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Abstract

We use a higher order shear and normal deformable plate theory of Batra and Vidoli and the finite element method
to analyze free vibrations and stress distribution in a thick isotropic and homogeneous plate. The transverse shear and
the transverse normal stresses and strains in the plate are considered and traction boundary conditions on the top and
the bottom surfaces of the plate are exactly satisfied. All components of the stress tensor are computed from equations
of the plate theory. Equations governing deformations of the plate involve second-order spatial derivatives of general-
ized displacements with respect to in-plane coordinates. Thus triangular or quadrilateral elements with Lagrange basis
functions can be employed to find their numerical solution. Results have been computed for rectangular plates of aspect
ratios varying from 4 to 20 and with all edges either simply supported or clamped, or two opposite edges clamped and
the other two free. Computed frequencies, mode shapes, and through the thickness distribution of stresses for a simply
supported plate are found to match very well with the corresponding analytical solutions. Advantages of the present
approach include the use of Lagrange shape functions, satisfaction of traction boundary conditions on the top and
the bottom surfaces and the use of the plate theory equations for accurate determination of transverse stresses. The
order of the plate theory to be used depends upon several factors including the aspect ratio of the plate.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction by Mindlin and Medick [3], Soldatos and Watson [4],
Babu and Kant [5], Chao et al. [6], Lee and Yu [7], Batra

Whereas many higher-order plate theories (e.g. see and Vidoli [8], Messina [9], Carrera [10], DiCarlo et al.
[1,2]) neglect transverse normal strains, those derived [11] and the Cosserat brothers [12], amongst others, con-

sider them. Transverse normal deformations are signifi-
cant in thick plates and also in laminated plates with
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amongst others, works of Soldatos and Watson [4],
Mindlin and Medick [3], Lee and Yu [7], and Batra
and Vidoli [8] who respectively use exponential func-
tions, Legendre polynomials, trignometric functions
and Legendre polynomials. Higher-order plate theories
derived by using different basis functions are not neces-
sarily equivalent since the first-order theory of Lee and
Yu [7] involves cos(n(l —z)/2), where z (-1 <z< 1)
is the normalized thickness coordinate, and the first-or-
der theory of Mindlin and Medick [3] expresses mechan-
ical displacements as an affine function of z. A plate
theory is usually called higher order if terms up to and
including z* with K > 3 are retained in the expansions
for displacements. The optimal value of K so that results
from the plate theory match with the exact solution of
the 3-dimensional elasticity equations depends upon
the aspect ratio of the plate, boundary conditions pre-
scribed at the edges, material symmetries, material inho-
mogeneities, applied loads and which aspects of the
three-dimensional deformations should be accurately
modeled. Batra and Vidoli’s [8] Kth-order plate theory
differs from earlier (e.g. [3,7]) higher-order plate theories
at least in the following respects. Batra and Vidoli [8] ex-
press the transverse shear stresses and the transverse
normal stress as polynomials of degree K + 2 in z, with
the remaining variables expanded as polynomials of de-
gree K in z. The normal and the tangential surface trac-
tions prescribed on the top and the bottom surfaces of
the plate appear explicitly in the two-dimensional con-
stitutive relations thereby exactly satisfying natural
boundary conditions prescribed on these surfaces. The
transverse shear and the transverse normal stresses are
computed from the plate equations rather than by inte-
grating a posteriori the three-dimensional equations of
elasticity.

Batra et al. [13] studied vibrations of, and the prop-
agation of plane waves in, thick simply supported rect-
angular orthotropic plates with the Kth-order plate
theory of Batra and Vidoli [8]. Following Srinivas
et al. [14] they expanded different components of the
generalized displacements of the plate theory in terms
of trignometric functions defined on the midsurface
of the plate. The assumed displacement fields exactly
satisfy boundary conditions at the edges. For a square
plate of length/thickness equal to 5, frequencies and
through-the-thickness distributions of different stress
components computed with a fifth-order plate theory
were found to match very well with the analytical solu-
tion of Srinivas et al. [14]. Batra and Aimmanee [15]
have pointed out that both analyses and several others
employing similar expansions for displacement fields
missed some of the in-plane pure distortional modes
that correspond to null transverse displacements.
Soldatos and Hadjigergiou [16] had previously given
some of these missing frequencies but did not give
the corresponding mode shapes. The first few pure dis-

tortional modes of vibration and the corresponding
frequencies are correctly predicted by the numerical
solution of 3-dimensional elasticity equations obtained
by Liew et al. [17] using the Rayleigh-Ritz method,
and by Batra et al. [21] using the finite element method
(FEM).

