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Ahstraet-Axisymmetric deformations of a transversely isotropic, rigid/perfectly plastic target being 
penetrated by a long rigid cylindrical rod with an ellipsoidal nose have been analyzed. The deformations 
of the target appear steady to an observer situated at the penetrator nose tip. The contact between the 
target and the penetrator is assumed to be smooth. Computed results show that the deformation geld 
adjacent to the penetrator nose surface is significantly inlIuencecl by the nose shape, and the ratio of the 
yield stress in the axial direction to that in the transverse direction. The axial resisting force expetienced 
by the penetrator is found to depend strongly upon the nose shape and the ratio of the yield stress in 
the axial to that in the transverse direction, but weakly upon the square of the penetration speed. 

1. INTRODUCI’ION 

For very thick targets, the steady-state portion of the 
penetration process constitutes a significant part of 
the entire penetration event. Accordingly, a consider- 
able amount of work has been done in studying this 
process. For example, Tate [ 1,2] and Alekseevskii [3] 
have modified models in which the steady defor- 
mations of the target and the penetrator are assumed 
to be governed by purely hydrodynamic incompress- 
ible flow processes by incorporating the effects of the 
material strengths of the target and the penetrator. 
These strengths were assumed to be some multiple of 
the yield stress of the respective materials, the multi- 
plying factor has recently been given by Tate [4,5] by 
using a solenoidal fluid flow model. Pidsley [6], Batra 
and Gobinath [7l, and Batra and Chen [8] have esti- 
mated these multiplying factors from their numerical 
solutions of the problem. 

We refer the reader to the review articles of Back- 
mann and Goldsmith [9], Wright and Frank [lo], 
Anderson and Bodner [l 11, and books by Zukas et 
al. [12], Blaxynski [13], and Macauley [ 141 for a dis- 
cussion of various aspects of the penetration prob- 
lem, and for a list of references on the subject. Ravid 
and Bodner [ 151, Ravid et al. [ 161, Forrestal et al. [ 171, 
and Batra and Chen [8] have proposed engineering 
models of different complexity. 

The works referred to above have assumed the 
target material to be isotropic. However, manufactur- 
ing processes such as rolling induce anisotropy in the 
material properties. For example, in heavily-rolled 
brass, the tensile yield stress transverse to the direc- 
tion of rolling may be as much as ten percent greater 
than that parallel to the direction of rolling [18]. 
Greater variations may be obtained by an appropri- 
ate combination of mechanical and heat treatments, 
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which produces a tinal recrystallization texture close 
to that of a single crystal [19]. Here we assume the 
target material to be transversely isotropic, and study 
the effect of varying the yield stress in the axial 
direction upon the deformation fields during steady- 
state penetration of the target by a rigid cylindrical 
penetrator. It is assumed that the degree of an- 
isotropy, defined as the ratio of the yield stress in the 
axial direction to that in the transverse direction, 
stays constant during the deformation process. The 
effect of the speed of penetration as well as the nose 
shape on the deformations of the target is also 
investigated. 

2. FORMULATION OF THE PROBLEM 

We use a cylindrical coordinate system with origin 
at the center of the penetrator nose and z-axis 
pointing into the target. We presume that the defor- 
mations of the target are axisymmetric and appear 
steady to an observer situated at the penetrator nose 
tip and moving with it at a uniform velocity u,e, e 
being a unit vector in the direction of motion of the 
rigid penetrator, which we take to be the z-axis. 
Equations governing the target deformations are 

div v = 0, (2.1) 

p (v . grad)v = div u. (2.2) 

Here v is the velocity of a target particle relative to 
the observer situated at the penetrator nose tip, p is 
the mass density for the target material, and u is the 
Cauchy stress tensor. We neglect elastic deformations 
of the target and have assumed in (2.1) that its 
deformations are isochoric. Equations (2.1) and (2.2) 
express, respectively, the balance of mass and the 
balance of linear momentum. 

We assume that the target material obeys Hill’s 
yield criterion [20], which for transversely isotropic 

489 



490 R. C. BAIM and A. ADAM 

materials undergoing axisymmetric deformations 
becomes 

where 

+ W-r,, - a,,)’ + 2Ma& = 1, (2.3) 

2F = l/& 

2H = 2/e;, - l/d&, 

2h4 = l/17&, (2.4) 

(T, and & are yield stresses in the x- and z-directions, 
respectively, and Cr,, is the shear yield stress. 

