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Abstract—We use the three-dimensional linear theory of elasticity to analyse the steady-state vibrations
of a simply-supported rectangular linear elastic laminated plate with embedded PZT layers. Some of these
PZT layers act as actuators while the remaining act as sensors. It is assumed that there is perfect bonding
between different layers. Numerical results for a thin and a thick plate containing one embedded actuator
layer and one embedded sensor layer are presented. For the former case, the optimum location of the
centroid of the excited rectangular region that will result in the maximum out-of-plane displacement for
a given distribution of the applied voltage is also determined. Equivalently, an equal and opposite voltage
applied to this region of a vibrating plate will be most effective in diminishing these vibrations. The
maximum shear stress at the interface between the sensor and the lamina is lower than that between the
actuator and the lamina. The point of maximum output voltage from the sensor coincides with that of
peak out-of-plane displacement. The variations of displacement and stress components through the

thickness for the thin and thick plates are similar.

INTRODUCTION

An interesting problem in smart structures is to
control the shape of a plate subjected to an external
disturbance with the least expenditure of energy
and/or in the least amount of time. It requires finding
the optimum shapes, number and placement of
actuators and sensors on a given plate and the design
of a robust control algorithm [1,2). This general
problem is hard to analyse, so we consider the
following problem. Assume that a simply-supported
rectangular laminated plate with thin piezoelectric
layers embedded in it is vibrating freely at a frequency
close to one of its natural freqencies. Find the
optimum location and size of the rectangular region
that should be excited with a minimum voltage
represented by a half-sinusoidal wave on the excited
region so that the motion of the plate is suppressed.
We use the three-dimensional linear theory of
elasticity to analyse this problem for the first few
modes of vibration of the plate. We also compare the
distributions of deformation fields and stresses in a
thin and a thick plate. We note that a similar problem
when PZT layers are fixed to the top and bottom
surfaces of the plate has recently been analysed by
Batra et al. [3]. However, the problem with embedded
PZT layers is more practical since insulation from
environmental effects, aesthetics and other design
considerations may necessitate that PZT layers be
embedded in the structure. Mathematically, the
problem is more challenging because of (i) the
additional effects involved in the equations of motion
for the PZT layers; and (ii) the need to solve for the
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voltage output from PZTs used as sensors. Also more
than one layer of PZT sensors and actuators can be
embedded in the plate. As before [3], the PZT layers
are modeled as thin films. Here, we also compare
results for a thin and a thick plate.

Piezoelectric elements have been extensively used
to control the vibrations of a beam, e.g. see Baz and
Poh 4], Tzou and Tseng[5], and Crawley and de
Luis {6]. Elastic plates with PZT films attached to
their surfaces have been analyzed by using approxi-
mate two-dimensional plate theories [7-11], and also
by using the three-dimensional equations of elasticity
and the method of Fourier series [12-19]. Here we use
the three-dimensional equations of linear elasticity to
study the vibrations and structural response of a
steadily vibrating simply-supported rectangular lami-
nated plate.

FORMULATION OF THE PROBLEM

Governing equations

We consider a simply-supported rectangular
laminated elastic plate of dimensions a and b in x,
and x, directions, respectively. The total thickness
of the plate made up of N layers, not necessarily
of the same thickness and including N layers of
sensors and N, layers of actuators equals 24 (Fig. 1);
the ith layer is determined by AV~" < x; < &Y, We
note that some of these layers are made of a linear
piezoelectric material while others are made of a
linear elastic material. Both sensors and actuators
are modeled as thin films [20, 21] poled in the
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x;-direction, and are assumed to be transversely
isotropic with x;-axis as the preferred direction. Each
of the elastic laminate is assumed to be made of an
orthotropic material with constitutive equations
given by

0

Tx[f 1!) ﬂel

2, B,7,0=1,23,

e

(u(n m )/2 (l)

I

Here 1,4 is the Cauchy stress tensor, c,zs the material
elasticity tensor, e, the infinitesimal strain tensor, u,
the displacement of a point, .5 = du, /éx;, a repeated
index implies summation over the range of the index,
and a superscript / in parentheses indicates quantities
for the ith layer. Henceforth we drop the superscript
i unless it is needed for clarity.