Here we use the FEM to analyze free vibrations of
a thick isotropic and homogeneous plate with the Kth-
order plate theory of Batra and Vidoli [8]. Since plate
equations involve second-order spatial derivatives of
generalized displacements, Lagrange basis functions
can be used to compute the mass and the stiffness
matrices. Problems with different edge conditions and
aspect ratios ranging from 4 to 20 are analyzed. Re-
sults are presented for rectangular plates of different
aspect ratios with edges either simply supported or
clamped or two opposite edges clamped and the other
two free. For simply supported plates computed fre-
quencies and through-the-thickness distributions of trans-
verse shear and normal stresses are found to match
well with the corresponding analytical solutions. The
order of the plate theory to be used for plates of differ-
ent aspect ratios is also ascertained. For thin plates, the
lower-order plate theories suffice to compute frequen-
cies but not necessarily through-the-thickness variation
of the transverse shear and the transverse normal stres-
ses. For thick plates, these theories usually fail to give
good values of frequencies for higher-order modes.
However, higher-order plate theories give frequencies
and stress distributions consistent with those obtained
from the solution of three-dimensional elasticity
equations.

The paper is organized as follows. Section 2 gives a
brief summary of the 2-dimensional equations for a
plate. The FE formulation of the problem is derived in
Section 3, and results for an isotropic plate are described
in Section 4. In Section 5, the present work is compared
with the three-dimensional analysis of the problem by
the FEM, and advantages of the former approach are
stated. Section 6 outlines key differences between the
present mixed higher order plate theory and other higher
order plate theories. Section 7 summarizes the work and
the conclusions.

2. Equations of the Kth-order plate theory

We use rectangular Cartesian coordinates, shown in
Fig. 1, to describe deformations of a homogeneous
plate, and denote its top, middle and bottom surfaces
by S*, Sand S~ respectively. Let the length scale be nor-
malized by /4/2 where h is the plate thickness; thus
x3=+1on S§" and —1 on S~. We call the boundary
0S x[—1,1] of the plate the mantle M or the edge sur-
faces, and denote the union of its upper and lower sur-
faces by Up. Normal and tangential surface tractions t
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Fig. 1. Schematic sketch of the problem studied.

are prescribed on Up, and surface tractions and/or dis-
placements u on M.

Henceforth Greek indices range over 1 and 2, and
Latin indices over 1, 2 and 3. We decompose as follows
the position vector x of a point, the displacement u, the
body force b, the surface traction t, and the outward unit
normal n

U = Uo((sio( + W5i3> ng = flof&iaz + ﬂ5i37

t; = 1,01 + 153, (1)

Xi = X406 + 2033,

bi = Bzéio{ + g6i3a

where J;; is the Kronecker delta. Thus z = x3. We inter-
changeably use (x,y,z) and (xi, X,, x3) to denote coordi-
nates of a point. We denote partial differentiation of a
variable with respect to z by a prime and with respect
to x, by a comma followed by o. The components of
the infinitesimal strain tensor, e;, are given by

eup = (Vup +0p4) /2, e =7v,= (v, +w,)/2,
e =€e=w. (2)

Thus y, and e denote, respectively, the transverse shear
strains and the transverse normal strain. Analogous to
the decomposition

i) = €,0i,0;5 + 7,(010j3 + 0:30;4) + €01303, (3)

of the infinitesimal strain tensor, we write the stress ten-
SOor O'l] as

O-ij = (A)'xlyéixéjﬂ + 0';(5,:15/'3 + 5,‘35‘/‘1) —+ 6’15135]'3. (4)

Here 6,5, ¢! and ¢" signify, respectively, the in-plane
components of the stress tensor, the transverse shear
stresses and the transverse normal stress. The constitu-

tive relation for an anisotropic linear elastic body is

é“/g = CZ%},(;&}-()‘ + Citﬂ.',o'; + CZ};O’”,

Vo = Clpstps + Cyaly + Cla", (5)
€ = ChfiG.p + Cjoy + C"a".

