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Abstract-We propose a four-stage model of the penetration/perforation by hemispherical-nosed rigid 
cylindrical rods into targets whose materials exhibit strain-hardening effects. During each stage of the 
penetration process, a kinematically admissible velocity field involving one or more unknown parameters 
is assumed. These parameters are determined by minimizing the rate of plastic dissipation. From this 
velocity field, the incremental deformations of the target, the penetration depth, the resisting force acting 
on the penetrator and hence its deceleration are evaluated. We propose a criterion for the formation and 
ejection of the cylindrical plug in the target and use it to study problems involving the perforation of the 
target. Computed results for the exit speed of the penetrator and, when the targets are not perforated, 
of the penetration depth are found to match well with the corresponding test values. 

1. INTRODUCTION 

One way to analyze an impact problem is to seek a 
solution of the dynamic equations expressing the 
balance of mass, linear momentum and internal 
energy subject to suitable initial and boundary con- 
ditions. However, this technique, while furnishing 
details of the deformation fields in the penetrator and 
the target, is computationally very expensive. When 
one is interested in gross effects such as the pen- 
etration depth, exit speed of the rod impacting at 
normal incidence a metallic plate and the time history 
of the speed of the rod, then one can use an approxi- 
mate method to obtain reliable solutions with con- 
siderably less computational resources. Ravid and 
Bodner [l] proposed a five-stage model for the perfor- 
ation of viscoplastic plates by flat-ended rigid projec- 
tiles. In each stage of deformation, a kinematically 
admissible velocity field containing some unknown 
parameters is presumed. These parameters are deter- 
mined by utilizing a modification of the upper bound 
theorem of plasticity to include dynamic effects. 

Batra and Chen [2] considered steady-state axisym- 
metric deformations of a thick viscoplastic target 
being penetrated by a fast moving long rigid cylindri- 
cal rod with a hemispherical nose. They presumed a 
kinematically admissible velocity field and deter- 
mined the values of unknown parameters in it, by 
minimizing the error in the satisfaction of the balance 
of linear momentum. The engineering models of 
Ravid and Bodner, and Batra and Chen consider 
two-dimensional deformations of the target and re- 
gard the penetrator as rigid. The earlier models 

proposed by Birkhoff et al. [3] and Pack and Evans [4] 
used either the Bernoulli equation or its modification 
to describe the hypervelocity impact and are one- 
dimensional. At ordnance speeds (0.5-2 km SK’) the 
material strength becomes an important parameter. 
Allen and Rogers [5], Alekseevskii [6] and Tate [7,8] 
have incorporated the flow strength as a resistive 
pressure in the modified Bernoulli equation. These 
resistive pressures are empirically determined quan- 
tities and the predicted results depend strongly upon 
the assumed values of these parameters. 

Here we generalize the engineering model of Ravid 
and Bodner in two respects, namely, to hemispherical 
nosed penetrators and also to very thick targets for 
which the penetrator comes to rest without perforat- 
ing the target. However, the model is simpler in the 
sense that the entire deformation process is divided 
into four stages. The first stage corresponds to the 
case when the penetration depth is less than or equal 
to the radius R, of the penetrator; the second stage 
to the case when the penetration depth is between R, 

and 2R,. The velocity field assumed during the third 
stage simulates the target deformations when there is 
no bulge formed at the rear surface. During the 
fourth and final stage, a cylindrical plug develops 
ahead of the projectile and is assumed to eject out of 
the target when the bulge radius reaches a pre- 
assigned value. Ideally, one should incorporate a 
failure criterion based on a material property such as 
the fracture toughness. However, the computation of 
any such property during the penetration process is 
nearly impossible. For a given projectile diameter, its 
length, mass density, impact speed, and mechanical 
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properties, mass density and thickness of the target, 
we can determine the time-histories of the penetrator 
speed, its location, the resisting force acting on it, and 
also the time-history of the state of deformation of a 
target particle, the rear surface bulge and the plug 
shape. If the target is thin enough or the impact speed 
is large enough for the target to be perforated, the 
analysis gives the exit speed of the projectile and the 
plug. The computed values of the penetration depths 
for thick targets and the exit speed of the projectile 
for perforated targets are found to match very well 
with the experimental values. 

