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Abstract-Plane strain thermomechanical deformations of a thermally softening viscoplastic body 
containing a rigid non-heat-conducting circular inclusion at the center are studied. The body is deformed 
in compression at a nominal strain rate of 5000 so.-‘. The flow stress of the material of the body is 
assumed to decrease linearly with the rise in its temperature. Two different values of the thermal softening 
coefficient are considered. The rigid inclusion simulates the presence of second phase particles such as 
oxides or carbides in a steel and serves as a nucleus for the initiation of a shear band. 

It is found that the matrix material adjoining the rigid inclusion undergoes severe deformations. The 
strains in the matrix material near the inclusion surface and adjoining the horizontal axis are larger than 
that in the matrix material close to the vertical axis. Eventually, only bands along the main diagonals of 
the cross-section emerge. The speed of propagation of the contours of constant maximum principal 
logarithmic strain is found to vary from 1 I to 420 m/see 

1. INTRODUCTION 

Johnson [l] has recently pointed out that the study of 
shear bands dates back to 1878 when Henry 
Tresca [2] observed hot lines, now called shear bands, 
in the form of a cross during the hot forging of a 
platinum bar. Massey [3] observed these hot lines in 
1921 during the hot forging of a metal and noted that 
“when diagonal ‘slipping’ takes place there is 
great friction between the particles and a con- 
siderable amount of heat is generated.” Zener and 
Hollomon [4] stated that shear bands initiate when 
thermal softening overcomes the hardening due to 
strain and strain rate effects. They reported 32+m- 
wide shear bands during the punching of a hole in a 
steel plate. A similar experiment was performed by 
Moss [5] who computed strain rates within the band 
to be of the order of lo5 set-i. The experimental 
observations of Costin et al. [6], Hartley et al. [7], 
Giovanola [8] and Marchand and Duffy [9] involving 
torsional deformations of thin-wall steel tubes have 
contributed significantly to our understanding of the 
initiation and growth of shear bands in steels de- 
formed at strain rates of 500 set-’ to 3000 set-i. 

Most of the analytical [lO-181 and numeri- 
cal [ 19-281 studies have analyzed overall simple 
shearing deformations of a viscoplastic block. Differ- 
ent constitutive relations have been used to model 
the thermomechanical response of the material. A 
material defect has been modeled by introducing (i) 
a temperature perturbation, (ii) a geometric defect 
such as a notch or a smooth variation in the thickness 
of the specimen, (iii) a perturbation in the strain rate, 
or (iv) assuming that the material at the site of the 
defect is weaker than the surrounding material. The 
focus of these studies has been to delineate factors 

that enhance or inhibit the initiation and growth of 
shear bands. Nearly all of the two-dimensional stud- 
ies [29-361 have assumed that a plane strain state of 
deformation prevails in the body. These works have 
employed different constitutive relations and also 
accounted for varying softening mechanisms. 

Here we solve numerically the coupled nonlinear 
equations, expressing the balance of mass, linear 
momentum and internal energy, subjected to a suit- 
able set of initial and boundary conditions. It is 
assumed that a plane strain state of deformation 
prevails and the body softens because of its being 
heated up due to the plastic working. A material 
defect or inhomogeneity is modeled by introducing a 
perfectly insulated rigid non-heat-conducting circular 
inclusion at the center of the body. The inclusion can 
be viewed as precipitates or second phase particles in 
an alloy. These particles, such as oxides or carbides, 
are usually very strong relative to the surrounding 
material, and their deformations can be neglected. 
Here we take them to be non-heat conducting 
too. Results are computed for two different values of 
the thermal softening coefficient and emphasis is 
placed on finding the speed of propagation of a shear 
band. 