The constitutive relation for the target material can 
be written as 

u = -pl+s, (2.5) 

H 

3F-kH F 

F 

(2.6) 

.%Z = Dr* IM (2.7) 

E = 3F(F + 2H), (2.8) 

2D = grad v + (grad v)r. (2.10) 

In eqn (23, CT is the Cauchy stress tensor, s the 
deviatoric stress tensor, and p the hydrostatic press- 
ure not determined by the deformation history. 
Equations (2.6) and (2.7) relate the components of the 
deviator% stress tensor to the components of the 
strain-rate tensor D. Note that because of the depen- 
dence of I upon D,, D,, D,, and D,Z, even s,, 
depends upon all non-zero components of D. 
Equations (2.6H2.9) reduce to those for isotropic 
rigid/perfectly plastic materials if one takes 
F = H = OS/a;, M = 1.5/a;, a, being the yield stress 
in a quasistatic simple tension or compression test. 

Equation (2.1) and the one obtained by substitut- 
ing from eqns (2X$-(2.10) into eqn (2.2) are the field 
equations to be solved for p and v subject to suitable 
boundary conditions. Before stating these, we non- 
dimensionalize the variables as follows: 

a =a/&), v=v/vg, 

i = r/To, i = z/rO, 

fi =p/uo, s = s/a,. (2.11) 

Here r, is the radius of the cylindrical portion of the 

penetrator and a, is a reference stress. Rewriting eqns 
(2.1) and (2.2) in terms of non~ime~o~l variables, 
droppins the superimposed hats, and denoting the 
gradient and divergence operators in non-dimen- 
sional coordinates by grad and div, we obtain the 
following equations 

div v = 0, (2.12) 

c1 (v - grad)v = -grad p + div s, (2.13) 

where Q = pv$oO is a non-dimensional nmber and 
measures the magnitude of inertia forces relative to 
the flow stress of the material. At the 
target~~netrator interface we impose 

t ’ (an) = 0, (2.14) 

v.n=O, (2.15) 

where II and t are, respectively, the unit outward 
normal and the unit tangent vectors at a point on the 
surface. At points far away from the penetrator 

Iv+el-+O as (r2+z2)ti2+m, z > -co, (2.16) 

janJ-+0 as z-*- co. (2.17) 

The boundary condition (2.14) states that the 
targetlpenetrator interface is smooth, and (2.15) 
implies that there is no penetration of the target 
material into the penetrator. Equation (2.16) implies 
that target particles at a large distance from the 
penetrator appear to be moving at a uniform speed 
with respect to it, and eqn (2.17) states that far to the 
rear the traction field vanishes. Note that the govern- 
ing eqns (2.13) with s given by (2.6) and (2.7) are 
nonlinear in v, and that a solution of the boundary- 
value problem stated above, if there exists one, will 
depend on the rate at which quantities in (2.16) and 
(2.17) tend to zero. Since the problem is dithcult to 
solve analytically, we seek an approximate solution of 
the problem by the finite element method. 

3. FINITE ELEMENT SOLUTION OF THE PROBLEM 

3.1. Computational considerations 

Recalling that the target deformations are assumed 
to be axisymmetric, only the tinite region R shown in 
Fig. 1 is studied, and the boundary conditions (2.16) 
and (2.17) are replaced by the following 

v,= - 1.0, v,=o, 

on the boundary surface EFA, (3.1) 

c,, = 1, v, = 0, 

on the bottom surface AR. (3.2) 
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3.2. Results for the transversely isotropic target 

We have assigned the following values to various 
variables when computing numerical results that are 
presented below 

a, = c?,, = uuu - -498 MPa, 

p = 7860 kg/m3, r,, = 2.54 mm. (3.4) 

6.7 

‘57 r, 

Fig. 1. The finite region analyzed and its discretization. 

On the axis of symmetry DE, we impose 

u,z - - 0, v, = 0. (3.3) 

A finite element solution of the problem defined by 
eqns (2.12) and (2.13) with s given by non-dimension- 
a&d versions of (2.6)-(2.10), and boundary con- 
ditions (2.14), (2.15), and (3.1H3.3) has been found 
for several values of a, dzz/8,, and penetrator 
nose shapes. The finite element code developed by 
Batra [21] was modified to solve the present problem. 
The changes made were checked by solving the same 
penetration problem for an isotropic target with the 
modified code by setting F = H = 0.5, and M = 1.5, 
and with the original code. Since in the numerical 
solution of the problem, eqn (2.12) is only approxi- 
mately satisfied, the two sets of results for the same 
problem computed with the original code and the 
mod&d code, as shown in Fig. 2, agree qualitatively, 
but differ quantitatively by about ten percent. We 
have used the method of Lagrange multipliers to 
satisfy the incompressibility constraint (2.12) and the 
boundary condition (2.15). 