2. FORMULATION OF THE PROBLEM 

We study the penetration/perforation of a vis- 
coplastic target by a fast moving rigid cylindrical rod 
impacting at normal incidence the flat surface of the 
target. We assume that the target is a prismatic body 
of uniform cross-section and undergoes axisymmetric 
deformations, and neglect the effect of body forces on 
the deformations of the target. Instead of attempting 
to solve the dynamic equations expressing the balance 
of mass and the balance of linear momentum sub- 
jected to suitable initial and boundary conditions, we 
follow Ravid and Bodner [l] and assume a kinemati- 
tally admissible velocity field most appropriate for 
the dominant deformation mechanism prevailing at 
that time. The presumed velocity field also satisfies 
compatibility conditions at the interface between the 
deforming and undeforming regions. Since the pen- 
etrator is being taken as rigid, its action on the target 
is modeled by regarding the impact force it exerts on 
the target as an external force. 

The dissipation work rate, I&t, equals the sum of 
three terms, ri/v the working necessary to deform the 
material plastically, tis the working of forces at the 
interface between the deforming and the undeforming 
target regions, and @‘r the working of frictional forces 
at the target/penetrator interface. For every value of 
time t during each stage of deformation, the undeter- 
mined parameter in the presumed velocity field is 
found by minimizing w,. As pointed out by Ravid 
and Bodner [I] who also minimized a,, this can be 
motivated on the basis of Martin’s [9] theorem on 
acceleration fields which states that the rate of work 
of the inertial force based on an assumed acceleration 
field would be an upper bound on the actual one. 

Neglecting infinitesimal elastic deformations, the 
total rate of work required to deform the material 
plastically is given by 

WV = s ai,D, dR = (0, ),,i$O,, (1) 
9, 

where 

(2) 

is the average effective plastic strain-rate over the 
region R,, (a,,), is the strain-dependent flow stress 
corresponding to the strain t;rr, u,, is the Cauchy 
stress tensor and D, is the strain-rate tensor. Note 
that (a,),, is uniform throughout the region Q, and 
corresponds to the value of the average strain in the 
region Q,. The dependence of oJ upon the effective 
strain is modeled as 

aY = A + ,(,,a),, 

where A is the yield stress for the target material in 
a quasistatic simple tension or compression test, B is 
the strain-hardening coefficient and n is the strain- 
hardening exponent. The work reported herein can 
easily be generalized to include the dependence of av 
upon the average effective plastic strain-rate, and 
other forms of dependence of a_” upon the effective 
plastic strain. 

At the boundary, S,,,, between different regions, 
the tangential velocity may be discontinuous. Hence 
the working, R’S, of forces acting on S,,, can be 
approximated by 

where AL’, is the difference in the tangential velocity 
of material particles across S,, and (a,),,, equals the 
minimum value of the average flow stress for the 
regions adjoining S,,,. The index m in eqn (4) ranges 
over all interfaces separating different regions. 

The rate, I@r, of work done by frictional forces at 
the target/penetrator interface is given by 

where p is the coefficient of friction, 5r is the average 
flow stress for material particles on Sr, and A Vr equals 
the difference in the tangential velocities of the abut- 
ting target and penetrator particles at the contact 
surface. 

In order to delineate the relation between I@“, ci/,, 
I@r and the conditions at the impact surface, we start 
with the balance of linear momentum for the target, 
viz., 

Pr v, = *,,., ( (6) 

where p, is the mass-density of a target particle, v, its 
velocity in an inertial frame, a superimposed dot 
indicates the material time derivative, and a comma 
followed by index j signifies partial differentiation 
with respect to x,. Taking the inner product of eqn (6) 
with vi, integrating the result over the deforming 
target region, and using the divergence theorem, we 
arrive at 

~~v,dS=~*a,,D,,dn+~~p,u,I),dn, (7) 
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where f; = eijnj equals the surface tractions acting at 
a point on the bounding surface S of R. 