2. FORMULATION OF THE PROBLEM 

We use rectangular Cartesian coordinates to study 
plane strain deformations of a prismatic body with a 
square cross-section and containing a circular rigid 
non-heat-conducting inclusion at the center. A cross- 
section of the body is depicted in Fig. 1. We presume 
that its deformations are symmetrical about the 
horizontal and vertical axes passing through the 
centroid and analyze deformations of the material in 
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the first quadrant. Equations governing the defor- 
mations of the body are 

0 + pVi,i = 0 

puti, = UijJ 

~4 = @,ii+ Q 

rrij = - B(p - 1)6, + 2~0, 

2/l = (l/&)(1 + bl)rn(l - ve) 

D, = (vu + ~j,i)/2 

(1) 

(2) 

(3) 

(4) 

(5) 

Bi, = D, - f Dkk 6, (6) 

212 = D,iJ, (7) 

Q = 2~6,~ii,. (8) 

These equations are written in terms of non-dimen- 
sional variables which are related to their dimensional 
counterparts, denoted below by a superimposed bar, 
as follows: 

Ci=afJ, 

B= BU, 

i = tR/v, 

8 = bE_ilv, 

e, = %l(Pd) 

8= ee, 

V= v/e, 

P = PPO 

a = POGJO 

B = V(Po~vo@ 

Z=&. (9) 

Equations (1) (2) and (3) express, respectively the 
balance of mass, balance of linear momentum and the 
balance of internal energy. Equation (4) with p given 
by eqn (5) is the constitutive relation for the material 
of the body. When written as 

(1/2~~,s,~)“~ = (1 + bZ)m( 1 - ve)/fi (10) 

xi, = e/j + B(p - 1)6, + (2/~/3)D,, 6, (11) 

it can be viewed as expressing the generalized von 
Mises yield criterion with the flow stress at a material 
particle increasing with its strain rate but decreasing 
with the rise in the temperature of the material 
particle. Also, it has been assumed that the material 
obeys Fourier’s law of heat conduction with constant 
thermal conductivity li. In eqns (1) through (1 1), p is 

I 1 Y-----i 
Fig. 1. Cross-section of the prismatic body studied. 

the present mass density and p. the mass density in 
the undeformed and unstressed reference configur- 
ation, vi is the velocity of the material particle in the 
direction xi, 0 is the temperature rise at a material 
particle, B. the reference temperature, c the specific 
heat, /I the non-dimensional thermal diffusivity, and 
co is the yield stress for the material of the body in 
a quasi-static simple compression test. Furthermore, 
u is the Cauchy stress tensor, s is the deviatoric stress 
tensor, parameters b and m characterize the strain 
rate hardening of the material and v delineates its 
thermal softening. The quantity Q given by eqn (8) 
equals the heat produced per unit volume due to 
plastic working, D is the strain rate tensor and n 
denotes its deviatoric part. Here we have assumed 
that all of the plastic working rather than 90-95% of 
it, as asserted by Farren and Taylor [37], is converted 
into heat. The non-dimensional numbers CI and /I in 
eqns (2) and (3) give, respectively, the magnitude of 
inertia forces relative to the flow stress of the material 
and the length over which heat conduction effects are 
important. A superimposed dot stands for the ma- 
terial time derivative and vi,, = &,/ax,. 

With the non-deformable and non-heat-conducting 
inclusion, the boundary conditions for the material in 
the first quadrant are 

v, = 0, a,,=O, q,=O onx,=X,=O (12.1) 

v2 = 0, 0 ,*=O, q2=0 onx,=X,=O (12.2) 

a,flj = 0, qini = 0 on the right surface (12.3) 

v* = -U(t), 

u12- 3 -0 q2 = 0 on the top surface (12.4) 

v, = 0, v2 = 0, qini = 0 at the interface To 
between the 
inclusion and the 
matrix. (12.5) 