The superscripts on C are not tensorial indices. When e
and ¢ are written as {&1,éxn,281,2y,,27,, e}T and

~ ~ ~ T . .
{611,62,612,0, d5,d"}", respectively, then for an iso-
tropic material

en
en
2ey,
2y,
2y,
€
r1T —v 0 0 0 —v7
—v 1 0 0 0 —v
10 0 2(1+4v) 0 0 0
TE|O0 0 0 2(1+v) 0 0
0 0 0 0 2(1+v) O
L—v —v 0 0 0 1 |
o1
(g3}
x Qo (©)
1
%
o
and
I —v 0 0 0
Cp":l[—v 1 o |, co=10 of,
0 0 2(1+v) 0 0
—v
Cp"—é{—v ,
0
cfP:{O 0 0} C”:l{Z(lJrv) 0
0 0 0] E 0 2(1+v) ]
={o}
0
cr=Lioy S0, =0 0, o=l
E E
(7)

Here E is Young’s modulus and v Poisson’s ratio.
Expressions for matrices in (5) for transversely isotropic
and orthotropic materials are given in Appendix A.
Batra and Vidoli [8] used a mixed variational principle
of Yang and Batra [23] to derive a higher-order theory
for piezoelectric plates. Batra et al. [13] employed the
Hellinger—Reissner principle to deduce the correspond-
ing higher-order mechanical theory for anisotropic
plates. When using a mixed variational principle, one
postulates independently expressions for displacements
and stresses. We use orthonormal Legendre polynomials
Lo(2),L(2), ..., Lg(z) defined on [—1, 1] and satisfying

1
/ L)L)z = b0y b =0,1,2,... K, (8)

1
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as the basis functions to expand displacements and stres-
ses in powers of z. Henceforth, unless stated otherwise,
indices ¢ and b will range over 0,1,2, ..., K. Also, a re-
peated index is summed irrespective of its appearance
as a subscript or a superscript or its being enclosed in
parentheses. Note that

=T ne= . be =500

Ly(z) = \/Z(_z’zf“zg) La(2) = —— (3 3022 + 35,

8v2

1 /M .
Ls(z):§ 7(152—702 +632°),

1 /13 2 4 6
Lg(Z):E 7(—54—1052 — 315" 4 2312%),

1 /15 3 s 7
L7(Z):E 7(—3524—3152 —639z° +42927), . ..

©)

and

(a=1)
L,(z) = Z DpLy(2), (10)

where D, are constants. For the Kth order plate theory,
D,x=Dg,=0,a=0,12,...,K. For K=7

0 0 0 0 0 0 0 0
V3 00 0 0 0 0 0
0 Vvi5 0 0 0 0 0 0
D] = V7 0 V35 0 0 0 0 0
o 33 o0 37 0o 0 0 0
VI 0 V55 0 3/I3 0 0 0
0 V39 0 91 0 43 0 0
VIS 0 5/3 0 35 0 95 0
(11)
We set
0, (xp,2,1) = La(2)0l") (x5, 1),
W(xﬁ’ Z, t) = Lﬂ(z)w(a) (x/57 t)7
Oup(X),2,1) = Lo (Z)N;;; (x,, 1),
O-;(X}’vzv t) = a(Z)T<a) Xy, t) + O(()[L()(Z) — ZO(Z)ﬁ&O) (xy’ t)

O = —r)2, Y=+ t;)/2,
% = 1/Lo(1), oy =1/Li(1), (13)

/1 La(@)Ly(2)dz = 8y, La(1) = 0.

