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Abstract—We analyze axisymmetric thermomechanical deformations of a thick thermoviscoplastic target
being penetrated by a fast-moving rigid cylindrical hemispherical-nosed penetrator. The target material
is assumed to exhibit strain and strain-rate hardening and thermal softening. The target/penetrator
interface is assumed to be smooth. In the solution of the problem by the finite element method, the mesh
is refined automatically whenever one of its elements has been severely distorted, such that a very fine
mesh is generated in the region adjoining the target/penetrator interface and the mesh size increases
gradually as one moves away from this interface. The computed depth of penetration has been found to
correlate well with the test values. We also give details of the deformation fields, such as the history of
the temperature at a material point, contours of the pressure field and the distribution of the velocity field

in the deforming region.

1. INTRODUCTION

Factors that play a significant role during the pen-
etration of metal targets by projectiles include ma-
terial properties, impact velocity, projectile shape,
target support position and relative dimensions of the
target and the projectile. Here we consider kinetic
energy penetrators, which for terminal ballistic pur-
poses may be considered as long metal rods traveling
at high speeds. At ordnance speeds in the range
of 0.5-2km/sec, material strength becomes an im-
portant parameter. Engineering models proposed by
Allen and Rogers[l], Pack and Evans[2], Alek-
seevskii [3] and Tate[4, 5] account for material
strength by including these as resistive pressures in
the Bernoulli equation. These resistive pressures are
empirically determined quantities and the predicted
results depend strongly upon the assumed values
of these pressures. Wright and Frank [6] have re-
examined Tate’s theory and derived expressions for
the resistive pressures in terms of mass densities, yield
strengths of the penetrator and target materials, and
penetrator speed.

Backman and Goldsmith [7] have reviewed the
open literature on ballistic penetration from the 1800s
to 1977 and have cited 278 references. They describe
different physical mechanisms involved in the pen-
etration and perforation processes and also discuss a
number of engineering models. Other review papers
include those by Jonasand Zukas [8] and Anderson and
Bodner [9]. Three books [10-12], published during the

t Present address: Clifton Garvin Professor, Department
of Engineering Science and Mechanics, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061-0219,
US.A.

655

past few years, provide extensive discussions of engin-
eering models, experimental techniques, analytical
models and numerical simulation of perforation.
Here we study the thermomechanical deformations
of a thick target being penetrated by a fast moving
hemispherical-nosed cylindrical rod made of a ma-
terial considerably stronger than that of the target, so
that the penetrator can be regarded as being rigid.
For example, Forrestal et al [13] observed that
during their penetration tests involving steel rods and
aluminum targets, the penetrator remained virtually
undeformed. One of our objectives is to simulate
these tests and provide details of deformations of the
target. Another objective is to decipher regions of
severe localization of the deformation. Since the
width of these regions is controlled by, among other
factors, the thermal conductivity, it is necessary to
include the effects of heat conduction in the problem.
Nearly all of the commercially available codes (e.g.
see [10]) neglect the effect of heat conduction and
regard the temperature within an element to be
uniform. When the deforming region is rezoned and
values of temperature, etc. are computed at the newly
created nodes, excessive diffusion out of the com-
puted temperature field results, since temperatures at
the element centroids are originally computed in the
code. These problems have been alleviated in the code
developed to analyze the present problem, since we
include the effects of heat conduction and regard
temperature as a field variable and compute its values
at the node points. Also, the code uses an algorithm
developed by Batra and Ko [24] to refine the mesh
whenever an interior angle of a triangular element
becomes less than 157, or the ratio of its altitude to
the base is less than 0.12. The newly generated mesh
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is very fine near the target/penetrator interface, where
severe deformations of the target occur, and gradu-
ally becomes coarser as one moves away from it. The
size of the largest and the smallest element can be
controlled by adjusting the input variables. We em-
ploy the full integration rule and do not include
artificial viscosity.

The computed depth of penetration for the 16 tests
described by Forrestal et al. [13] has been found to
match well with that determined experimentally.
Also, the temperature of target particles adjacent to
the target/penetrator interface was close to the melt-
ing temperature of the material, which at least par-
tially explains the microstructural changes reported
by Forrestal et a/. in a thin layer of the target material
adjoining the tunnel surface. The computed depth of
penetration decreases with an increase in the values
of the strain-hardening and strain-rate hardening
exponents.

