
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Fig. 1. Schematic sketch of the problem studied.
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theory (HONSDPT) developed by Batra and his colleagues
[3,5] accounts for both the transverse normal and the trans-
verse shear deformations and uses Legendre polynomials
as basis functions. Salient features of the theory include
the satisfaction of natural boundary conditions prescribed
on the top and the bottom surfaces of the plate, consider-
ation of double forces without moments (i.e., equal and
opposite tractions applied on the top and the bottom sur-
faces of a plate), and computations of the transverse nor-
mal and the transverse shear stresses from the plate
equations rather than by integration through the thickness
of the balance of linear momentum. The plate theory can
accurately predict through-the-thickness modes of vibra-
tion which correspond to null lateral displacements or
deflections. The plate theory was originally developed for
piezoelectric plates. It has been used for studying free
vibrations, and the propagation of plane waves in a thick
anisotropic homogeneous plate [5], and static and dynamic
deformations of isotropic homogeneous [6] and function-
ally graded thick plates [7].

Solutions of realistic engineering problems rely on
appropriate numerical methods. Meshless methods have
attracted increasing attention in the scientific community
in recent years for seeking approximate solutions of ini-
tial-boundary-value and boundary-value problems gov-
erned by partial differential equations coupled with
appropriate side conditions. These include the element-free
Galerkin (EFG) method [8], the reproducing kernal parti-
cle method (RKPM) [9], hp-clouds [10], and the partition
of unity method (PUM) [11]. However, all of these meth-
ods use a background mesh to numerically evaluate inte-
grals appearing in the global weak formulation of the
problem. The meshless local Petrov–Galerkin (MLPG)
method developed by Atluri and his colleagues [12–15] is
based on local weak rather than the global weak formula-
tion of the problem, and does not require a background
mesh for the evaluation of integrals in the weak formula-
tion of the problem. Any non-element interpolation scheme
such as the moving least square (MLS), or the PUM can be
used to generate basis functions for the trial solution and, if
desired, also for the test function. Similarly, Shepard func-
tions can be used as basis functions for generating trial and
test functions. Different test functions used in the MLPG
method result in different MLPG schemes that have been
labeled MLPG1–MLPG6 in [15].

Shepard functions and basis functions derived by the
MLS approximation, the PUM, and the RKPM are
rational functions. They lack the delta function property,
which requires special techniques such as penalty parame-
ters or Lagrange multipliers to satisfy essential boundary
conditions. Static and transient infinitesimal deformations
of thick elastic plates using Batra and Vidoli’s plate theory
[3] have been analyzed with the MLPG method and basis
functions derived by the MLS approximation [7,8].
The matrix transformation technique was used to impose
the essential boundary conditions, which considerably
increased the computational cost. Recently radial basis
functions (RBFs) [16] have been used to solve partial differ-
ential equations [17–19] and in meshless methods [20–24].
The so derived shape functions possess the Kronecker delta
function property, which allows the essential boundary
conditions to be imposed easily. Furthermore, when RBFs
are used in a local (compactly supported) rather than glo-
bal interpolation scheme, such as in the MLPG method
[22,23], the dense system matrices associated with the glo-
bal interpolation scheme are avoided. The extended multi-
quadrics, g(r) = (r2 + c2)b, and thin plate splines (TPS)
have been successfully employed in the MLPG method in
[24] for the solution of two-dimensional stress analysis
problems where the TPS was modified to g(r) = ra log r with
a taken as a shape parameter. Here r is the distance
between two points, and c and b are constants.