1

Here " and ¢~ are the normal tractions (pressures) and
t" and t are the tangential tractions applied, respec-
tively, on the top and the bottom surfaces of the plate.
Ni;) :N;;;). N(;/? is the membranal stress tensor, Ni;;)
is the matrix of bending moments, and matrices
Ni‘;) (e =2,3,...,K) are comprised of a linear combina-
tion of matrices of bending moments of order zero
through a. T is the resultant shear force, 7" is the mo-
ment of internal double forces acting along the xs-axis,
and T\ equals the linear combination of moments up
to the ath order of the internal double forces. X© is
the transverse normal force, and X the linear
combination of moments up to the ath order of the
transverse normal force. The function L,(z) is a modified
Legendre polynomial of degree K + 2 that is orthogonal
to the K Legendre polynomials L,(z) for a # b, and also
vanishes at z = *1. Thus traction boundary conditions
prescribed on S* and S” are exactly satisfied by
(12)4_5. For K=3

Lo(z) = 1£62 (543022 — 352%),

Li(z) = % \@(_212 +2102° — 1892°),

~ 1 2
Ly(z) = e \[5(735 + 21022 — 1752%),

~ 1 2
Ls(z) = 6 \@(—1872 +6302° — 4412°).

Note that expressions for the modified Legendre polyno-
mials depend upon the order K of the plate theory. For
example, for K =7, Ly(z), L(z), L(z) and Ls(z) listed
in Appendix B differ from those given in (14) because
functions in (14) are orthogonal to Ly, L;, L, and Ls,
and those in Appendix B are orthogonal to Ly, L,
Lo, ... Ly
Recalling (9), (12) and (14), we see that for a Kth or-
der plate theory, the three components of displacements
and the three components of the inplane stress tensor are
expanded in z upto powers of zX. However, the trans-
verse stresses are expanded in z upto powers of zX* 2,
This is permissible in a plate theory derived from a
mixed variational principle. Basis functions Lo(z),L(z),
Ly(2), ... are equivalent to 1,z,z°,.... An advantage of
using Ly(z), L(z) ... is that they are mutually orthogo-
nal on [—1,1] and the algebraic work is reduced. For
example, the mass matrix R,;, appearing in the equations
of motion (17) is diagonal for Legendre polynomials as
basis functions and nondiagonal when l,z,2%,... are
used as basis functions. By a suitable identification of
the generalized displacements one can deduce the classi-
cal plate theory, the first-order shear deformation the-
ory, and the third-order shear deformation theory.
Substitution for v, and w from (12); and (12), into (2)
and setting



938 R.C. Batra, S. Aimmanee | Computers and Structures 83 (2005) 934-955

éxﬁ(x‘r?zv t) =L, (Z) ijf) (x"," t)’

7a(p,2,0) = La(2)7S (x5, 1), (15)
E(Xﬂvz» t) = La(z)e(“) (x/}, t)7
we obtain

2 = (0 +U)/2,
29 = W)+ Dyl (16
€D = pw®

Omitting details which can be found in Refs. [8,13]
we give below the balance laws, constitutive relations,
boundary conditions and initial conditions for the 2-

dimensional Kth-order mixed shear and normal deform-
able theory for a homogeneous plate.

Balance laws
N, — DT + B = Ry#” on &,
a=0,1,2,....K; o=12; (17)
TY) — D2 + r<”> =R on .
Constitutive relations
&) = Cl N\ + ClY, T + Chyx@),
3O = CHNG) + CYP, T + Py )
+ (8up — Pas)o(Clgt" + €@, (18)
= CUNY + ClPyTY + C" Pz
+ (8 — Pap)op (C12) 4 €1,
Boundary conditions
NGy =F9, Tn, = F(“) on 9,5,

o (19)
(”) = v(a) w@ =% on 0.S.