For an elastic laminate, governing equations in
terms of displacement u are

il + cdul, + il + (e + cuh
+(C“) (l))u{")n = \z)atlih
(C“) (n)utll)lj (l)u(l) + («gz)u(zl,)zz + L(:)u(v)u
+(L(l) lll)ullb = p(l)u(l)
(((') lli)ulll)” + (C(') lli)ul’l)71 lSIS'uU)”

+ iy + iy = pi

where a superimposed dot indicates material time
derivative which for infinitesimal deformations
reduces to partial time derivative, and ¢, are the
material elasticities when 7,5 and e,; are written as
six-dimensional vectors. The boundary conditions at
the simply-supported edges, when the plate is viewed
as a three-dimensional body, are

) = ul + udh + cudy = 0,
=0 u'=0 at x,=0, a
/ .
X3
h=p™
hN-1 2h
%
o))
() b
~h=h®

a
Fig. 1. A schematic sketch of the problem studied.

8 = cful + B + cQudy =0,

=0, u’'=0 at x,=0, b. )
These simulate a simply-supported edge character-
ized by the vanishing of the deflection and the
bending moment there, and have been used by
Srinivas ez al. [15], Wittrick [16], and Yang et a/. [18].

At the interface x; = A" between the ith and the
(i+ th layers, coherency conditions, i.e. the
continuity of surface tractions and displacements,
imply the following:

() u(ll

Css uth) = e Fuly ") at =AY

(!l(u(l) + u(l)) _ c(l+ 1)(u§/3+ n + ui}i: l)) at x; = hli)

clbufh + cudh + el = ey Vuf

+ VU + TN at xs=h9

u(ll)zu(li+1)’ u(l)_u(l+” Lly,=u§'+“ at x3=h“’. (3)
Since the bottom and top surfaces of the plate are
traction free, boundary conditions on them corre-
spond to the vanishing of expressions on the left-hand
sides of eqn (3) with i=1, x;=—h and i=N

= h, respectively.

Recalling that sensors and actuators are modeled
as thin films, the balance of linear momentum and the
Maxwell equation for any one of them can be written

as [21]
iy + o + [ = p2a,
I(zl) l (21; , + [rll)ﬂ p"’u"’,
[#] = pvi,
D=0, @
where
[ -

and D, is the electric displacement. The constitutive
equations for a linear piezoelectric medium are

('H’|n h‘”—"-'zl ”l\;,—h“ “)/h(')

D =¢e's + €E
t=cs —eE, (5)

where E is the electric field vector given by
E= —grad¢, ¢ is the voltage field, e the
piezoelectric constants and € the dielectric permittiv-
ity. We note that the material response of PZT and
PVDF can be represented by constitutive eqn (5).
Since the thickness of a sensor or an actuator is
very small as compared to that of a lamina, it is
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reasonable to assume that |D);| <|D;3| and
| D25] < |Ds3| [20]. Thus egn (4), reduces to
Dy, =0, or ¢‘” = 0. 6)

Following Brooks and Heyliger [14], we assume the
electric potential ¢ to be a linear function of x;. That
is,

h(l—- }]

——m M

O(x1, x2, X3, 1) = PN(x, X2, 1) o

Hence eqn (6) or equivalently (4), is identically
satisfied.

Boundary conditions at the edges of a PZT
sensor/actuator and at the interfacial surfaces are

=u=u=0, at x =0, a,
W=u=u"=0, at xx=0, b,

W =uf*Y, at x; =",

U =ui"", at x3;=hi-", (8)

Note that the continuity of tractions at the interface
between the piezoelectric layer and the lamina has
been considered in writing the equations of motion
for a piezoelectric material point. For an actuator, we
also have

P9(x,, X2, 1) = {(I)/"(Xl» X2, 1) :: ;‘z z Z:‘ﬂ_’ N, ¢)]
and for a sensor,
DO(x1, X2, 1) =0 at x3=h"""Y,
Di=0 at x;=4h" (10)

This completes the formulation of the problem.