That is, all of the bounding surfaces of the block 
are taken to be perfectly insulated. The boundary 
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conditions (12.1) and (12.2) follow from the assumed 
symmetry of the deformations. The boundary con- 
dition (12.3) states that the right surface of the block 
is traction-free. Here n is an outward unit normal to 
the surface. The function u(t) in condition (12.4) 
gives the variation of the prescribed normal velocity 
with time on the top surface. The contact between the 
loading device and the top surface is taken to be 
smooth. The boundary condition (12.5) states that 
the inclusion is rigid and non-heat-conducting and 
there is no sliding of the matrix material on the 
common interface To between the matrix and 
the inclusion. The interface To has the parametric 
representation 

x;+x:=R; 

or 

x;+x;=R;, (13) 

where RO is the radius of the circular inclusion. The 
loading function u(t) is taken to be 

{ 

t/o.005 0 < t < 0.005 
U(t) = 1 

t 2 0.005. 
(14) 

For the initial conditions we take 

,0(x, 0) = 1.0 

v,(x,O)=O 

u,(x,O)=O 

e(x, 0) = 0. (15) 

The governing equations (1) through (8) are 
coupled and highly nonlinear. It is difficult to prove 
the existence and uniqueness of a solution of these 
equations. Herein we seek an approximate solution 
of these equations by the finite element method. 
The Galerkin approximation [38] of the governing 
equations and the boundary conditions gives a set of 
coupled nonlinear ordinary differential equations 
which are integrated with respect to time t by using 
the backward difference Adams method included in 
the subroutine LSODE [39]. The subroutine adjusts 
the time step adaptively until it can compute a 
solution of the ordinary differential equations within 
the prescribed tolerance. We use four-noded isopara- 
metric quadrilateral elements to discretize the domain 
and the lumped mass matrix. 

3. COMPUTATION AND DISCUSSION OF RESULTS 

In order to compute numerical results, we took the 
following values of various material and geometric 
parameters. The values of material parameters are 
representative of a typical hard steel. 

5 = 10,000 set 

u0 = 333 MPa 

7; = 49.22 Wm-i/C 

m = 0.025 

E = 473 J/kg “C 

p,, = 7800 kg/m3 

B = 128 GPa 

R=Smm 

v,, = 25 m/set 

& = 0.05 mm 

j = O.O0185”C-’ or O.OlC-‘. (16) 

For these values of material parameters, B,, = 
89.6”C, t( =0.015 and fl = 1.66 x 10m4. The pre- 
sumed values of the thermal softening coefficient are 
taken to be large so as to reduce the computational 
resources required to solve the problem. A compari- 
son of the results for two values of v should enable 
us to delineate the effect, if any, of the value of the 
thermal softening coefficient upon the development 
of a shear band. The finite element mesh used to 
compute results is shown in Fig. 2. The mesh is very 
fine in the region surrounding the inclusion and 
gradually becomes coarse as we move away from it. 
No attempt was made to align the element sides so 
that they are parallel to the direction of maximum 
shearing at the time of the initiation of a shear band. 
We note that Needleman [31] has suggested that such 
a mesh will resolve better the sharp gradients of the 
deformation within and near the band. 

3.1. Results for v = 0.00185/°C 

Since the effective stress at matrix points abutting 
the rigid inclusion is non-uniform and is expected to 
be higher than that at matrix points far away from 
the inclusion, it is not immediately clear where the 
band will initiate first. Accordingly we have plotted 
in Figs 3a through 3c the evolution of the maximum 
principal logarithmic strain E, the temperature rise 
and the effective stress at points A(0.0159,0.00124), 
B(0.0209, 0.00124) C(O.O259,0.00124), E(0.0110, 
0.01 lo), F(0.0142,0.0142) and G(0.501,0.00202). 
The logarithmic strain E is defined as 

E =ln1,N -InA,, (17) 

where 1: and 1: are the eigenvalues of the right (or 
left) Cauchy-Green tensor. The second relation in 
eqn (17) follows from the observation that the defor- 
mations are nearly isochoric. Note that the point G 
is far away from the inclusion, and points A, B, C are 
on the same horizontal line with A being closest to the 
inclusion surface. Points E and F are on the line that 
makes an angle of 45” with the horizontal. The 
evolution of the maximum principal logarithmic 
strain E, the temperature rise and the effective 
stress at points P(O.OO124,0.0170), Q(O.OOl24,0.021), 
R(0.00124,0.0260), T(0.00624,0.0210), U(O.00478, 
0.0245) and V(O.OOl42,0.501) are depicted in Figs 4a 