2. FORMULATION OF THE PROBLEM

We study a penetration problem in which a rigid
cylindrical hemispherical-nosed penetrator impacts a
deformable target at normal incidence and assume
that the deformations of the target are axisymmetric.
We use a fixed set of cylindrical coordinates with the
z-axis coincident with the axis of symmetry of defor-
mations and pointing into the target and the origin at
the top surface of the undeformed target. In the
referential description, equations governing the ther-
momechanical deformations of the target are

(pJ)" =0, 1
po¥=DivT, 2
poé = —Div Q + tr(TF7), ©)
where
J=detF, F=Gradx, 4

x is the present position of a material particle that
occupied place X in the reference configuration, p its
present mass density, p, its mass density in the
reference configuration, v the present velocity of a
material particle, T the first Piola-Kirchhoff stress
tensor, e the specific internal energy, Q the heat flux
per unit reference area, a superimposed dot indicates
the material time derivative and operators Grad and
Div signify the gradient and divergence of field
quantities defined in the reference configuration. The
balance laws (1)—3) are supplemented by the follow-
ing constitutive relations.
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Here @ is the Cauchy stress tensor, g, the yield stress
of the target material in a quasistatic simple tension
or compression test, ¥, the strain at yield, n the
strain-hardening exponent, v the coefficient of ther-
mal softening, 6 the temperature rise of a material
particle, p the present mass density of a material
particle whose mass density in the reference configur-
ation is p,, e is the specific internal energy, k the
thermal conductivity and ¢ the specific heat. The
internal variable { may be associated with an
equivalent plastic strain; its evolution is given by eqn
(17). Equation (11) is the Mie—Gruniesen equation of
state.

Batra and Jayachandran [14] used three constitu-
tive relations, namely, (5) with (¥ /yy,)" in eqns (7) and
(17) replaced by (14 ¥ /¢,)", the Bodner-Partom
flow rule [15] and that proposed by Brown, Kim and
Anand [16]. They calibrated the three flow rules
against a hypothetical simple compression test per-
formed at a nominal strain-rate of 3300 sec™' and
found that each predicted essentially identical re-
sponse of the target being deformed by a fast-moving
rigid hemispherical-nosed penetrator. We note that
these three constitutive relations model the effect of
strain-hardening, strain-rate hardening and thermal
softening in different ways. Thus the macroscopic
effects of deformation seem less sensitive to the way
in which strain-hardening, strain-rate hardening and
thermal softening are modeled in the constitutive
relation.

Since the hemispherical-nosed penetrator is being
modeled as a rigid body and its motion is along
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the z-axis, its equation of motion can be written
as

My, = —2nr} jn-an sin 2¢ d¢, (13)

where n is an outward unit normal at a point on the
target surface abutting the penetrator nose, M is the
mass of the penetrator, r, its radius and ¢ is the
angular position, measured counter-clockwise from
the vertical centroidal axis, of a point on the pen-
etrator nose. The rigid motion of the penetrator and
the deformations of the target are coupled through
eqn (18) and the boundary conditions at the common
interface between the two. Recalling that the
target/penetrator interface is taken to be smooth, the
penetrator experiences the resistance force because of
normal tractions acting on its hemispherical nose.
Thus, the integration in eqn (18) is only for those
values of ¢ between 0 and = /2 for which points on the
nose surface are in contact with the deforming target
region.

For the finite target region ABCDEFA, shown in
Fig. 1, we impose the following boundary conditions:

on=0, (19)
qn=~h(6-0,) (20)
on FED,
6,.=0, (21)
B C
TARGET
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Fig. 1. A schematic sketch of the problem studied.
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v, =0, (22)
q,=0, (23)
on the axis of symmetry AB,
q'n=0, (24)
an=0 (25)

at a point on AF where the penetrator surface is not
in contact with the deforming target region,

qn=0, (26)
[ven]=0, 27
eon=0 (28)

at points on AF where the penetrator and target
surfaces are in contact with each other and

on=0, (29)

gn=20 (30)
on the bounding surfaces BC and CD.