Time harmonic vibrations

We assume that the actuators are excited by a time
harmonic voltage
V"'(X], X2, f) = V‘“(xl s xl)ei‘u{a (1 1)
and seek solutions of the governing equations which
are also time harmonic with the same frequency. That
is

U (xy, X2, X3, 8) = @ (X1, X2, X3)E",

DI(x,, Xz, 1) = BO(xy, x,)e, (12)

Henceforth we drop the superimposed tilde. The
form of equations given in the preceding section is
unchanged except that i is replaced by —wu.

SOLUTIONS

The solution procedure is similar to that described
by Yang et al.[19] and is therefore briefly sketched
below.

Solutions for the substrate laminates

We assume that the displacements of the ith layer
can be represented by the following Fourier series.

u) = Z a)(x3)c0s oux; sin B,x:

ma =1

s = Z as) (x:)sin &, cos B.x:
ma=1
U = Z as, (x;)sin a,x; sin B.x
mn=1
oy = mnja, f,=nn/b. (13)

These satisfy boundary conditions at the edges
x1 =0, a and x, = 0, b. Substitution of (13) into the
governing equations obtained from (1) and (12),
yields ordinary differential equations for a,m.(x;)
which are solved by assuming that

@ (X3) = Awm €, DO SUM ON M, 1,  (14)
where A.., are undetermined constants. Equation
(14) when substituted into the ordinary differential
equations will yield a set of linear homogeneous
equations for the determination of A,..; the
coefficients of these equations involve the elastic
constants for the material of the laminate and the
frequency . In order for these equations to have a
nontrivial solution, the determinant of the coefficients
of A... must vanish. This gives the following cubic
equation for (#,.)".

on)® + a(Wa)* + b(Wun? + ¢ = 0. (15)

Explicit expressions for a, b and ¢ in terms of the
elasticities of the laminate and the frequency w are
given in Yang et al. [19]. For distinct real or complex
conjugate roots #.,,p = 1,2,...,6, we have

Aann(X3) = Doy Faanp €m0 ™

no sum on m, n, but summed on p (16)
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where D,., is an arbitrary constant and F,., is a
function of #,.,, and the material parameters. We note
that for a few values of @, eqn (15) may have repeated
real roots; it is more likely to occcur for an isotropic
material. We exclude those special values of .

Equation (16) when substituted into (13) gives the
displacement field in the ith laminate.

x

[ s
u[l” Z Z D:r;:vplnll;:mp (X3)]COS L Xy Sin ﬂnx2s

mn=1{p

x [ 6
=% [ ¥ D},’,’,,PFZ‘,?,,,,,(x;):|sin 0 X1 COS X2,
mn=1|p=1

x

=y

ma =1

Z Dnmpﬂ’limp(x3)i|5in O X1 Sin nX2. (17)

Thus strains and stresses in the ith laminate can be
computed. The continuity conditions at the interface
x; = h"" between the two laminates yield
(D] = [TV D0, "] (13)
where | },‘,’,,,,] is a 6 x 1 matrix (for p=1,2,...,6)
and [TY] is a 6 x 6 matrix whose elements are
functions of FY,, and Fi!" evaluated at x; = A",
Equation (18) is a recursive relation between
constants for the ith and (i + 1)th laminate and can
be used repeatedly to express constants for the kth
laminate in terms of those for the /th laminate
provided that no sensor or actuator layer is between
them.
The traction-free conditions at the top and bottom
surfaces yield

6 6
(1 () _ N v
Z Rrxrr)mpDrm:p - Oa Z R:rmnponp 05

=1 p=1
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where Ry, and R are functions of F}, evaluated
at x; = —h and x; = A, respectively.