Recalling that 

au. au. 
&=-L+Lvj, 

at axj 

we have 

=FPd+ Wk. (‘0) 

The working Bfr, of inertia forces of the projectile of 
mass mP moving with the instantaneous speed VP can 
be written as 

lPP=~PV&,. (11) 

Since VP and I’,, are collinear and point in opposite 
directions, pr, is negative. Thus 

s f;v,dS = -ci/,- @r- ps, (12) 
s 

which when combined with eqns (7) and (1) gives 

-l&= lVr+ lVs+ lQ”+ lV*+ lPk= lP,+ lPd+ l@k. 

(13) 

Equation (13) is the energy-rate balance for the 
complete system. 

3. ANALYSIS OF TARGET’S DEFORMATIONS 

3.1. Stage 1. Penetration depth less than or equal to 
the penetrator radius 

Upon impact the target material deforms and there 
is a small lip region formed. The finite element 
solution of such problems by Batra and Chen [lo] and 
Chen and Batra [1 1] suggests that in the deforming 
region Z of target (cf. Fig. 1), the velocity field in 
spherical coordinates (p. 0,4) can be written as 

v0 = VP sin f3 
[ 

- 1 + && -$)I. (‘3b) 

Here the radial coordinate p has been nondimen- 
sional&d by the penetrator radius &, VP is the 
current axial speed of the penetrator and the par- 
ameter r~ is to be determined by minimizing the total 
dissipation rate. The velocity field given by eqn (13) 

satisfies the continuity of the normal component of 
velocity at the target-penetrator interface and also at 
the boundary between the deforming and undeform- 
ing target regions. We are not aware of any public 
domain publication that lists the experimentally de- 
termined velocity field in the deforming penetrator 
region. For the velocity field given by eqn (13) 
div v = 0 and hence the mass density of the target 
material stays unchanged. Using 2D = grad v + 
(grad v)*, we can compute the components of the 
strain-rate tensor which when substituted in eqns (1) 
and (2) result in the following: 

x [c(p) + a(p)cos2 O]‘/‘sin 0 d0 dp, (14a) 

where 

W) 

3 12 31 30 9 
a(p)=---+,-T+P. 

2 P P 
(14c) 

We note that the size of 0, and therefore values of 
angles 0, and 8, in Fig. 1 vary with time t. Expressions 
for tid, wk, F&‘r etc. are given in the following 
subsection. 

3.2. Stage 2. Penetration depth between R,, and 2R,, 

This stage will develop shortly after initial impact 
and is characterized by continuously growing plastic 
zones surrounding the projectile. We presume that 
the deforming target region can be divided approxi- 
mately into two distinct regions; region I which is 
undergoing severe plastic deformations and the ma- 
terial particles are moving both in the radial and 

Fig. 1. A schematic sketch of the penetrator position and 
deforming target region during stage I of the penetration 

process. 
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Fig. 2. A schematic sketch of the deforming target regions 
during stage 2 of the penetration process. 

circumferential directions and region II wherein the 
particles are moving essentially backwards in the 
axial direction (cf. Fig. 2). We assume that this 
mode of deformation lasts till the penetration depth 
equals 2R,. 

Because of the presumed axisymmetric defor- 
mations of the target, we use a spherical coordinate 
system (p, 0,4) with origin at the center of the 
hemispherical nose of the penetrator to describe the 
velocity field in region I and a cylindrical coordinate 
system (r, z) with the same origin to describe the 
velocity field in region II. The lengths p, r and z are 
scaled by R,. We note that the penetrator decelerates. 
Since we will be finding the instantaneous rate of 
work due to different forces and minimizing the total 
dissipation rate, the decreasing speed of the coordi- 
nate system does not introduce any additional terms 
in the expressions for F&‘r, @,,, etc. The presumed 
velocity field in region I should satisfy the following 
compatibility conditions at the interfaces. 

z’;,lp=4= 0, 

u;l,=, = v,cos 8, 

u’elP=,= -VPsin8, 

of’l,=, = 0. (15) 

Here superscripts I and II signify quantities for 
regions I and II. 