The analysis of plates using the compatible HONSDPT
and meshless methods has been conducted in [6], where the
MLS approximation was used for trial functions in both
MLPG1 and MLPG5. In contrast to the two-dimensional
solid mechanics problems [22], the MLPG5 in the HON-
SDPT has no advantage over other MLPGs because of
non-vanishing domain integrals. The present paper aims
to apply the above-mentioned RBFs with the MLPG
method to the analysis of deformation of a thick plate
using the compatible HOSNDPT. In the present study only
MLPG1 is employed, and a fourth-order spline weight
function is used as the test function. Two types of RBFs,
MQ and TPS, are used as the trial function and the effect
of their shape parameters on the accuracy of the approxi-
mate solutions is examined.
2. Brief review of the compatible HOSNDPT

A rectangular Cartesian coordinate system, shown in
Fig. 1, is used to describe infinitesimal deformations of a
rectangular elastic plate which occupies the region X
defined by 0 6 x 6 a, 0 6 y 6 b and �t/2 6 z 6 t/2. The
midsurface of the plate is denoted by S, and displacements
of a point along the x, y and z axes by u, v, and w respec-
tively. For through-the-thickness expansion of displace-
ments, we use Legendre polynomials orthonormalized by

Z t=2

�t=2

LiðzÞLjðzÞdz ¼ dij; i; j ¼ 0; 1; 2; . . . ; ð1Þ
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where dij is the Kronecker delta. The first seven orthonor-
malized Legendre polynomials have the following
expressions:
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We set
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where K is the order of the plate theory. When K P 2, the
plate theory is called higher order. It should be noted that
ui, vi and wi (i = 0,1,2, . . . ,K) have the same dimensions.
Recalling that L0iðzÞ ¼ dLi=dz is a polynomial of degree
(i � 1) in z, we write

L0iðzÞ ¼
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dijLjðzÞ; ð4Þ
where dij are constants. For K = 7,
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Note that elements in the first row and the last column of
the (K + 1) · (K + 1) matrix dij are zeros. For infinitesimal
deformations, the strains e are given by
e ¼
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where for i = 0,1,2, . . . ,K, gi is a six-dimensional vector
with components

gið1Þ ¼ oui=ox; gið2Þ ¼ ovi=oy; gið3Þ ¼
XK

j¼0

djiwj; ð7aÞ
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XK

j¼0
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ujdji; ð7bÞ

gið6Þ ¼ ovi=oxþ oui=oy: ð7cÞ

The terms with dij couple Kth order displacements with
lower-order displacements. Using Hooke’s law, stresses at
a material point x = (x,y,z) are given by

r ¼ rxx ryy rzz ryz rzx rxyf gT ¼ De; ð8Þ

where D is the matrix of elastic constants. Substitution
from Eqs. (6) and (7) into Eq. (8) gives stresses at a point
(x,y,z) in terms of displacements and in-plane gradients
of displacements of the point (x,y, 0).

Let ~u; ~v and ~w be three linearly independent functions
defined on the midsurface S given by 0 6 x 6 a, 0 6 y 6 b,
z = 0. Multiplying equations expressing the balance of lin-
ear momentum in the x-, y- and z-directions by ~u; ~v and ~w,
respectively, adding the resulting equations, and using the
divergence theorem, we obtainZ

X
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~uf dX ¼ 0; ð9Þ

where n is the unit outward normal on the boundary oX, f
is the body force, and ~e is the strain vector obtained from
Eq. (6). Substitution of (6) and (8) into (9) and integrating
with respect to z from �t/2 to t/2 gives
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where

f�qig ¼
Z t=2

�t=2

LiðzÞfqgdz; f�f ig ¼
Z t=2

�t=2

LiðzÞff gdz ð11Þ

and {q±} is the traction on the top and the bottom surfaces
of the plate, and Cu and Cq are disjoint parts of the bound-
ary C of S, where displacements and surface tractions are
prescribed, respectively, as �ui and �qi.