Z. G. ZHU and R. C. BMW 

I 

fi 0.2 - 

# 

0.1. 
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Fig. 3b. Evolution of the temperature rise at points A, B, C, E, F and G (v =0.00185/T). 
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Fig. 3c. Evolution of the effective stress at points A, B, C, E, F and G (v = 0.00185/T). 
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through 4c. Note that points P, Q and R are on the The plots of the maximum principal logarithmic 
same vertical line, with P being nearest to the in- strain at these points reveal that the deformation in 
elusion surface. The point V is near the vertical axis the matrix is rather miniscule but that at points close 
but far removed from the inclusion and the top to the inclusion surface it is quite large. The rates of 
loading surface. evolution of E at points G and V, which are far 
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removed from the inclusion and are near the horizon- of E at points A and B are essentially the same and 
tal and vertical axis, respectively, are nearly the same. these are slightly more than that at point C, one is 
At each instant, the value of E at point A is much 
higher than that at point P, suggesting thereby that 

tempted to conclude that the band initiates at point 

the material surrounding point A is deforming more 
A and propagates from A to C. The rather significant 
values of E at points E and F which are higher than 

severely than that adjoining point P. Since the values the values of 8 at points P and Q suggest that the band 

0.4 

_R/” 

0.3 
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0.0 
o.bo 0.62 0.b4 0.06 

Fig. 4a. Evolution of the maximum principal logarithmic strain at points P(0.00124,0.0170). 
Q(O.OO124,0.0210), R(0.00124,0.0260), T(0.00624,0.0210), U(O.OO478,0.0245) and V(O.OO142,0.50 

(v = O.OOlSS/“C). 
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Fig. 4b. Evolution of the temperature rise at points P, Q, R, T, U and V (v = O.OOlSS/T). 
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Fig. 4c. Evolution of the effective stress at points P, Q, R, T, U and V (v = 0.001S5/°C). 

initiating from point A also propagates towards 
points E and F. The contours of E plotted in Fig. 5 
suggest that the localization of deformation initiating 
at points P, Q, and R propagates towards points E 
and F. The band originating from the region enclos- 
ing points A and B merges with the band initiating 
from the region surrounding points P, Q, and R and 
eventually the two propagate as a single band along 
the diagonal of the block. We note that for the rigid 
non-heat-conducting ellipsoidal inclusion [35], a band 
initiated from its vertex on the major axis and 
propagated into the matrix in the direction of the 
maximum shearing. A possible explanation for the 
value of E at point R being higher than that at points 
E, F, P, and Q is that the band originating from the 
region surrounding points A and B and propagating 
towards E and F influences the deformations of the 
region around point R. Also, different components of 
the stress and strain tensors exhibit singularities of 
different orders [40] in regions surrounding points A 
and P. Thus plastic working which equals tr(aD) 
need not be maximum at the point where the peak 
value of E occurs. The computed values of the tem- 
perature rise at point R indicate that tr(aD) is lower 
at R as compared to its value at other neighboring 
points considered. The computed values of the effec- 
tive stress plotted in Figs 3c and 4c support the view 
that, as the temperature at a material point rises, it 
becomes softer and requires less effective stress for it 
to deform plastically. The effective stress at points far 
away from the inclusion surface essentially stays 
constant whereas that at points near the inclusion 
surface drops to very low values. 

After having determined that a shear band propa- 
gates along the main diagonal, we find its speed of 
propagation as follows. We fix two points in its path 
and determine the values of the time when a contour 
of the maximum principal logarithmic strain E arrives 
at these two points. The computed speed of propa- 
gation is found to depend upon the pair of points 
used and the value of E. The results are summarized 
in Table 1. 