Here q is the heat flux measured per unit area in the
present configuration, @, is the room temperature, A
the heat transfer coefficient between the target ma-
terial and the air, [ /] in (27) indicates the jump of f
across the target/penetrator interface and e is a unit
vector tangent to the target/penetrator interface.
Boundary conditions (21)—+23) follow from the pre-
sumed symmetry of deformations, (27) states that
there is no inter-penetration of the target material
into the penetrator and vice versa, and (28) is equiv-
alent to the statement that the target/penetrator
interface is smooth. The boundary conditions (29)
and (30) are justified, since these surfaces are far away
from the penetrator/target interface.

We assume that the target is initially at rest, is
stress-free, has a uniform mass density p, and a
uniform temperature 8,. The initial velocity of the
rigid penetrator is z, in the positive z-direction and,
at time ¢ = 0, it just impacts the top surface of the
target at normal incidence.

The problem formulated above is highly nonlinear
and too complicated to solve analytically. Therefore,
we seek its approximate solution by the finite element
method.

3. COMMENTS ON COMPUTATIONAL ASPECTS
OF THE PROBLEM

Substitution for T, Q and e from eqns (5)—(17) into
eqns (1)—(4) results in coupled nonlinear partial
differential equations which, with prescribed initial
conditions and boundary conditions, are to be solved
for p, v, ¥ and 6. One also needs to account for the
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interaction between the rigid penetrator and the
deformable target. We use the updated Lagrangian
formulation [17] of the problem to get its approxi-
mate solution. That is, in order to find the fields of
p, v and 8 in the body at time ¢ + A¢, the configur-
ation of the body at time ¢ is taken as the reference
configuration. The governing nonlinear partial differ-
ential equations are first reduced to a set of coupled
nonlinear ordinary differential equations by using
the Galerkin approximation [17], the lumped mass
matrix obtained by the row-sum technique and
three quadrature points are used to numerically
integrate various quantities over an element. These
equations are integrated with respect to time ¢ by
using the forward difference method, which for linear
problems is explicit and conditionally stable. Since
we have considered only volumetric elastic strains,
the bulk wave speed is used to compute the time
step size. Additional restrictions on it are imposed
by the slide line algorithm used to account for
the contact conditions at the target/penetrator inter-
face.

After every time increment, the coordinates of
node points are updated and elements in the finite
element mesh are checked for excessive distortion.
If either one of the interior angles of a triangular
element is less than 157, or the ratio of its altitude to
the base is less than 0.12, then the element is con-
sidered to have been severely distorted, and the mesh
is refined so that finer elements are generated in the
region adjoining the target/penetrator interface and
the element size increases gradually as one moves
away from this surface. Additional restrictions im-
posed on the element size when generating the new
mesh are that an altitude of any triangular element
will not be less than 0.25r, or greater than r,, where
ro equals the radius of the cylindrical part of the
penetrator. The values of the nodal variables at the
newly generated nodes are obtained by first determin-
ing to which element in the old mesh the node belongs
and then by interpolating from the values at the
nodes of that element.

The mechanical boundary conditions (25), (27) and
(28) on the target/penetrator interface AF in Fig. 1
are accounted for by using the slide line algorithm
described by Hallquist et a/. [18]. We regard the rigid
penetrator surface as the master surface and the
adjoining surface of the deformable target as the slave
surface, naming nodes on it and elements sharing at
least one side with the penetrator surface as slave
nodes and slave eclements, respectively. After each
time increment, we find the normal acceleration of
each slave node relative to the master surface. If this
relative normal acceleration points away from the
master surface, the node is released and is assumed
not to be in contact with the master surface during
the next time step. However, if the relative normal
acceleration of a slave node is towards the master
surface and its distance from the master surface is less
than a preassigned small number, the slave node is
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taken to be on the master surface during the sub-
sequent computations.