3. Interpolation using radial basis functions

Consider a continuous function u(x) defined on the
domain S containing a set of suitably distributed nodes.
An interpolation of u(x) in the neighborhood of the point
xQ in X using RBFs and polynomial basis can be written as

uðx; xQÞ ¼
Xn

i¼1

giðxÞaiðxQÞ þ
Xm

j¼1

pjðxÞbjðxQÞ; ð12Þ

Xn

i¼1

pjðxi; yiÞai ¼ 0; j ¼ 1; 2; . . . ;m; ð13Þ

where n is the number of nodes in the neighborhood of xQ,
gi(x) is the RBF centered at the point xQ, pj(x) are mono-
mials, m is the number of polynomial terms with m� n,
and coefficients ai(xQ) and bj(xQ) are to be determined.
The compact support of gi(x) is called the domain of influ-
ence of the point xQ.

Enforcing the interpolation to pass through all n scat-
tered points within the influence domain gives n algebraic
equations which coupled with m Eq. (13) can be solved
for ai(xQ) and bj(xQ). Thus the trial solution in the neigh-
borhood of the point xQ can be expressed as

uðxÞ ¼ UðxÞue; ð14Þ
where ue = [u1,u2,u3, . . . ,un]T, and the shape function U(x)
is defined as

UðxÞ ¼ ½/1ðxÞ;/2ðxÞ;/3ðxÞ; . . . ;/kðxÞ; . . . ;/nðxÞ�: ð15Þ
Details of constructing shape functions and their deriva-
tives can be found in [23].

Several RBFs are available; here, we use the following
multiquadrics (MQ) and thin plate splines (TPS)

giðx; yÞ ¼ r2
i þ c2

� �b ðMQÞ; ð16Þ
giðx; yÞ ¼ ðriÞa log ri ðTPSÞ; ð17Þ

where, b, c and a are shape parameters, and ri =
[(x � xi)

2 + (y � yi)
2]1/2. The derivatives of MQ and TPS

can be found in [24].

4. Implementation of the MLPG method for the compatible

HONSDPT

4.1. Test functions for MLPG1

As mentioned above, we use the MLPG1 method in
which the test function is taken as the weight function.
That is,
wJ ¼ W ðx� xJ Þ; ð18Þ

We use a fourth-order spline weight function defined as
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where dJ = jx � xJj and rs is the size of the support of the
weight function (same as the local subdomain). Thus the
support of W is a circle of radius rs centred at the node xi.
4.2. Derivation of algebraic equations

The shape of subdomains can be chosen arbitrarily;
however, subdomains are usually taken as circles or rectan-
gles in two-dimensional problems; a circle is used here. Let
Si � S be a smooth two-dimensional region associated with
a node in S, Cui = oSi \ Cu, Cqi = oSi \ Cq and Ci0 =
oSi � Cui � Cqi. Let /1,/2, . . . ,/N and w1,w2, . . . ,wN be lin-
early independent functions defined on Si. For a Kth order
plate theory there are 3(K + 1) unknowns at a point in Si or
S. We write these as a 3(K + 1) dimensional array and set

fuðx; yÞg ¼
XN
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½/Jðx; yÞ�fdJg; ð20Þ

f~uðx; yÞg ¼
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where for each J, {dJ} is a 3(K + 1) dimensional array and
[/J] is a square matrix of 3(K + 1) rows and columns. Sim-
ilarly f~dJg is a 3(K + 1) dimensional array and {wJ} is a
square matrix of 3(K + 1) rows and columns. The shape
functions /J are obtained using RBFs described above.
The functions wJ are the weight functions, and the un-
knowns {dJ} are the nodal displacements (similar to those
in the finite element method). Substitution of (20) into (7)
gives
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where {g} is a 6(K + 1) dimensional array and BJ is a
6(K + 1) · 3(K + 1) matrix. The 6(K + 1) rows of BJ can
be divided into (K + 1) blocks of 6 rows each. The 6 rows
of the ith block of BJ are given below.
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where a repeated index is not summed. Elements of the ma-
trix eBJ are obtained from those of the matrix BJ by replac-
ing /J with wJ.