The effect of varying dzz, v,,, and the penetrator nose 
shape is analyzed. The value of ZzX is computed from 

(3.5) 

Except when discussing the effect of the nose shape 

3 (b) 
1 

Axld a&mad 

0 0.5 I.0 I.5 2.0 
mancafmmtha-; 

?%o 3.5 

Fig. 2. Comparison of results for an isotropic target corn- . . . . . . puteu mm me two ceces. 
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Fig. 3. Effect of the yield stress in the axial direction on the 
distribution of the normal stress at target particles on the 

penetrator nose surface. a = 6.25. 

on the deformations of the target, the penetrator nose 
is taken to be hemispherical. 

Figure 3 shows the effect of the yield stress in the 
axial direction on the distribution of the normal stress 
at target particles situated on the penetrator/target 
interface when a = 6.25. As expected, the magnitude 
of the normal stress increases with an increase in the 
value of ZZZ. The range of values of 6,, considered is 
considerably more than that likely to occur in a 
practical situation. In Figure 4, we have plotted the 
variation with b,, of the strain-rate measure I and the 
tangential speed at target particles abutting the 
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Fig. 4. Effect of the yield stress in the axial direction on the 
strain-rate measure Z and the tangential speed at target 

particles on the penetrator nose surface. o! = 6.25. 
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Fig. 5. Effect of the yield stress in the axial direction on Z, 
a,, and O, at target particles on the axial line. a = 6.25. 

penetrator nose surface for a hemispherical nosed 
penetrator and a = 6.25. At every target particle on 
the penetrator nose surface, both the tangential speed 
and the strain-rate measure I increase with SZZ. The 
tangential speed varies slowly with the value of gZZ at 
a target particle on the penetrator nose periphery. 
The dependence of (-G,), 1, and the axial velocity at 
target particles on the axial line upon the yield stress 
8, is depicted in Fig. 5. The rate of decay of the axial 
velocity as seen by an observer moving with the 
penetrator nose tip decreases with an increase in the 
value of 8,. We note that the values of I and the 
absolute axial velocity become zero at target particles 
on the axial line whose distance from the penetrator 
nose tip exceeds 3r,. Thus, the region studied is 
adequate. The values of o,, do not decay to zero, but 
approach the value of p as we move away from the 
penetrator nose surface. We recall that we have 
neglected elastic deformations of the target, and the 
hydrostatic pressure does not influence the yielding 
of the material. The consideration of elastic 
deformations should give a better estimate of the 
hydrostatic pressure at a point. 

The distributions of the normal stress and the 
strain-rate measure I at target particles adjoining the 
target/penetrator interface for four different nose 
shapes, i.e. rn/ro = 0.2, 0.5, 1.0, and 2.0, are shown in 
Fig. 6. Here 2r, and 2r, equal the length of the 
principal axes in the r and z directions, respectively, 
of the penetrator nose. The normal stress at the 
stagnation point appears to be the same for all four 
different nose shapes. The normal stress decreases 
rapidly with the angular position 6 for a long narrow 
nose. For the essentially blunt nose, the normal stress 
stays virtually constant on the entire nose surface, 
and rapidly drops to zero near the nose periphery. A 
similar behavior was found by Batra for an isotropic 
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Fig. 6. Distribution of the normal stress and the strain-rate 
measure Z at target particles on the penetrator nose surface 

for four different shapes of the penetrator nose. 

viscoplastic [21] and an isotropic thermoviscoplastic 
target [22]. For a cylindrical penetrator with a long 
pointed nose, the strain-rate measure Z assumes 
highest values at the stagnation point, and the values 
of Z drop off sharply with the angular position 8. 
However, for a blunt nose, Z stays essentially constant 
at a relatively low value on the entire surface and 
suddenly shoots up near the nose periphery. Thus, 
very severe deformations of the target occur at points 
surrounding the stagnation point for a long tapered 
nosed penetrator, and near the nose periphery for a 
blunt nosed penetrator. The variation of Z, (- uz), and 
( -uzz) at target particles on the axial line for four 
different nose shapes is depicted in Fig. 7. The value 
of the axial velocity changes rather slowly for a blunt 