Note that the values of the temperature rise and the 
logarithmic strain at these observation points are not 
the same, implying thereby that the speed of propa- 
gation of an e-contour at a point depends upon the 
state of deformation at that point. Batra and 
Zhang [36], who used the constitutive relation (4) to 
study the development of shear bands at void tips in 
a viscoplastic cylinder loaded internally by an impact 
load, found that contours of E = 0.2524 and 0.437 
propagated at speeds of 115.2 and 14 m/set, respect- 
ively. Needleman [31] who studied plane strain defor- 
mations of a viscoplastic block deformed in simple 
compression and used a quite different constitutive 
relation, found that contours of constant values of E 
propagated at speeds ranging from 590 to 2500 mjsec. 

3.2. Results for v = 0.01/C 

Figures 6a, 6b and 6c depict, respectively, the 
evolution of the maximum principal logarithmic 
strain E, the temperature rise, and the effective stress 
at points A, B, C, D, E and F (0.0177,0.0177). A 
comparison of these with the results plotted in Figs 3a 
through 3c reveals that it is now easy to decipher 
when a shear band initiates. At a nominal strain of 
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approximately 0.0105, the values of E at points A and the localization of the deformation occurs sooner for 
B begin to increase sharply. A similar behavior occurs the larger value of v. The evolution of E, the tempera- 
at other points considered, except point G, which is ture rise and the effective stress at points P, Q, R, T, 
far removed from the inclusion surface. The tempera- U and V shown in Figs 7a, 7b and 7c, respectively, 
ture rise and the effective stress exhibit trends similar also indicate that it is easier to delineate the initiation 
to those observed for v = O.O0185/“C. As expected, of a shear band from the E versus average strain 

1 , 

0.00 0.25 0.50 0.75 1.00 

X 

Fig. 5. Contours of the maximum principal logarithmic strain at different times (v = 0.001S5/°C). 



Deformations of a thermally softening viscoplastic body 461 

Table 1. 

E 

0.025 

0.050 

0.10 

0.150 

0.20 

0.25 

Co-ordinates of points used 

(0.0623,0.0625), (0.0994,0.0997) 
(0.350,0.349), (0.470,0.471) 
(0.470,0.226), (0.679,0.699) 

(0.227,0.226), (0.336,0.335) 
(0.454,0.453), (0.660,0.658) 
(0.649,0.628), (0.660,0.658) 

(0.339,0.338), (0.460,0.459) 
(0.460,?.459), (0.544,0.543) 

(0.235,0.234), (0.353,0.352) 
(0.353,0.352), (0.460,0.459) 

(0.099,0.0994), (0.227,0.226) 
(0.227,0.226), (0.303,0.302) 

(0.0647,0.0649), (0.0997,0.0994) 
(0.0997,0.0994),(0.150,0.151) 

Computed speed 
(m/s@ 

34.97 
170.78 
160.84 

51.63 
96.64 
52.57 

42.69 
59.57 

19.62 
43.12 

11.97 
12.61 

10.93 
42.29 

curve. For the larger value of v, the values of E at 
points P, Q and T are higher than those at points R 
and U. However, E assumed larger values at points R 
and S as compared to those at points P, Q and T for 
the smaller value of v. The curves of the temperature 
rise and the effective stress are similar for the two 
cases. 

As for v = O.O0185/“C, only a single band eventu- 
ally developed along the main diagonal. The speeds 
of propagation of contours of constant a, found by 
the method stated above, are listed in Table 2. We 
note that these are average speeds for a contour of 
constant E to propagate from one point to another 

point. For points that are very near to each other, the 
average speed will be close to the instantaneous speed 
of propagation of the contour of constant E. 