Solutions for actuator layers

For the ith-layer made of a PZT material and
assumed to act as an actuator, we presume that

ax’
u’(x1, x2) = Y. D{, cos a.x sin B,xs,

mn =1

x
u(x, x2) =Y DY, sin a,x cos f,x:,

mn =1

(”(xh x’) = Z D(mn Sln A Xy Sln an‘f (20)

man =t
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where

Dy = f j ul’ cos a,,x; sin f.x; dx; dx;  (21)

and similar expressions hold for DY, and DY,,. These
satisfy the homogeneous edge conditions (8)1.. In
order to avoid term by term differentiation and to
take care of the nonhomogeneous boundary con-
ditions (9) at the same time, we multiply equations
obtained from (4).; by  cosa,x sin f,x,
sin a,,X; cos B,x> and sin a,x; sin B,x,, respectively,
and integrate the resulting equations over 0 < x; < a
and 0 < x, < b. With integration by parts and the
use of boundary conditions we arrive at the
following.

S RGIIDL, — 3 RE )DL

p=1 p=1

+Hp0? — clja, — i) Dl

—hc + ¢2)nf, D

P O o .
= ——b” Ol P9 sin a,,x, sin B,x; dx, dx,,
a 0 0

z 0" (D" — 3. 0l (=)D

p=1

—h() + o B, D,

i i 2 2
+h(pw? — o, — i) DS,

(1) a
B 'f f 79 sin a,,x, sin B,x; dx; dx,

6 6
3. PP (R)Di" = 3. i (H =)Dl

p=1 p=1

+ hp9? DY =0, (22)
where Ry, Qu and P,., are linear functions of F,.,,
and Fyuwpi3, and V¥ is a function of x, and x,. The
continuity conditions (8);4 at the interface between
the plate and the actuator give the following.

6
2 Fly (- ")DLY

p=1

D(I'V)Vl’l = O
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6
1§ -1 (=1 D —
Z Emnp (h(l ))DI b — Zlmn - 0,
p=1
6
i—1) -1 (=1 -
Z -F‘Jlmnp (h“ ))Drrlmp ) D(Jll)rm - 0
p=1

6
1 i P41 —_
Y Flm (MDY — DY, = 0,

p=1

6

1 1
Z B (R)D5," — DY, =0,

6
I i) i+t | -
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23)

where coefficients DY, x = 1,2, 3 are to be deter-
mined.

Solutions for sensor layers

Let the /th layer made of a PZT material act as a
sensor. For it, we assume that the displacement field
is given by (20), and

x
V= 3 @ sina,x sin fuxa.

ma =1\

24

A procedure similar to that used for an actuator layer
yields the following set of equations.

S Ry (h)DL;"

6
G =1 (i =y pyti— 1
Z Ry, (= ")D,,,,"
p=1 =1
M o2 { A0) 27 )
+hp"w* — o, — QBN

—hcl} + ci)omBu D + ellotnpn, = 0,

6
Y O (DY Z Q" (R~ V)D}, "

p=1 p=1
— (e + c)amBa Dl
+h0[p"w? — e, — e 1D

(I)B ¢(H —

6 3
Z P V(YD — 3 Py (R =)D
= p=1

+h(p"w? D5, = 0. (25)
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Table 1. A comparison of the first six natural frequencies

for a 30\/5 x 30 x 0.404 cm simply-supported laminated

plate as computed by the thin plate theory and the present

analysis employing the three-dimenstonal linear elasticity
theory

Q. Qn Qn Q»n Qu Q

Thin-plate theory 2.002 4.585 6.408 8.007 9.454 11.938
Present analysis

(3-D theory) 1.944 4.456 6.152 7.736 9.128 11.528
% difference 30 26 40 33 35 3.0

The continuity conditions at the interface between a
sensor and a laminate are analogous to eqn (23) with
the addition of the following equation.
hea, DY, + ke B, DS, + €3¢ = (26)
Knowing @ and the voltage field applied to the
actuators, we solve the aforestated equations for
various Fourier coefficients and hence can find the

displacements, stresses and sensor electric voltages at
any point in the structure.