4. NUMERICAL RESULTS AND DISCUSSION

We have developed a computer code based on the
above stated formulation of the problem, and used it
to simulate the penetration tests described by Forre-
stal ef al.[13]. They also gave the stress-strain curve
for the 6061-T651 aluminum target material de-
formed essentially quasistatically in simple com-
pression. At high strain rates, that are likely to occur
at points adjoining the target/penetrator interface,
most metals exhibit strain-rate hardening and ther-
mal softening [19]. Here we take the following values
of material parameters.

n =0.051,

6, = 276 MPa, Wy = 0.004,

b=10,000sec, m =0.01,

v =0.00153/°C, p,=2710kg/m’,
¢, =5041m/s, s=1420, I' =20,
k=120 W/m/°C, ¢ =2875]J/kg/°C,

0,=22°C, h =20W/m¥°C. 31

60.76 1,

L—21.37r0———

Fig. 2. A typical finite target region analyzed and its
discretization into finite elements.
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For these values of material parameters, the
stress—strain curve in a quasistatic compression test
mimics well that given by Forrestal er al.[13]
for aluminum. Here we also study the effect of
different values of m and » on the penetration
process.

In the ballistic experiments of Forrestal et al. [13],
a 20 mm smooth-bore powder gun launched T-200
maraging steel hemispherical nosed cylindrical rods,
impacting 6061-T651 aluminum targets at normal
incidence. They observed that the major penetration
mechanism was ductile hole growth and their post-
test observations revealed that penetrators remained
essentially undeformed. Thus, it is reasonable to
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regard the penetrator as a rigid body and our model
should simulate their tests well.

Preliminary computations for a few test conditions
indicated that a thin layer of the target material
adjoining the target/penetrator interface melted be-
fore the penetration process was completed. Accord-
ing to our constitutive hypotheses (5) and (7), when
0 = 1/v = melting temperature of the material, u =0
and the material behaves like an ideal fluid and
cannot support any shear stresses. Thus, it can un-
dergo unlimited shearing deformations with the ap-
plication of very little shearing force and the finite
element mesh in a small region abutting the
target/penetrator interface will get severely distorted

computed result
I QO experimental value
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T 200
c
1]
o
K]
£
o 150
S !
|
=
a !
%)
O 1.00
c
L
S
°
=4
& 050
0.00 i i " i 1 i 4 n i | i i . i L i i " " i
0.20 0.40 0.60 0.80 1.00
Impact velocity (km/s)
(b) 2.50 -
computed result
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Fig. 3. Normalized penetration depth vs the impact speed. (a) Penetrator radius r, =2.54 mm. (b)
Penetrator radius ry= 3.555 mm.
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in virtually no time. To alleviate this problem, for
0 > 0.9550,,, eqn (7) was modified to:

0.045 [y \"
2 =— (XN b1y, £9)
M \/51(%)( + bl (32)

where 6,, is the melting temperature of the target
material. We note that previous numerical simu-
lations of similar tests, involving conical-nosed pen-
etrators by Chen[20] and the engineering model
proposed by Forrestal et al. [13], do not consider the
thermal softening of the material.

Figure 2 shows the target region for one of the tests
conducted by Forrestal ef al.; its initial discretization
into finite elements is also depicted. The initial mesh

consisted of 2810 three-noded triangular elements
and had 1488 nodes; for other domains the number
of elements and nodes was suitably changed. During
the course of computations, the mesh was refined so
as to concentrate fine elements within the intensely
deforming region and coarse elements elsewhere.
Thus, the number of nodes and elements in the mesh
kept on changing with time.

Figure 3 provides a comparison of the computed
depth of penetration with that found experimentally
for two different penetrator radii of 2.54 mm and
3.555mm. The curves depict the computed pen-
etration depth normalized by the penetrator length vs
the impact speed and reveal that the computed
penetration depth matches well with that found ex-
perimentally for low impact speeds, but the two differ

(a)

(b)

D> K
IR 55
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0 <K
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ol s
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<K K <> >
RRSISRISRPK
RRSRERIERSS)
SRR
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Fig. 4(a) and (b)—Continued opposite.
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(©)

(d)

Fig. 4. Tunnel shapes when the penetrator speed has been reduced to 0.854, 0.583, 0.395 and 0.002 times
the initial impact speed of 1.009 km/s.

for higher values of the impact speed. Some of the
reasons for this discrepancy are:

(i) frictional force at the target/penetrator inter-
face;

(ii) dependence of material properties of the target
upon the temperature rise;

(iii) blunting of the penetrator nose at higher impact
speeds;

(iv) smoothing out of the computed fields after every
mesh refinement; and

(v) support conditions at the back surface of the
target.

Precautions were taken to minimize the last effect.
Also, dynamic effects such as recovery and recrystal-
lization have been neglected.