Initial conditions

o(a)

(”) 0 =7
(x5,0) a(a()x/f)> (20)
wi (e, 0) = w, (xp)-
Here
1
B = [ Lt LI + L1,
-1
1
F(a):/ Lagdz—Q—L,l(l)If'*'—Q—Lg(—l)t_7 (21)
1

1 1
Ruy = / pL.Lydz = pbap, Pap = / LoLydz,
—1 —1

and 0,S and 0,,S are parts of the boundary 05 of S where
surface tractions and displacements are prescribed
respectively. In the fourth term on the right-hand side
of equations (18), and (18)3, the repea)ted index «a is

not summed but b is summed. Also t t & _ =

i =0, == = =0. The presence of the

matrix P, in equations (18), and (18); implies that y©
and €9 depend upon T® and ® for 0 < b < K. Thus
equations for the transverse strains and moments of
transverse forces are strongly coupled. Because of the
presence of T in equations (17); and (17),, these two
equations are coupled. Also, the occurrence of D, in
(17); implies that equations for a=K involve
TOTD | TED. These comments should become
transparent from the explicit forms of equations (17) gi-
ven in Appendix C.

Fora=0,1,2, ..., K, using equations (16), strains on
the left hand side of equations (18) are replaced by gra-
dients of displacements, the resulting equations solved
for N, T and =@ in terms of displacement gradients
(e.g. see Appendix C), and the result substituted into
equations (17). We thus obtain second-order partial dif-
ferential equations for displacements v and w® de-
fined on the midsurface S. These equations under
boundary conditions (19) and initial conditions (20)
are solved for v and w'®. Stresses 6, ¢’ and ¢” are com-
puted from Egs. (12);_s, (16) and (18).

For K =0, the present plate theory reduces essen-
tially to a membrane theory. For K =1, we get a mod-
ified FSDT (first-order shear deformation theory) in
which the transverse normal strain is a constant, the
transverse normal and shear stresses are polynomials
in z of degree at most 3, and surface tractions on the
top and the bottom surfaces of the plate are exactly sat-
isfied. For K =3, we get a modified TSDT (third-order
shear deformation theory) with the transverse normal
strain varying quadratically through the plate thickness,
the transverse normal and shear stresses polynomials in
z of degree at most 5, and surface tractions on the top
and the bottom surfaces exactly satisfied. Whereas in a
plate theory derived from a mixed variational principle,
one can assume that the transverse strains and stresses
may be represented by polynomials of different order of
z, in the compatible plate theory such is not the case. In
the later case, expressions for stresses are deduced by
substituting in the constitutive relation (5) the expres-
sions for strains. Thus expressions for stresses and
strains have expansions of the same order in z. How-
ever, traction boundary conditions on the top and the
bottom surfaces of the plate are not necessarily satis-
fied. Because of the higher-order expansions for trans-
verse stresses in the mixed plate theory, higher order
moments of transverse stresses appear in the two-
dimensional balance laws of the plate theory. The expec-
tation is that the exact satisfaction of traction boundary
conditions on the top and the bottom surfaces will give
results in better agreement with those obtained from the
3-dimensional elasticity theory than those computed
from the compatible plate theory. We also note that
three-dimensional analytical solutions [19] reveal that
for thick laminates, the plate thickness changes and
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through-the-thickness variation of the transverse shear
stress can not be described by a polynomial of degree
2 or higher in z. The smallest value of K for which
the plate theory accurately predicts stresses and dis-
placements depends upon the aspect ratio of the plate,
symmetries of its material, the boundary conditions and
the loads applied.

For simply supported (SP), clamped (C) and free (F)
edges of the plate, boundary conditions (19) become
SP: ” =0,

w@ =0, ug“) =0, onx =0,L,,

NG =0, w9 =0, /=0, onx,=0,Ly;
(22)

C:ol =l =w@ =0, onx;=0,L, x,=0,L,;
(23)

F:NY=0, NY=0, 7”=0 onx =0,L,

N9 =0, NY=0, T9"=0 onx,=0,L,

(24)

Boundary conditions (22) are analogous to those used
by Srinivas et al. [14] at a simply supported edge. These
do not simulate well conditions used in a laboratory
where a plate edge is supported either on a knife edge
or on a hemispherical edge.