NUMERICAL RESULTS

As an example, we consider a
30\/3 x 30 x 0.404 cm plate made of 10 layers of
T300/976 graphite—epoxy laminates each 0.04 cm
thick, a layer of PZT-G1195 actuator 0.002 cm thick,
and a layer of PZT-G1195 sensor also 0.002 cm thick;
the substrates are arranged symmetrically as 0/90/0/
90. The material properties of the graphite/epoxy
layer with respect to the principal axes of the load are
taken to be

E“ = 150 GPa, Ezz = E33 =9 GPa,

vip=vn =vy=0.3,

Glz = G31 =7.1 GPa, G33 =25 GPa,

p = 1600 kgm 3,

Table 2. A comparison of the first six natural frequencies

for a 30\/5 x 30 x 4.04 cm simply-supported laminated

plate as computed by the thin plate theory and the present

analysis employing the three-dimensional linear elasticity
theory

Qi Q Qu Qn O Qs

Thin-plate theory 1.975 4.570 6.284 7.900 9.444 11.858
Present analysis
(3-D theory)
% difference

1.664 3.276 4.021 4.992 5.443 6.657
15.75 28.32 36.01 36.81 42.37 43.86
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and those for the PZT-G1195 are

[0 o0 217
0 0 2.1
0 0 9.5
p=7500kgm™>, [e]= 0 92 0 cm™3;
92 0 0
| 0 0 0 |
(148 762 742 0 0 0 7
148 742 0 0 0
(] = 131 0 0 0 GPa.
254 0 0
254 0
L 25.4 ]

The applied voltage is a half sine function over a
rectangular region of a/10.5 x 5/10.5 with a peak
value of 200 volts and equals zero outside this region.
This simulates finite size PZTs used in practice.

The Fourier series converges very fast; it takes 30
terms to compute displacements accurate to first 5
significant digits. However, computation of stresses
involves the spatial gradients of the displacements
and more terms are needed. Here we take 400 terms
to evaluate strains and stresses.

Natural frequencies of the plate

The structure has a series of natural frequencies

which can be ordered as w,., m,n=1,2,.... These
x 107*
1.5 Mode 11
-
fou)
g 10
=}
E
% 05
E AL
IS
0 \\:\\\\\\\\\\\\\\\‘;:: A
1.0 S ‘\ ‘\“\\‘\‘\‘\\‘“\‘x\\\‘{um:a..
ity 1.0
x./a .
! 00 X,/b
x 1074

-
g N
MO AN 74
M TXENCEIN 15,0 s
A SO0 Y rrg te e s
:E’ 0 o ”’/1’";”0“\“‘:::\““\‘\“ DR s ,’;I’/i:;'l:':‘:o““‘\\\\‘\‘\ .
2,%9.9°8 A 11,72, b,
GO g 17010, WS
o] QG Lt N 111,701,087
QSRR TIAAAN 20100117, 72,00 0 00,
" R NNNSNSTeeor, /I”I' 13025026
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NS el by sy
N OSSN Ass
E > 85000, 00, 011077
R 308,471, 01117
Sasests, i

1.0

1 00 X,/b
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are determined by plotting the vertical component of
the deflection at the point (a/4, b/4) as a function of
the forcing frequency. The deflection becomes large
at certain discrete values of the forcing frequency
which signifies the resonance phenomenon; the
natural frequencies so computed are listed in Table 1.
The normalized natural frequencies Q.. of the
structure, estimated from the thin plate theory, and
with the inertia and rigidity of the piezoelectric layers
neglected, are given by [22]

wmn
% (D)
a* \2ph

Dy, + 2D
Dy

={m“+2

, ‘_In 2+D22 gn 4172
"\ Du\b

where D= Es(2hYP/12(1 — v),a, §=1,2,6 is the
flexural rigidity. As is clear from the values listed in
Table 1, the maximum difference between the first six
natural frequencies computed from the thin plate
theory with no PZT layers and the present analysis
employing the three-dimensional elasticity theory
and considering the inertia and rigidity of the PZT
layers is 4%. Thus for a thin plate with very thin
piezoelectric films embedded in it, both theories give
nearly identical values of the natural frequencies, and
thin PZT films do not affect noticeably the dynamic
response of the structure. Our approach will yield