Replacing the domain S of integration in Eq. (10) by Si,
substituting for {u} and f~ug from Eqs. (20) and (21) and
requiring that the resulting equation hold for all choices
of f~dg we arrive at the following system of algebraic
equations:

½KIJ �fdJg ¼ fF Ig; ð24Þ

where

½KIJ � ¼
Z
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Equations similar to Eq. (24) are obtained for each local
subdomain Si whose centre is at the node xi. The Gauss
quadrature rule of an appropriate order is employed to
evaluate integrals over each local subdomain. For each
quadrature point, interpolation is performed. Therefore
for a node xi there are two local domains: the test function
domain (same as the local subdomain) for wJ 5 0 (size rs)
and the interpolation domain for each Gauss point (size ri).
These two domains are independent of each other and are
defined by rs = asdi and ri = aidi, respectively. Here as and
ai are coefficients, and di is the distance from the node i

to its nearest neighboring node.
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Fig. 2. Effect of the MQ shape parameter c on the centroidal deflection of
two plates (b = 1.99) with different edge conditions.
5. Numerical examples

A number of problems have been solved to demonstrate
the performance of the present method. For ease in com-
parison, results have been computed for a homogeneous
and isotropic plate with E = 2.068 · 108 Pa, m = 0.3,
a = 250 mm, and unless otherwise specified, K = 5, which
are the same as those used in [6]. Here E is Young’s mod-
ulus and m Poisson’s ratio. A uniform distribution of nodes
on the midsurface of plate is employed. The size of the sub-
domain is specified by setting as = 0.75, and that of the
interpolation domain by taking ai = 4. The following
boundary conditions are imposed at a simply supported
(S), a clamped (C), and a free (F) edge:

S : rxx ¼ 0; w ¼ v ¼ 0 on x ¼ 0; a;

ryy ¼ 0; u ¼ w ¼ 0 on y ¼ 0; b;

C : u ¼ v ¼ w ¼ 0; on x ¼ 0; a; y ¼ 0; b;

F : rxx ¼ rxy ¼ rxz ¼ 0 on x ¼ 0; a;

ryy ¼ ryx ¼ ryz ¼ 0 on y ¼ 0; b:
Recalling Eq. (3), it should be noted that u = 0 on y = 0
implies that u1 = u2 = � � � = uK = 0, i.e., all components of
the generalized displacements, including rotations, vanish
at y = 0. The non-dimensional displacement �u is related
to the dimensional displacement u by

�u ¼ 100Et3

12q0a4ð1� m2Þ u

where t is the plate thickness, and q0 is the uniformly dis-
tributed traction on its top surface. Unless specified other-
wise, 169 (13 · 13) uniformly distributed nodes were used
to compute results presented and discussed below.
5.1. Radial basis functions and their shape parameters

The effect of shape parameters on the accuracy of the
computed solution is first examined. The choice of shape
parameters for MQ basis functions has received extensive
attention. It seems that Wang and Liu [22] were the first
to allow shape parameters of RBFs to be arbitrary real
numbers and study their effect on the quality of the approx-
imate solutions obtained by the EFG method. They
pointed out that when b is close to 1, the accuracy of the
numerical solution is higher (b = 1.03 was proposed as
the optimal value). Xiao and McCarthy [23] have also stud-
ied the influence of the value of shape parameters of RBFs
in the MLPG method, and found that when b is close to
either 1 or 2, the computed solution is highly accurate
and is much less sensitive to the value of the shape param-
eter c. Both 1.99 or 1.03 were suggested as the optimal val-
ues of b. They also found that the parameter c is sensitive
to a characteristic nodal distance d, and established a linear
relationship between the two. Good results were obtained
for values of c between 5d and 7d, and c = 6d was recom-
mended for two-dimensional solid mechanics problems.
Rippa [24] and Wang [25] have given algorithms for adap-
tively selecting optimal values of the parameter c. In [26]



Table 2
Non-dimensional centroidal deflection of a square plate for different aspect ra

Boundary conditions t/a MQ MLPG1 TPS MLPG1 MLS MLP

SSSS 0.1 0.4223 0.4320 0.4220
0.2 0.4792 0.4803 0.4798
0.3 0.5698 0.5718 0.5717
0.4 0.6952 0.7005 0.6967
0.5 0.8508 0.8542 0.8511