3. Weak formulation of equations of the plate theory

For «=0,1,2,..., K, a weak formulation of Egs.
(17)-(20) is derived. Let ¢ and ¢\, a =0,1,2,...,K
be smooth test functions that vanish on 9,S where v
and w' are specified. Taking the inner product of Eq.
(17); with (bi‘” and of equation (17), with d);"), integrat-
ing the resulting equations over S, using the divergence
theorem on the first term on the left-hand side of each
equation, and using the natural boundary conditions
(19),, we obtain

/ R ¢ dQ + / NG da + / DT ¢ d@
S S

N

~ [Bdaa [ Fogae.
N oS

/ Ry ¢dQ + / TWeldQ + / Dy 2®p\"dQ
S S S
_ / rog dg + / FI9g0dr.
N 0,5
(25)

Egs. (18) are solved for N, T and >® in terms of

e,y @ @ ) and 7 with the following result:

NG = B 2 4 B +Edﬂe + B 10 4+ T
T§f’> ED o) + EY Py + EY Q,e®)
+ pab(Eaﬁiﬁ’ +E "1y,
IO = o) 4+ EVP ) + E™ Qe
+ P (EN1" + E™0),
(26)

Matrices Pa,,, 13,1,,7 P, éa and Qab provide coupling
among (T(a) Z(a)) and (,Y(O) (0) 'Y(l) (l) o (u), (a)). We
rewrite Eqgs. (26) as

(a)
N
(a)
N3
(a)
Ni
(a)
Ty
Ty
(a)
5(0)
€1
5(b)
. €n =t = A(b)
| [E OB OEY ) E, E, |4
€12 ~t = N
=3 | [E R Rt E B
b=0 " Y ~ ~
E;;p EZ’ Ebm 1 Z! Ezn E(b>
25
®
(27)

For a traction free plate made of a homogeneous and
isotropic material, Appendix C lists Egs. (27) for
K=1, 3 and 5.

In order to solve the problem by the FEM, we divide
the midsurface S into disjoint quadrilaterals (or trian-
gles) and select an appropriate number of nodes, N,
on each element S,. On S,, we approximate displace-
ments by

o (g, 1) = Y, (xp)d ' (1),

W (g, 1) = Y (xp)d 3 (1),

A=1,2,... Ny, (28)
3 (x5) = U1, () C,

3 (x5) = v, (x5) C'pr,

where W, (xg), ¥,(xp), ..., ¥y, (xs) are the FE shape

functions, d'{) and d') are the time-dependent nodal dis-

placements, C Az) and C A; are constants defining test

functions qu and qb , and the index A4 is summed.
For a Kth order plate theory, there are 3(K+ 1) un-
known d’s at each node. For each value of a, strains
are computed from
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2, = Vaadiy +apdy,
2”/1{1) = l//A,ldff}) +Dab‘pAd;bl)v
2”/(20) = ‘//A‘zdrz») + DablﬁAd;bz)7
€9 = Dy,

(29)

where V4, = O 4/0x,. Whereas the ath order in-plane
strains é&‘}f depend only upon the ath order nodal dis-
placements d“, ath order transverse shear and normal
strains depend upon nodal displacements d©,dV, ..,
d. Egs. (29) can be written as

{9} =Y (B“"1{d"}), (30)
b=0
where {¢}, [B“?) and {d“} are 6x 1, 6x 12 and 12 x 1

matrices for a 4-node quadrilateral element. Further-
more, fora=>5b

oo o0 2 0 % 0 0 % 0 0
0 b o 0 % o 0 W o o W 9
an ol a0l s o o o
po— | W 0 W 0w a0 w0
000 % o 0 % o 0 % o o &
0 0 % o 0 % o 0 % o o W
oxy oxy axy 0xz
00 0 0 0 0 0 0 0 0 0 0
and for a # b
r o 0 0 0 0 0
0 0 0 0 0 0
g — | O 0 0 0 0 0
D, 0 0 Dapp, 0 0
0 Dablpl 0 0 Dablp2 0
0 0 Dahlpl 0 0 Dahlpz
T _ @) gla) j(a) 4la) j(a) (@) sla) s(a) s(a)
where [d(a)} = {dﬂ dl{; dlg dzal dzaz d;; dsti daaz d;z

d¥ d d\%)}. The first index on d\? indicates the local
node number and the second index the coordinate axis.
When Eq. (30) is written in the more familiar form as

e} = [B){d} (32)

then for a Kth-order plate theory {e} is a 6 x 1 matrix,
[Bl a 6 x 3(K + 1)N¢ matrix and {d} a (3K + 1)N¢ col-
umn matrix where N; equals the number of nodes in
an element.