x 1073

5 Mode 21

S
AT
AR

Maximum U,
[}

Fig. 2. Peak value of the nondimensional out-of-plane displacement vs the location of the centroid of the
excited rectangular region for the thin plate vibrating at frequencies close to Qui, Qu and Q.
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good results for higher modes too and is valid for
thick plates for which the thin plate theory may not
yield satisfactory results. To demonstrate this, we
have listed in Table 2 the first six natural frequencies
for a 30\/5 x 30 x 4.04 cm plate similar to the one
considered above except that each lamina is 0.4 cm
thick as computed by the present method and also by
the thin plate theory; the maximum difference
between the two sets of results is 44%.

The optimal placement of an actuator

An interesting exercise is to ascertain the optimal
locations and sizes of actuators so that the energy is
efficiently transferred to the structure (Bhargava et
al. [1]). Such a problem is difficult to solve
analytically. For the problem of the thin plate being
studied herein, and as shown in the preceding section,
the mass and rigidity of the piezoelectric layers have
a negligible effect on the dynamic response of the
structure. We find the optimal location of the
actuator as follows. Let the thin PZT film cover the
entire surface of the plate, and the voltage be applied
only on a rectangular region of the surface. By fixing
the applied voltage and the size of the excited region,
we move the rectangular region around and find the
maximum out-of-plane displacement of a point on
the midsurface of the plate. The optimal location(s)
of the excited region will be that which results in the
maximum value of the peak out-of-plane displace-
ment since if the plate were initially vibrating at the

x 1073
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frequency of the applied voltage, such a location will
be most effective in suppressing these vibrations
with the least amplitude of the applied voltage. Here
we delineate the optimal location for modes 11, 21
and 22.

Figure 2(a—) depict the peak value of the
nondimensional displacement U; = u3/a vs the lo-
cation of the centroid of the excited region. It is
evident that for the three modes studied the optimal
location of the centroid of the excited region (and
hence of an actuator patch of size equal to that of the
excited rectangular region) coincides with the point(s)
where the amplitude of vibration is maximum. Thus
for modes 11, 21 and 22, the optimal locations of the
centroid of the excited region are (a/2, b/2); (a/4, b/2)
and (3a/4, b/2); and (a/4, b/4), (a/4, 3b/4), (3a/4, b/4)
and (3a/4, 3b/4), respectively. When the centroid of
the excited region is located at a point on the nodal
line consisting of points whose deflection for free
vibrations of the plate is zero, the efficiency of
actuation will be very poor.

Another part of the optimal placement of an
actuator is to ascertain the optimal distance of the
actuator layer from the neutral surface. Here we
determine this for mode 11 and conjecture that the
result will apply to higher modes too. We consider a
laminated plate made of 20 substrate lamina arranged
symmetrically as 0/90; the thickness of each substrate
equals 0.2 mm and that of the PZT layer 0.01 mm.
Keeping the centroid of the excited region at the

1.8 T T T

14

08

0.6

Maximum out-of-plate displacement, U,
5
T

0.4}

N 1 1

0.2 L 1 1
0 0.1 0.2 0.3

0.4 0.5 0.6 0.7
Distance of the actuator layer from the neutral surface, X;/h

Fig. 3. Peak out-of-plane displacement vs the distance of the actuator layer from the neutral surface of
the 30,/2 x 30 x 0.404 cm plate.
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x 1073

0 A i 1 A 1 1 | A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized length of the diagonal of excited region, d/ Va? + b?