We note that the test data for the range of tempera-
tures, strains and strain-rates encountered in a typical
penetration process is not available in the open
literature. In the tests and hence in our simulations,
the target length equalled four to five times the
penetration depth for low impact speeds and only
twice the penetration depth for higher speeds. Thus,
support conditions at the back surface may affect
more the penetration depth at high impact speeds
than at low speeds. We took the back surface to be
traction-free in every case.

Chen [20] numerically simulated the perforation
and penetration tests of Forrestal ez a/. [21] involving
conical-nosed penetrators by using the Lagrangian
computer code PRONTO2D. He assumed the exist-
ence of a tiny hole along the axis of symmetry,
modeled the target material as elastic linearly strain
hardening, presumed Coulomb’s friction with a con-
stant coefficient of friction and assigned to it the value
0.1. His computed depth of penetration matched well
with that found experimentally for low speeds of

impact, but was lower than the test value for higher
impact speeds. A reason for his under-predicting the
penetration depth and our over-predicting it for high
impact speeds is that we account for thermal soften-
ing of the material and he does not. The softening of
the target material reduces the resistance it offers to
the penetrator and thus results in penetration depth
larger than that which would be obtained if the
material did not thermally soften. At low impact
speeds, the rise in temperature of the target material
is small and does not significantly affect the pen-
etration depth. Chen’s consideration of frictional
force at the target/penetrator interface should some-
what reduce the computed depth of penetration.
Neither we nor Chen [20] incorporated any failure
criterion into the problem formulation. However, our
assumption that the material strength becomes mi-
nuscule once its temperature has risen to 95.5% of the

Fig. 5. Velocity distribution in the deforming target region
when the penetrator speed equals 0.395 times its striking
speed.
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melting temperature [cf. eqn. (32)] tacitly accounts for
the failure of the material.

The geometry of the tunnel produced in the target
when the penetrator of radius 3.555mm and mass
23.32 g impacts the target at normal incidence at a
speed of 1.009 km/sec is shown in Fig. 4(a)~(d) at
four instants of the penetration process. The finite
element meshes being used to analyze the target
deformations at these instants are also shown in these
figures; a blow-up of the mesh around the penetrator
nose for the configuration of Fig. 4(b) indicates
the relative size of elements in the dark regions of
the figures. We note that the tunnel shape near the

(a)
Leve! temp
7 B
6 6
5 4
4 2
3 1
2 0.5
1 0.2
(b)

Nondimensional Temperature at the Nose Tip
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entrance region stays unaltered during the time the
penetrator speed decreases from 0.854 to 0.002 times
the initial striking speed. A close examination of the
values of the second invariant of the deviatoric
strain-rate tensor at the element centroids reveals that
the target material within, at most, two penetrator
diameters of the penetrator nose and one penetrator
radius of the remaining target/penetrator interface is
deforming severely. Computed results at other in-
stants of the penetration process indicate that the size
of the severely deforming target region ahead of the
penetrator nose increases with time, until the pen-
etrator speed has decreased to approximately 0.44

) v,=1008 m/s
[ v,=673 m/s ;
25 i ———=V,=430 m/s
3
0. L Il - )
2 10 20 30 40 S0
0.0 - L s P L FIPI B e
0 50 100 150 200 250 300 350
Time (us)

Fig. 6. (a) Contours of the nondimensional temperature rise in the deforming target region when the
penetrator speed has been reduced to 43.54% of its initial value of 1.009 km/sec. (b) History of the
evolution of the temperature rise at the stagnation point for three different impact speeds.
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Fig. 7. Contours of the nondimensional hydrostatic pressure in the deforming target region when the
penetrator speed equals 39.5% of its initial value.

times the initial impact speed, and subsequently
decreases and becomes minuscule at a penetrator
speed of 0.003 times its initial speed.

The velocity of target particles when the penetrator
speed has been reduced to 39.5% of its striking speed
is shown in Fig. S. It is clear that the speed of target
particies decreases sharply as one moves away from
the target/penetrator interface. Target particles ahead
of the penetrator nose have higher speeds than those
near its lateral surfaces.