CCCC 0.1 0.1457 0.1429 0.1468
0.2 0.2089 0.2082 0.2112
0.3 0.3092 0.3090 0.3119
0.4 0.4434 0.4434 0.4470
0.5 0.6079 0.6079 0.6125

Table 3
Non-dimensional stress rxx at the center of the top surface of a thick square

t/a MQ MLPG1 TPS MLPG1

SSSS 0.1 0.2890 0.2960
0.2 0.2996 0.3036
0.3 0.3141 0.3168
0.4 0.3392 0.3392
0.5 0.3750 0.3725

CCCC 0.1 0.1430 0.1430
0.2 0.1596 0.1625
0.3 0.1899 0.1912
0.4 0.2304 0.2306
0.5 0.2825 0.2838

Table 4
Non-dimensional stress resultant for a SCSC thick square plate

t/a Point (x/a, y/a) Stress resultant MQ MLPG1 TPS MLPG1 MLS

0.1 (0.5, 0.5) Mxx 0.0255 0.0256 0.025
(0.5, 0.5) Myy 0.0330 0.0332 0.033
(0.5, 0.0) Myy 0.0719 0.0632 0.075
(1.0, 0.5) Qx 0.2484 0.1812 0.250
(0.5, 0.0) Qy 0.5160 0.5040 0.465

0.2 (0.5, 0.5) Mxx 0.0299 0.0301 0.030
(0.5, 0.5) Myy 0.0338 0.0340 0.034
(0.5, 0.0) Myy 0.0651 0.0584 0.067
(1.0, 0.5) Qx 0.2520 0.2076 0.258
(0.5, 0.0) Qy 0.5040 0.5640 0.485

Table 1
Non-dimensional centroidal deflection of a thick plate with t/a = 0.2
(IG = 5)

Method/reference SSSS SCSC SFSF

MQ MLPG1 0.4792 0.2921 1.4358
TPS MLPG1 0.4803 0.2948 1.4430
MLS MLPG1 0.4798 0.2928 1.4362
MLS MLPG5 0.4793 0.2928 1.4368
Kant and Hinton 0.4900 0.3016 1.4496
Yuan and Miller 0.4905 0.3021 1.4542
Kant 0.4800 0.2930 1.4304
Kocak and Hassis 0.4782 0.2920 –
Lee et al. 0.4904 0.3021 1.4539
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the optimal value of a was identified to be 4 when using the
TPS radial basis functions in two-dimensional stress analy-
sis problems. Furthermore, it was found that unlike for
MQ, the TPS parameter is not sensitive to the characteris-
tic nodal distance.

Here we investigate whether the optimal shape parame-
ters established for two-dimensional solid mechanics prob-
lems hold for plate problems. For b = 1.99, the effect of the
MQ shape parameter c is first studied for SSSS and SCSC
plates. The computed non-dimensional centroidal deflec-
tions of the plate of aspect ratio t/a = 0.2, and the two sets
of boundary conditions are presented in Fig. 2 for different
tios

G1 MLS MLPG5 Kocak & Hassis [4] FEM [6]

0.4275 0.4200 0.4249
0.4793 0.4782 0.4803
0.5589 0.5710
0.6807 0.6952
0.8304 0.8487

Srinivas and Rao [27]
0.1476 0.1496 0.1486
0.2103 0.2134 0.2124
0.3064 0.3129
0.4408 0.4471
0.6050 0.6114

plate

MLS MLPG1 MLS MLPG5 FEM [6]

0.2887 0.2920 0.2900
0.2984 0.3020 0.2976
0.3129 0.3110 0.3099
0.3333 0.3286 0.3283
0.3640 0.3692 0.3568

0.1432 0.1450 0.1440
0.1617 0.1589 0.1613
0.1895 0.1836 0.1877
0.2274 0.2224 0.2235
0.2877 0.2725 0.2725