Fig. 4. Maximum out-of-plane displacement vs the length of the diagonal of the rectangular excited region
for the 30,/2 x 30 x 0.404 cm plate.

centroid of the plate, the size of the excited region as  that we also have a PZT layer used as a sensor that
a/10.5 x b/10.5 and the voltage applied to it fixed, we is located symmetrically with respect to the neutral
move the actuator layer in the x;-direction. Recall surface. We note that displacements are very sensitive

x 1078 x 1076

0.5
1 00 X,/b

Fig. 5. Distribution of the non-dimensional displacements U,, U: and U, for a thin plate vibrating at a
frequency close to Qu.
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1 0™ X,/

21

x 1078
1

Fig. 6. Distribution of the non-dimensional displacements Ui, U and U; for a thin plate vibrating at a
frequency close to .

to the frequency of the applied voltage when it is close
to a natural frequency of the system, and Q,, will vary
slightly with the location of the actuator layer. In
each case we take the non-dimensional frequency of
the applied voltage to be 0.03 less than the

x 1076

0.5
x,/b

1 00

corresponding ;. As depicted in Fig. 3, the relation
between the maximum out-of-plane displacement and
the distance of the actuator layer from the neutral
surface is essentially linear. Thus an optimum
location for the actuator is at a bounding surface of

x 1076

Fig. 7. Distribution of the non-dimensional displacements U, U and Us for a thin plate vibrating at a
frequency close to Q.
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7 _7
o Mode 11 107 Mode 21
= 0 = 0

_22 -1

1.0
/ ! 0.5
X,/a 00 x,/b
x 1077
2 Mode 22

Fig. 8. Distribution of the non-dimensional shear stress T3 at the lower interface between the actuator
and the substrate for a thin plate vibrating at frequencies close to Qii, Qz and Qx.

al.[3]. Factors such as severe environment may

the plate. However, because of the assumption of
suggest that it is better to have embedded PZTs.

embedded PZT layers, our analysis is not valid when

the PZT layers are affixed to the top and bottom
surfaces; those cases have been analyzed by Batra et

x 1078

) Mode 11

e 0

e 0

For the 30\/5 x 30 x 0.404 cm plate, Fig. 4 shows
that the maximum out-of-plane displacement

x 1077
1

Mode 21

Fig. 9. Distribution of the non-dimensional shear stress T3 at the lower interface between the sensor and
the substrate for a thin plate vibrating at frequencies close to i1, Q2 and Qxn.
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Mode 11

Sensor voltage output

Sensor voltage output

0.5
X,/b

! 00
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x 107
5

Mode 21

Sensor voltage output
(=4

Fig. 10. Distribution of the normalized electric voltage ¢/(200 volts) at the upper surface of the PZT sensor
for a thin plate vibrating at frequencies close to Qu1, Qx and Q.

depends nonlinearly upon the size of the excited
region. In each case the shape of the excited region,
its centroid and the peak voltage applied with a
frequency close to Q,, are kept fixed. Since the applied
voltage is a half sinusoidal wave, the resultant force
and moment exerted by the forces between the
actuator and the substrate layer depend nonlinearly
upon the diagonal of the excited region.

Here we have kept the shape of the excited region
as rectangular. Another possibility is to examine
other shapes such as circular, elliptic, etc. and also
consider variations in the distribution of the voltage
applied to this region. However, these numerous
investigations have not been carried out here. One
difficulty with shapes of the excited region other than
a rectangular one is the evaluation of the integrals in
eqn (22). These can be evaluated analytically for a
rectangular region. The evaluation of these integrals
by a quadrature rule results in very high values of the
shear stress at the quadrature points.

Structural response

In the laminated rectangular plate made up of 10
graphite-epoxy lamina and 2 PZT layers, we assume
that 3rd and 10th layers from the bottom are made
of a PZT and the former acts as a sensor and the
latter as an actuator. The centroid of the excited
region (a/10.5,5/10.5) is located at (a/2, 5/2) for
mode 11, (a/4, b/2) for mode 21 and (a/4, b/4) for
mode 22 which were found to be optimal locations in
the previous section. Figures 5-7 depict the

distribution of the nondimensional displacement
U, = u,/a for modes 11, 21 and 22, respectively. It is
clear that the magnitude of U, is about 100 times that
of U, and U-.