In Fig. 6(a) we have plotted contours of the
temperature rise 6 in the deforming target region

when the penetrator has been slowed down to 39.5%
of its initial impact speed. The temperature rise at a
material point is indicative of its accumulated plastic
deformation. The nondimensional temperature is to
be multiplied by 116.4°C to obtain the corresponding
dimensional value. These temperature contours
suggest that the temperature of target particles ad-
joining the target/penctrator interface has become
close to the melting temperature of the material and
only the aforestated thin layer of the target material
has undergone severe plastic deformations. This ex-
plains, at least partially, the observation reported by

Level strai
A 7
9 5
8 3 i
7 1
6 05
5 0.2
4 0.1
3 0.05
2 0.01
1 0.002

Fig. 8. Contours of the plastic strain in the deforming target region when the penetrator speed equals
39.5% of its initial value of 1.009 km/sec.
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Forrestal er al. [13] that a thin layer of the target
material normal to the target/penetrator interface
underwent microstructural changes. From the spac-
ing between the contours of the temperature rise, one
can estimate the temperature gradient along the
normal to the contours. The temperature gradient, at
points on the target/penetrator interface and perpen-
dicular to it, is quite sharp at points in the vicinity of
the penetrator nose and drops off significantly as one
moves away from the penetrator nose. The time
history of the evolution of the temperature of the
target particle situated at the penetrator nose tip or
the stagnation point, for three different values of the
striking speed, is given in Fig. 6(b). The temperature
rises sharply in the first few microseconds following
the impact and slowly after that because of the lower

value of the plastic working needed to deform the
material softened by the earlier increase in its tem-
perature. Due to the short duration of the penetration
process, the heat lost by conduction is negligible and,
because of the high speeds of target particles in the
severely deforming region, most of the heat trans-
ferred is by convection. As expected, higher striking
speeds result in a larger temperature rise of the target
particle situated at the nose tip.

The contours of the nondimensional hydrostatic
pressure when the penetrator speed equals 0.395
times the initial impact speed of 1009 m/s are plotted
in Fig. 7. Peak values, in excess of nine times the yield
stress of the target material in a quasistatic simple
compression test, of the hydrostatic pressure occur in
a small region around the penetrator nose tip. Along
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Fig. 9—Continued opposite.
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Fig. 9. Histories of the depth of the penetrator nose tip, penetrator speed, resisting force acting on the
penetrator and of the second invariant 7 of the strain-rate tensor at the target particle adjoining the
penetrator nose tip for three different values of the striking speed of the penetrator.

any radial line, the pressure drops off rapidly at target
particles near the penetrator nose and the rate of drop
of the pressure decreases slowly as one moves away
from the penetrator nose. For the steady state
axisymmetric deformations of a thermoviscoplastic
target being penetrated by a rigid ellipsoidal nosed
cylindrical rod studied by Batra [22], the peak value
of the nondimensional hydrostatic pressure at the
penetrator nose tip equalled 11 for o = pvi/e, = 1.0.
Batra and Wright [23] found that the axial resisting
force experienced by the penetrator and hence p
depends weakly upon o. We note that immediately
after the impact, the peak hydrostatic pressure near
the nose tip exceeded 30 times the yield stress of the
target material in a quasistatic simple compression
test.

The contours of the internal variable y at the
instant when the penetrator speed has been reduced
to 0.395v, for v, = 1.009 km/sec plotted in Fig. 8,
indicate that more of the target material on the sides
of the target/penetrator interface than ahead of it has
been severely deformed. We recall that  can also be
interpreted as the equivalent plastic strain, since its
rate of evolution is a linear function of the plastic
working. The occurrence of 700% plastic strains
at target particles adjacent to the target/penetrator
interface lend credence to our assumption of not
incorporating elastic shear strains in the problem
formulation. It is unlikely that target particles can
withstand such high plastic strains without fractur-
ing. Our consideration of the thermal softening of the
material accounts at least partially for the loss of the
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material strength, since severely deformed material
particles are also heated up significantly.