MLPG1 MLS MLPG5 Kant and Hinton [28] Lee et al. [29]

7 0.0251 0.0258 0.0258
3 0.0325 0.0332 0.0333
8 0.0726 0.0697 0.0680

0.255 0.243 0.243
6 0.4884 0.5000 0.0500

0 0.0298 0.0292 0.0292
1 0.0335 0.0330 0.0331
2 0.0641 0.0626 0.0627

0.259 0.251 0.251
6 0.4820 0.4750 0.4750



Table 5
Non-dimensional stress resultant for a SFSF thick square plate

t/a Point (x/a, y/a) Stress resultant MQ MLPG1 TPS MLPG1 MLS MLPG1 MLS MLPG5 Kant and Hinton [28] Lee et al. [29]

0.1 (0.5, 0.5) Mxx 0.1250 0.1250 0.1220 0.1230 0.1220 0.1220
(0.5, 0.5) Myy 0.0258 0.0258 0.0261 0.0256 0.0256 0.0256
(1.0, 0.5) Qx 0.4680 0.5840 0.4650 0.4660 0.4600 0.4600

0.2 (0.5, 0.5) Mxx 0.1242 0.1236 0.1228 0.1224 0.1230 0.1230
(0.5, 0.5) Myy 0.0262 0.0246 0.0245 0.0246 0.0237 0.0237
(1.0, 0.5) Qx 0.4600 0.4920 0.4600 0.4640 0.4560 0.4560

0.7

0.8
t/a = 0.5
t/a = 0.4

n
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values of the parameter c normalized by the nodal distance
d. As for the two-dimensional solid mechanics problems
[26], the computed deflections of the SSSS and the SCSC
plates are essentially unchanged for c/d less than 6.5 and
7, respectively. However, for the plate problems, c/d can
be very small (e.g., 1.0 · 10�8) without any loss of accu-
racy. The computed values of stresses and force resultants
show the same trend as those for deflections. We choose
c = 6d in the following work.

For the TPS shape parameter a, we computed results for
SSSS, CCCC, SCSC, and SFSF plates with a = 2, 4 and 6,
and observed only minor differences among the calculated
deflections and stresses Henceforth, we use a = 4 as pro-
posed in [26].
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Fig. 3. Effect of the order K of the plate theory on (a) the centroidal
deflection, and (b) the axial stress.
5.2. Comparison with published results

In order to study the performance of the present imple-
mentation, computed deflections of selected points of the
midsurface of the plate for different edge conditions are
compared, in Table 1, with those obtained by other inves-
tigators using either the HOSNDPT [6] or a first-order
shear deformation theory [27–29]. Clearly, both the MQ
and the TPS give results that are in excellent agreement
with those of other researchers for each one of the three
different boundary conditions. It should be noted that the
present HOSNDPT does not need a shear correction factor
as is used in the first-order shear deformation theory; also,
the present meshless implementations are computationally
more efficient than that with basis functions derived by the
MLS approximation [6]. Table 2 compares the effect of the
aspect ratio on the centroidal deflection of SSSS and
CCCC plates; results with the finite element method
(FEM) were obtained with the commercial code IDEAS
by using 20-node brick elements [6], and the number of uni-
form elements in the x-, y- and z-directions were 40, 40, and
4, respectively. Again, the MLPG1 formulation with either
the MQ or the TPS gives centroidal deflections that are
very close to those obtained by other methods.