Substituting from (28)—(32) into (25) and exploiting
the fact that the resulting equation must hold for all
choices of constants C in (28), we obtain

Md + Kd = F, (33)

where M, K and F are, respectively, the mass matrix, the
stiffness matrix and the load vector. Square matrices M
and K have 3(K + 1)N,, rows, and the column matrix F
has 3(K + 1)N,, rows, where N, is the number of nodes
in the FE mesh. We note that the natural or traction
boundary conditions are already included in (33). Essen-
tial or displacement boundary conditions are imposed
after equations (33) have been written as algebraic equa-
tions by using a time-integration scheme. Initial values
of nodal displacements are deduced from equations (20).
For a free vibration problem

F =0, d(7) = De', (34)

where  is a natural frequency. In this case, no initial
conditions are needed. Egs. (33) and (34) yield

(K — o’™M)D = 0. (35)

Matrices M and K are modified to satisfy the prescribed
essential boundary conditions, and then frequencies
are computed by solving the algebraic equation

det[K — *M] = 0. (36)

The mode shape corresponding to the frequency w is ob-
tained by deleting one of the equations in (35) that does
not enforce the essential boundary conditions and
replacing it with a suitable normalization condition.

0 0 0 0 0 0 7
0 0 0 0 0 0
0 0 0 0 0 0
(31)
Dub’#] 0 0 Dab!//4 0 0
0 Dablp3 0 0 Dablp4 0
0 0 Da/,lp3 0 0 Dahlpzt .

4. Computation and discussion of results

We have developed an FE code based on the formu-
lation described in Section 3 and employing 4-node
isoparametric quadrilateral elements, consistent mass
matrix and 2 X2 integration rule to evaluate various
integrals appearing in the weak formulation of the prob-
lem. Table 1 lists the lowest ten computed and analytical
frequencies of a simply supported rectangular plate with
LJ/L,=2and L,/h=4%,12 and 20. The first column in
Table 1 also lists whether the mode shape corresponds to
deformations that are symmetric (s) or antisymmetric (a)
about the midsurface of the plate. The two numbers
(m,n) following (s) or (a) give values of m and n in the
displacement field:
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Table 1
Comparison of first ten nondimensional frequencies of a simply supported rectangular plate (L, = 2L,) with the exact solution of
Srinivas et al. [14]