A velocity field that satisfies boundary conditions 
[eqn ,(lS)] is given by eqn (13) in region I (defined by 
1 <p <q, 0~0 <x/2) and by 

VI= y,[l -&($-&)I, (W 

v,= 0, (16b) 

in region II defined by 1 < r < q, -h < z < 0. This 
velocity field, shown in Fig. 3, satisfies div v = 0 and 
hence the mass density of the target material stays 
unchanged. I@” for region I is given by eqn (14) and 
for region II, 

with 

(17b) 

Substitution for v from eqn (13) into the ex- 
pressions for tid and I@k gives 

+;z pdpd0 1 (18b) 

for region I, and 

F+‘d=2nR&,Vpp,h -- 
[ 

1 +‘I2 

2 

+v2(3r12- l)(v + I)+ r161nv 
16(tj - l)3 

~ (18c) 
4(q - 1)4 1 

bvk = 0 (184 

3.0 - 

2.6 - : 
_..;. -. 

I, ‘: 

-l.o ” ” ” ” ” ” ” I ““I ” ” 
0.0 1.0 2.0 3.0 4.0 

Fig. 3. Distribution of the assumed velocity field in the 
deforming target region. 
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for region II. Note that the value of h as a function 
of time t is determined from the position of the 
penetrator; the small thickness of the lip region 
formed is neglected when finding h. Also, VP and r’, 
equal, respectively, the instantaneous velocity and 
acceleration of the penetrator. 

The boundary conditions [eqn (14)] imply that 
there is no relative sliding of the target material over 
the penetrator surface; thus & = 0 for the surfaces 
r = 1 and p = 1. For the surface p = q in region I, 

and for the surface r = q in region II, 

When the depth of penetration exceeds 2R,, i.e. 
h > 1 the velocity field given by eqn (13) needs to be 
modified since the target material in region II cannot 
flow backwards freely. 

3.3. Stage 3. Tunnel formation 

For penetration depths exceeding 2%) the deform- 
ing target region is again divided into regions I and 
II depicted in Fig. 2. Whereas the velocity field in 
region I is given by equations (13a, b), that in region 
II is assumed to be as follows: 

L’, = 0, (194 

-h =$ z < 0. (19b) 

The target particles can slide on the cylindrical 
portion of the penetrator. Corresponding to the 
velocity field given by eqn (19), expressions for I@“, 
pS, I&f, ri/‘, and tik for region II are given below: 

ti =2,/%cR~VP(oJ)Zh v r 
” 

3J5 s I A@) 

x [(A(r) + C(r))3’2 - (C(r))3i2] dr, (20a) 

where 

W’b) 

C(r)=i;liFz, (2Oc) 

F,=,__f- --- 1 1 

2(r7-1)2 r r” ( > (20d) 

w = nR; V&J,,h vltl - 31 
s 

3$ (‘I-11)’ 
(204 

~k=2nR:li,V,p,h~,*(f-~F,)F:rdr, (2Og) 

~~=2nR:V:p,~,~(~-~F,~rdr. (20h) 

For the velocity field given by eqn (19), div v # 0. 
The change Ap in the average mass density of the 
target material in region II from time t to time 
(t + At) is given by 

Ap = 
V,At 

R,h(q’- 1) + VDAtP” 
(21) 

3.4. Stage 4. Formation and ejection of plug 

Once the front of the plastic zone reaches the rear 
surface of the target, a spherical bulge begins to form 
on the rear surface. The target material enclosed in 
the conical region (see Fig. 4) is assumed to move as 
a rigid body with the velocity of the projectile and is 
excluded from the region I when calculating the 
dissipation rate. The velocity fields in region II and 
the remainder of region I are taken to be the same as 
those in stage 3. The bulge at the back surface grows 
as the penetrator advances to the rear of the target. 
When the diameter L (cf. Fig. 4) of the bulge equals 
2R,,, the target material enclosed in the cylinder 
ahead of the penetrator is assumed to eject out of the 
target with the velocity 

(22) 

where Vb is the speed of the pcnetrator at the instant 
L equals 2R,,, m, is the mass of the target material in 
the shaded cylindrical region in Fig. 4 and Vf its 

?RO r RO 

projectile REGON 11 
I 

\ 

Fig. 4. Plug formation and ejection during stage 4 of the 
penetration process. 
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average axial speed at this instant. Equation (22) is 
obtained by using the conservation of linear momen- 
tum. Ideally, one should base the formation of the 
plug on a certain material property such as the 
fracture toughness attaining a critical value. How- 
ever, it is not clear how to do so in the present 
problem. 