In each case studied above, the computations were 
stopped when a material point melted. In Fig. 8, the 
average load versus average strain curve is plotted for 
the two values of v. In each case, the solid curve 
corresponds to the case when there is a rigid inclusion 
present in the block. The average compressive force 
F, is defined as 

l$= - ‘a&c,, l.O)dx,. 
s 

(18) 
0 

0.00 -I, _.V______________--_------ 
I I 

0.000 0.004 0.008 0.012 0.016 

AVERAGE STWN 

Fig. 6a. Evolution of the maximum principal logarithmic strain at points A, B, C, E, P(0.0177,0.0177) 
and G (v =0.01/C). 
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0.000 0.004 O.OOB 0.012 0.016 

AMRACE STRAIN 

Fig. 6b. Evolution of the temperature rise at points A, B, C, E, B and G (v = O.Ol/YJ. 

0.9- 

/ 

---------__ G 
-_____- 

___-_A----./ 

, 

AMRACE STRAIN 

Fig. 6c. Evolution of the effective stress at points A, B, C, E, F and G (v = O.Ol/“C). 

The integral in eqn (18) is evaluated numerically softens and the load required to deform it decreases. 
by using values of oz2 at quadrature points on the The decrease in the load is more for the block 
top loading surface. The initial almost linear increase containing a rigid inclusion because of the nucleation 
of the load is due to the linear increase of the of a shear band in it. Once a band has nucleated, 
applied velocity field. Due to the heating of the block the load required to deform it stays lower than 
caused by its plastic deformations, the material that for the homogeneous block, signifying the lower 
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load carrying capacity of the member once a is less accurate than that in the interior of the 
shear band develops in it. The oscillations in the block. Note that contours of different values of 
applied load are possibly due to the inhomogeneous E arrive at elements in the top row at different 
deformation of the top rows of elements and times and affect the stress distribution in these 
the computation of tractions at the boundary points elements. 

o.doo 0.004 0.008 0.012 0.016 

A\IERME STRAIN 

Fig. 7a. Evolution of the maximum principal logarithmic strain at points P, Q, R, T, U and V 
(v = O.Ol/“C) 
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0.004 0.006 0.012 0.016 

AWfACE STRUN 

Fig. 7b. Evolution of the temperature rise at points P, Q, R, T, U and V (v = O.Ol/“C). 
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Fig. 7c. Evolution of the effective stress at points P, Q, R, T, U and V (v = 0.01/C). 

Table 2. 

Computed speed 
E Co-ordinates of points used (m/set) 

0.020 (0.0609,0.061 l), (0.0965,0.0962) 33.35 
(0.301,0.322), (0.508,0.506) 425.86 
(0.609,0.611), (0.564,0.603) 109.58 

0.025 (0.0550,0.0548), (0.0953,0.0950) 38.0 
(0.225.0.241). (0.280.0.30) 109.24 

0.03 

Fig. 8. Compressive force versus average strain. (a) v = 0.00185/C; (b) v = 0.01/C. - - --Homogeneous 
block. - Block with the inclusion. 
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4. CONCLUSIONS 

We have studied the problem of the initiation and 
growth of a shear band in a viscoplastic block 
containing a rigid circular inclusion and being de- 
formed in plane strain compression at a nominal 
strain of 5000 see-i. Results have been computed for 
two values of the thermal softening coefficient. In 
each case the matrix material adjoining the surface of 
the rigid non-heat-conducting inclusion undergoes 
severe deformations; that near the horizontal axis 
deforms more intensely as compared to the one along 
the vertical axis of the block. Eventually a shear band 
develops along the diagonals of the block. A narrow 
zone of material surrounding the inclusion continues 
to deform severely. The speed of propagation of the 
contours of the constant maximum principal logar- 
ithmic strain E is found to vary from 11 to 420 m/set. 
The speed depends upon E as well as the points in the 
path of the shear band used to compute the speed. At 
the time of the initiation of the shear band, the rate 
of increase of E at a point is greater for the higher 
value of the thermal softening coefficient than that for 
the lower value of the coefficient of thermal softening. 
Also, contours of constant E propagate faster when 
the value of the coefficient of thermal softening is 
increased. 
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