In order to check the integrity of the smart
structure, we have plotted in Figs 8 and 9 the
nondimensional shear stress T, = 15,/E;, at the lower
interface between the actuator and the substrate, and
at the lower interface between the sensor and the
substrate. In the former case, the maximum shear
stress occurs at a point in the excited rectangular
region indicating the possibility of delamination there
between the PZT layer and the substrate. Similar
results were obtained by Hanagud and Kulkarni [23]
for beams by the finite element method, for
quasistatic deformations of plates by Zhou and
Tiersten [17], and for steadily vibrating plates with no
PZTs by Yang et al. [19]; Refs [17] and [19] used the
elasticity theory. The magnitude of the maximum
shear stress between the sensor and the substrate is
about one-tenth that between the actuator and the
substrate, and the jump in the shear stress at any
point is also considerably smaller than that in the
excited region of the actuator. For the sensor/sub-
strate interface, the shear stress in the region that is
below the excited region is high indicating the
possibility of delamination there. However, the risk
of this happening is lower than that in excited
actuator region because of an order-of-magnitude
difference in the magnitude of the maximum shear
stress in the two cases.
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For the plate vibrating in mode 11, 21 or 22,
Fig. 10 depicts the output electric voltage at the
upper surface of the sensor layer; in each case the
point where the magnitude of the output voltage is
maximum coincides with the point of peak out-of-
plane displacement.

The variation in the x;-direction at the point
(a/4,b/4) of nondimensional displacement com-
ponents and stress components for the thin and thick
plates studied herein and vibrating at a frequency
close to Q,, are shown in Figs 11 and 12. Both for the
thin and the thick plates studied herein, U, and U,
vary linearly through the thickness; however they are
an order of magnitude higher for the thin plate as
compared to that for the thick plate. The variation of
U, through the thickness is parabolic for the thin and
thick plates, but that for the thin plate is about 100
times that for the thick plate. The variation of
different stress components in the thickness direction
for the two plates is similar; as expected 7), and T
exhibit discontinuities at the interfaces but other
stress components are continuous as required by the
coherency condition. Maximum values of T),, T» and
T; for the thin plate are nearly one-tenth of those for
the thick plate; the peak values of other components
of the stress tensor are essentially the same for the
two plates.

Thin plate
1 — —
=
S 0
123
~1
-1.0 -0.5 0 0.5 1.0
U, x 1076
1
=
S 0
E
-1
-2 0 2
U, x 1076
1 v —
=
a0
e
-1 L
4.9818 4.9820 4.9822 4.9824 4.9826
U, x 107

R. C. Batra and X. Q. Liang

CONCLUSIONS

We have studied steady-state vibrations of a
simply-supported rectangular laminated elastic plate
with embedded piezoelectric actuators and sensors by
using the three-dimensional elasticity theory. The
piezoelectric sensor and actuator layers are modeled
as thin films and are assumed to be perfectly bonded
to the adjoining lamina. Numerical results for a thin
and thick plate are presented. For very thin sensor
and actuator layers, the mass and rigidity of the PZT
material have negligible effects on the natural
frequencies of a laminated thin plate. For a thin plate
vibrating at a frequency close to Q;, {0 and Qa, the
optimal locations of the centroid of the excited
rectangular region coincide with the points where the
displacement for the corresponding mode attains
maximum values. The shear stress in the excited
region is high indicating the possibility of delamina-
tion there; however, the delamination will first occur
at an interface between the actuator and the lamina
rather than that between the sensor and the lamina.
The points of maximum sensor output coincide with
those of peak out-of-plane displacement. For the thin
and thick plates, U, and U, vary nearly linearly with
the distance from the midsurface, but U, varies
parabolically.

Thick plate
1
=
S 0
»
-1
-1.0 -0.5 0 0.5 1.0
U, x 1077
1
=
S 0
»
-1
-1.0 -0.5 0 0.5 1.0
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=
RLERY
o
-1
4.92 494 4.96 498
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Fig. 11. Variations through the thickness of the non-dimensional displacement components at the point
(a/4, b/4) through the thickness for a thin and a thick plate vibrating at a frequency close to .
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Fig. 12. Variations through the thickness of the non-dimensional stress components at the point (/4, b/4)
for a thin and a thick plate vibrating at a frequency close to Q.
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