We note that for very thick targets or low impact 
speeds, stage 4 may not occur at all. Similarly for very 
thin targets, stage 2 and/or stage 3 may be absent. 

3.5. Solution procedure 

At each instant of the penetration process, bound- 
aries of regions I and II are obtained by minimizing 
the dissipation work rate. The deceleration of the 
penetrator is then computed from eqn (13) the speed 
of the penetrator is updated, the incremental and thus 
the total depth of penetration is computed. Once the 
instantaneous penetrator speed and the boundaries of 
regions I and II are known, the velocity field through- 
out the deforming region is known and one can find 
at every point of the deforming target region the 
components of the strain-rate tensor, the effective 
strain-rate and hence the effective strain, and the 
incremental displacements of target particles. Thus 
the time-history of the penetrator speed, the depth of 
penetration and the deformed shape of the target at 
any time can be determined. Also time-histories of the 
effective strain at numerous material points are com- 
puted and stored; the values of the effective plastic 
strain at other material points can be obtained by 
using an interpolation technique. Figure 5 depicts the 
deformed target region at some time during the 
penetration process. The grid lines were initially 
horizontal and vertical and were uniformly spaced. 
The shapes of the deformed quadrilateral regions 
indicate the amount of deformation caused there. It 
is evident that severe deformations occur near the 
target/penetrator interface and the most intensely 
deformed region is not near the stagnation point but 
adjoins the point on the penetrator/target interface 

Fig. 5. Deformed shape of the target at some time during 
the penetration process. 

striking speed (m/s) 

Fig. 6. A comparison of the computed exit speed with the 
test values. 

whose angular coordinate equals nearly 45”. Note 
that the grid lines are for reference only and play no 
role in the solution of the problem. Also the location 
of the severely deformed target material on the 
penetrator nose will change with time. 

4. COMPARISON OF COMPUTED AND TEST RESULTS 

We use the aforestated technique to simulate the 
impact experiments of Forrestal and Luk [12]. The 
flow stress of target material is assumed to be 
described by 

cry = (350 + 100~,,) MPa 

and the penetrator is regarded as rigid. The values 
of other material and geometric parameters used to 
compute numerical results are given below: 

p, = 2660 kg/m3, mr = 25.8 g, p = 0.07, 

R,=4.16mm, 

Thickness of the target plate = 1.27 cm. 

Since the target thickness equals 3.05R, stage 3 is 
of very little duration. As shown in Fig. 6, the 
computed exit speed of the penetrator matches very 
well with the test values. In order to compute these 
results, the time step size used was 0.1 ps. As will be 
shown below, the precise value of the coefficient of 
friction between 0.05 and 0.2 has minimal effect on 
the computed penetration depth and the resisting 
force experienced by the penetrator. 

Tests conducted by Forrestal et al. [13] involving 
deep penetration of steel rods into thick aluminum 
targets were also simulated. Depending upon the 
radius and mass of the penetrators, the tests can be 
divided into three groups: 
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Fig. 7. A comparison of the computed depth of penetration 
with the test values. 

l group 1: R, = 3.555 mm, mp = 23.4 g, 
. group 2: R, = 2.54 mm, mp = 11.8 g, 
0 group 3: & = 3.555 mm, mp = 12.1 g. 