The calculated non-dimensional axial stress rxxt2

q0a2 at the
center of the top surface is compared with the published
data in Table 3, and excellent agreement between the two
is achieved for all thicknesses of the SSSS and CCCC
plates. Stress resultants for plates with different boundary
conditions are also compared in Tables 4 and 5, where
Mxx ¼
1

q0a2

Z t=2

�t=2

zrxx dz; Qx ¼
1

q0a

Z t=2

�t=2

rxz dz

It can be seen that the MQ basis functions give excellent
values of stress resultants at all locations. However, the
accuracy of the computed stress resultants at boundary
points using the TPS is not good as compared with that
of the MQ and the MLS basis functions, though stress
resultants calculated at the center point are in excellent
agreement with those obtained with other methods [28,29].
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The number of Gauss points used in the above calcula-
tions is 36 (6 · 6). We now examine whether 36 Gauss
points are sufficient for each one of the three types of
boundary conditions stated above. For each case, virtually
identical results were achieved when the number of Gauss
points was increased from 36 (6 · 6) to 81 (9 · 9). However,
fewer than 36 Gauss points may not give accurate results
for plates with edges either clamped or traction free.
5.3. Order of plate theory

This section examines the effect of the order, K, of the
plate theory on the computed results. For this purpose,
we have plotted in Fig. 3, the non-dimensional centroidal
deflection and the non-dimensional stresses at the center
of the top surface of a CCCC plate for different values of
K. It is evident that for a plate with t/a > 0.1 the lower
order (K < 3) plate theory gives a smaller deflection than
that obtained with the higher-order plate theory. One needs
a plate theory of at least fourth-order to obtain reasonably
good values of the axial stress. These conclusions agree
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Fig. 4. For a CCCC plate, convergence of (a) the centroidal deflection,
and (b) the axial stress at the center of plate’s top surface. (a) MQ MLPG1
and (b) TPS MLPG1.
with those of [6] wherein basis functions derived by the
MLS approximation were employed.

5.4. Effect of nodal placement

The convergence with an increase in the number of uni-
formly placed nodes on each side for the CCCC plate has
been studied by computing results for six different nodal
densities, namely 5 · 5, 7 · 7, 9 · 9, 11 · 11, 13 · 13 and
15 · 15; similar trends were seen for plates with other
boundary conditions. Values of other parameters were
t/a = 0.1, K = 5, as = 0.75 and ai = 4. It can be seen from
the results plotted in Fig. 4 that both the centrodial deflec-
tion and the axial stress at the center of the top surface
computed with the two RBFs converge with an increase
in the number of nodes; converged results are obtained
with 169 nodes.

6. Conclusions

The meshless Local Petrov–Galerkin (MLPG) method
with radial basis functions (RBFs) for the trial solution
has been used to analyze deformations of an isotropic
and homogeneous thick elastic plate. A higher-order shear
and normal deformable plate theory (HONSDPT) devel-
oped by Batra and his colleagues has been employed.
Two different RBFs have been examined and it has been
found that the MQ basis functions give better accuracy
than the TPS basis functions. Results with the MQ basis
functions are sensitive to the choice of the value of the
shape parameter divided by the distance between two adja-
cent nodes for a uniform placement of nodes. The accuracy
of the TPS is comparable with that of the MQ for comput-
ing field variables at interior points of the midsurface but
not for points close to the plate boundaries. However,
results with the TPS basis functions were virtually indepen-
dent of the choice of the parameter divided by the distance
between two adjacent nodes. It was found that a = 2 and 4
give equally good results for the present problems. The use
of RBFs for the trial solution facilitates the imposition of
essential boundary conditions which reduces the computa-
tional cost as compared to that when the MLS basis func-
tions are employed. Results computed with the MLS basis
functions depend on the value assigned to the penalty
parameter used to enforce essential boundary conditions.
Furthermore, the present work shows that the optimal val-
ues of shape parameters established for two-dimensional
solid mechanics problems also hold for plate problems.

With the proposed RBF MLPG1 method, deformations
of plates of different aspect ratios and boundary conditions
have been analyzed. Computed deflections and stresses are
found to match very well with those obtained with other
methods including the three-dimensional analysis by the
finite element method. Convergence studies with respect
to the number of uniformly distributed nodes, and the
order of the plate theory have been carried out. For
t/a 6 0.1, a third-order shear and normal deformable plate
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theory is adequate, but for t/a > 0.1, a fifth-order shear and
normal deformable plate theory should be used.
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