The results presented above, except for the history
of the evolution of the temperature at the target
particle adjoining the penetrator nose tip, are for a
fixed value of the striking speed of the penetrator.
Figure 9 exhibits histories of the depth of the pen-
etrator nose tip, its speed nondimensionalized with
respect to the striking speed, the nondimensional
resisting force experienced by the penetrator, and of
the second invariant I of the strain-rate tensor at the
target particle abutting the penetrator nose tip. The
considerably higher values of I during the first micro-
second after impact indicate that most severe defor-
mations of the target particle occur during that time
and the peak value of 7 equals 1.1 x 10°s. However,
one or so microseconds after the impact, the second
invariant 7 at the target particle adjoining the nose tip
drops to nearly one-half of its peak value and then
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gradually decreases to zero. A plot of the history of
the hydrostatic pressure at the stagnation point re-
vealed that the pressure, like the axial resisting force
R, experienced by the penetrator and not shown
herein, exhibited oscillatory behavior, the amplitude
of the oscillations was somewhat more than that for
R,. In numerical work, these oscillations are usually
attributed to the improper choice of the time step size
and/or the finite element mesh employed and are
sometimes eliminated by introducing artificial vis-
cosity into the problem and/or averaging the consecu-
tive maximum and minimum values and assigning the
average value to the midpoint of their time interval.
Our reducing Ar to one-half of its value did alleviate
the problem somewhat, but the computation time
increased enormously. We did not experiment with
the introduction of the artificial viscosity since there
are dissipative mechanisms due to plastic working
and heat conduction included in the problem formu-
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lation. The averaging technique outlined above does
result in a smooth variation of R,.

The effect of the values of the work-hardening
exponent # and the strain-rate hardening exponent m
upon the penetration depth, and histories of the
distance of the penetrator nose tip from the top
surface of the undeformed penetrator, axial resisting
force acting on the penetrator, temperature rise of a
target particle adjoining the penetrator nose tip,
and the speed of the penetrator are depicted in
Fig. 10(a)-(e), and Fig. 11(a)(e), respectively. Re-
sults exhibited therein are for a penetrator of mass
23 g impacting the target with a speed of 673 m/sec.
We note that values of other parameters were kept
fixed when m or n were varied. As expected, higher
values of m and n reduce the penetration deoth.
Higher values of m or n enhance the effective stress
required to deform the material plastically at a given
value of the plastic strain-rate or plastic strain,
respectively, and result in larger values of the axial

260 |-
(a)
24.0
22.0

20.0

18.0

Penetration Depth / Radius of Penetrator

140k L

Xingju Chen and R. C. Batra

resisting force acting on the penetrator. It will en-
hance the incremental plastic work done and heat
generated, which will soften the material further.
Thus the effect of changing one material parameter
manifests itself through varying degrees of change in
other effects.

5. CONCLUSIONS

We have studied axisymmetric thermomechanical
deformations of a semi-infinite target impacted at
normal incidence by a fast-moving, hemispherical
nosed, rigid, cylindrical rod. The target material
has been presumed to exhibit thermal softening,
strain-hardening and strain-rate hardening. The
target/penetrator interface has been taken to be
smooth and contact conditions thereon have been
accounted for by using the slideline algorithm of
Hallquist ez al. [18]. The nonlinear coupled ordinary
differential equations, obtained by the Galerkin
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approximation of the partial differential equations
governing the thermomechanical deformations of the
target material, have been integrated with respect to
time ¢ by using the forward difference method.

Sixteen tests involving the penetration of hemi-
spherical nosed steel rods into aluminum targets
reported by Forrestal ef al. [13] have been simulated.
The computed penetration depth has been found to
correlate very well with the test results for low speeds
of impact but exceeds that observed experimentally
for high impact speeds. We note that Chen {20], who
did not consider thermal softening and strain-rate
hardening of the target material but accounted for the
frictional force at the target/penetrator interface,
under-predicted the penetration depth at higher im-
pact speeds. Both these investigations assumed that
material parameters are temperature independent.
We found that a thin layer of the target material
adjoining the target/penetrator interface melted and
the temperature rise at other target particles was also
significant. This melted target layer lends credence to
the microstructural changes observed by Forrestal es
al. [13] in the similarly situated target material. Some
plausible reasons for the discrepancy between the
computed penetration depth and test findings for
higher impact speeds have been stated in the text and
the effect of each remains to be investigated.

The computed results reveal that plastic defor-
mations of the target material spread further to the
sides of the target/penetrator interface than ahead of
the penetrator nose. Higher values of the strain
hardening exponent and strain-rate hardening expo-
nent reduce the depth of penetration.
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