I 4 

Fig. 7. Distribution of Z, u,, and u, at target particles on the 
axial line for four different shapes of the penetrator nose. 

nosed penetrator, but quite rapidly for a long tapered 
nosed penetrator. The difference in the values of 
(- ~7~) at a point on the axial line distant 4r0 from the 
penetrator nose tip is mainly due to the different 
limiting values of the hydrostatic pressure for the four 
nose shapes. Ideally, the pressure should decay to 
zero at target points far away from the penentrator 
nose. However, the assumption that the target ma- 
terial is rigid/perfectly plastic and the observation 
that the strain-rates are extremely small at target 
points whose distance from the penetrator nose tip 
exceeds 4r, suggest that the computed values of p at 
target particles far away from the penetrator nose 
surface are not very reliable. 

In Fig. 8, we have plotted for a hemispherical 
nosed penetrator and dzz/uO = 1.8 the distribution of 
the normal stress, Z, and the tangential speed for 
different values of a. As for an isotropic target [21], 
the normal stress at target particles near the nose 
periphery decreases with a. The tangential speed and 
the values of Z seem to be affected very little by the 
value of a. At target particles situated on the axial 
line, the values of uzz, Z, and v, do not change much 
when Q is increased from 3.0 to 6.25. Their plots and 
those for Cm/u,, = 3.6 are not included in the paper, 
We note that results for fizz/u0 = 3.6 are qualitatively 
similar to those for 6,/u, = 1.8. 

Figure 9 shows the variation of the axial speed v, 
with r on the planes z = 0 and z = - 1.0 for the four 
different nose shapes. These results indicate that the 
target material adjacent to the sides of the penetrator 
appears to extrude rearward as a uniform block that 
is separated from the bulk of the stationary target 
material by a narrow region with a sharp velocity 
gradient. This observation provides a partial justifica- 
tion for the velocity field assumed by Ravid and 

4050060708090 
Angle 

Fig. 8. Distribution of the normal stress, Z, and the tangen- 
tial speed on the penetrator nose surface for different values 

of a. 
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Fig. 9. Variation of the axial speed with r on the surfaces z = 0 and z = - 1 .O. 

Bodner [lS] in their work involving targets of finite 
thickness. We add that Batra and Wright [23] found 
a similar result for the steady state penetration of 
isotropic rigid/perfectly plastic targets. 

The axial resisting force F experienced by the 
penetrator is given by 

s 

n/r 
F=2 (II *an) 

0 

x ws t# sin 8[sin* 8 + (ro/r,)* co.+ @]i” 

[sin2 0 + (r. /r,Y cos* 6 ]* 
de, (3.6) 

where the angle 0 is defined in Fig. 1, and (r, z) are 
the coordinates of a point on the penetratorltarget 
interface. The co~espon~ng axial force in physical 
units is given by (xr&-JF. We note that the ex- 
pression given by Batra [21] for the axial force, except 
for the hemispherical nose shape, is in error. The 
dependence of the axial force upon GE, rJrO , and rS,, ia0 
is exhibited in Fig. 10. For each one of the two values 
of ci,,/q, considered herein, F depends upon a very 
weakly. However, F depends strongly upon r,,/rO and 
6JaO; the resisting force is maximum for a blunt 
nosed and least for a tapered nosed penetrator. F 
increases rapidly with 6,, first, but slowly after cS,,/ao 
exceeds approximately 1.9. 

4. CONCLUSIONS 

We have studied the steady state penetration of a 
~~d/~rf~~y plastic and transversely isotropic 
target being penetrated by a rigid cylindrical pen- 
etrator having an ellipsoidal nose. It is found that the 
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Fig. 10. Dependence of the axial resisting force upon 
various parameters. 

axial resisting force experienced by the penetrator 
depends strongly upon the penetrator nose shape, 
and also upon the ratio of the yield stress in the axial 
direction to that in a transverse direction. The axial 
resisting force depends rather weakly upon the square 
of the penetration speed. Peak values of the strain- 
rate measure I occur near the stagnation point for a 
long tapered nosed penetrator, but near the nose 
periphery for a blunt nosed penetrator. 
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