In each case the mechanical response of the target 
material is modeled by 

CT, = (290 + loo+) MPa, 

the mass density of the target material was set equal 
to 2710 kg m-3 and the coefficient of friction at the 
sliding surfaces was set equal to 0.07. In computing 
numerical results, the time step size was taken to be 
0.1 ps. As illustrated in Fig. 7, the computed pen- 
etration depths match well with the test values. Chen 
and Batra [1 1] simulated these tests by numerically 
solving the complete set of governing equations and 
used an adaptive mesh refinement technique. Results 
computed herein match well with those of Chen and 
Batra. A difference between their work and the 

present work is that they allowed for the sliding of the 
target material on the penetrator nose surface but we 
did not. In each case the computed penetration depth 
exceeded the test values at high impact speeds. Some 
of the reasons for this difference are: (i) frictional 
force at the target/penetrator interface; (ii) blunting 
of the penetrator nose at high impact speeds; 
(iii) dependence of the material properties of the 
target upon the temperature rise; and (iv) different 
values of the target thickness relative to the pen- 
etrator length. In the tests and thus in our simu- 
lations, the target length equalled four or five times 
the penetration depth for low impact speeds and only 
twice the penetration depth for higher speeds. Thus, 
support conditions at the back surface may affect the 
penetration depth more at high impact speeds than at 
low impact speeds. We took the back surface to be 
traction free in every case. 

In order to delineate the effect of the coefficient of 
friction p on the solution of the problem, we have 
plotted in Fig. 8 for different values of p the time- 
history of the penetrator speed and the resisting force 
experienced by the penetrator for a penetrator from 
group 3 whose initial impact speed equalled 
806 m ss’. It is clear that the value of p does not affect 
much the resisting force experienced by the pentrator 
and therefore the penetration depth. This could 
partly be due to the frictional force acting on the 
cylindrical portion of the target/penetrator interface 
only during stage 3 of the penetration process. Chen 
and Batra [I 11, who accounted for the frictional force 
on all of the target/penetrator interface, found that 
the values of p between 0 and 0.12 affected noticeably 
the penetration depth but higher values of p did not 
change appreciably the computed values of pen- 
etration depth. The kink in the time-history of 
the resisting force corresponds to the change in the 
deformation pattern from stage 1 to stage 2. The 
resisting force curve agrees both qualitatively and 

0 1 
0 25 50 75 IW 

time @s) 

Fig. 8. Effect of the values of the coefficient of friction upon the time-histories of the penetration speed 
and the resisting force experienced by the penetrator. 
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0 a 

0 25 50 75 100 

time @) 

Fig. 9. Effect of the value of the strain-hardening exponent upon the time-histories of the penetration speed 
and the resisting force experienced by the penetrator. 

quantitatively with that of Chen and Batra [ 111, signi- 
fying thereby that the proposed engineering model 
yields good results. 

In an attempt to assess the effect of the value of the 
strain-hardening exponent n in eqn (3) on the solution 
of the problem, we modeled the flow stress of the 
target material by 

o! = (290 + loo(+)“) MPa. 

Figure 9 depicts the time-histories of the resisting 
force experienced by the penetrator and the pen- 
etrator speed for n = 0, 0.5 and 2.0. Higher values of 
n enhance the resisting force acting on the penetrator 
and hence decelerate it more. However, for t > 40 ps, 

the resisting force acting on the penetrator, and thus 
the deceleration of the penetrator, is unaffected by the 
value of n. 

5. CONCLUSIONS 

We have developed a four stage engineering model 
of target penetration/perforation by a hemispherical- 
nosed rigid cylindrical penetrator. During each stage 
of penetration, a kinematically admissible velocity 
field involving one or more unknown parameters is 
presumed. The values of unknown parameters are 
first determined by minimizing the dissipation work- 
rate; then the speed of the penetrator, the deformed 
shape of the target, and the deceleration of the 
penetrator are updated after each increment in time. 
A model for the formation and ejection of the plug 
is proposed and used to study the perforation of 
aluminum plates by steel cylindrical rods which are 

assumed to be rigid. The computed exit speeds of the 
projectiles for perforated plates and the computed 
penetration depths for thick targets are found to 
match very well with the corresponding test values. 
Thus the simple model proposed herein yields very 
good values of the penetration depths and the exit 
speeds of the projectile. 
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