Mode Present plate theory K =5 Exact % Error
(a) Ly/h=4,K=5
1(s)(1,0) 0.7857 0.7854 —0.0438
2(a)(1,1) 1.0725 1.0692 —0.3087
3(@)(2,1) 1.5248 1.5158 —0.5904
4(s)(0,1) 1.5715 1.5708 —0.0442
4(5)(2,0) 1.5763 1.5708 —0.3520
5(s)(1,1) 1.7587 1.7562 —0.1428
6(a)(3,1) 2.1500 2.1219 —1.3245
7(s)(2,1) 2.2343 2.2214 —0.5799
8()(3,0) 2.3766 2.3562 —0.8667
9(a)(1,2) 2.5490 2.5305 —0.7312
10(a)(2,2) 2.8263 2.8066 —0.7011
10(a)(4,1) 2.8721 2.8066 —2.3346
(b) Li/h=8;K=5
1(a)(1,1) 0.3349 0.3373 —0.7210
2(s)(1,0) 0.3927 0.3929 —0.0540
3(@)(2,1) 0.5066 0.5131 —1.2771
4(a)(3,1) 0.7606 0.7800 —2.5520
5(s)(0,1) 0.7854 0.7858 —0.0546
5(s)(2,0) 0.7854 0.7888 —0.4344
6(s)(1,1) 0.8781 0.8797 —0.1765
7(a)(1,2) 0.9425 0.9550 —1.3247
8(a)(2,2) 1.0692 1.0823 —1.2258
8(a)4,1) 1.0692 1.1131 —4.1036
9()(2,1) 1.1107 1.1187 —0.7164
10(s)(3,0) 1.1781 1.1907 —1.0700
Present plate theory K =3 Exact % Error
(¢c) L/h=12;K=3
1(a)(1,1) 0.1594 0.1581 —0.8450
2(a)(2,1) 0.2490 0.2455 —1.4096
3(s)(1,0) 0.2619 0.2618 —0.0277
4(a)(3,1) 0.3913 0.3811 —2.6698
5(a)(1,2) 0.4887 0.4822 —1.3401
6(s)(0,1) 0.5237 0.5236 —0.0279
6(5)(2,0) 0.5248 0.5236 —0.2250
T(a)(2,2) 0.5611 0.5544 —1.2124
T(a)(4,1) 0.5768 0.5544 —4.0440
8(s)(1,1) 0.5859 0.5854 —0.0906
9(a)(3,2) 0.6787 0.6686 —1.5044
10(s)(2,1) 0.7432 0.7405 —0.3646
(d) L/h=20;K=3
1(a)(1,1) 0.0601 0.0589 —2.0806
2(a)(2,1) 0.0962 0.0931 —3.2489
3(@)(3,1) 0.1567 0.1485 —5.5275
4(s)(1,0) 0.1571 0.1571 —0.0150
5(a)(1,2) 0.1963 0.1913 —2.6252
6(a)(2,2) 0.2279 0.2226 —2.3759
6(a)(4,1) 0.2399 0.2226 —7.7908
7(a)(3,2) 0.2812 0.2735 —2.8269
8(a)(5,1) 0.3438 0.313 —9.8495
9(5)(0,1) 0.3142 0.3142 —0.0151
9(5)(2,0) 0.3149 0.3142 —0.2122

10(a)(4,2) 0.3560 0.3421 —4.0698
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for a simply supported rectangular plate. For L./h =4,
the first mode corresponds to pure distortional in-plane
vibrations of the plate and has null transverse displace-

Table 2
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ments. Modes with zero transverse displacements were
missed by Srinivas et al. [14] and other investigators,
e.g. [24], who followed the same approach to find, ana-
lytically, natural frequencies of a simply supported plate.
However, numerical techniques such as the Rayleigh—
Ritz method employed by Liew et al. [17] and the
FEM used by Batra et al. [21] to solve the 3-dimensional
elasticity equations, and the compatible higher order
plate theory of Batra and Vidoli [8] in conjunction with
the meshless local Petrov—Galerkin method used by

Comparison of displacements and transverse stresses computed from the present plate theory with the exact solution of Srinivas et al.
[14] for a simply supported rectangular plate; L = L,, L,/h =1, mode = first antisymmetric (m =1, n = 1)

Nondimensional z-coordinate (2z/h) w(z)/w(0) u(z)/u(0)

Plate theory K =5 % Error Plate theory K =5 Exact % Error
(a) Displacements
-1 1.0000 1.0000 0 1.0000 1.0000 0
-0.8 1.0249 1.0249 0 0.7561 0.7561 0
—0.6 1.0426 1.0426 0 0.5419 0.5420 0.019
-0.4 1.0543 1.0543 0 0.3495 0.3496 0.029
—0.2 1.0609 1.0610 0.01 0.1712 0.1713 0.058
0 1.0631 1.0631 0 0 0.0000 0
(b) Transverse stresses

033(2)/33(—0.2) 013(2)/a13(0)
-1 0.0000 0.0000 0 0.0000 0.0000 0.0
—0.8 1.5293 1.5336 0.280 0.3788 0.3750 —1.013
—0.6 1.9841 2.0238 1.962 0.6564 0.6549 —0.229
-0.4 1.7366 1.7578 1.206 0.8486 0.8426 —0.712
—0.2 1.0000 1.0000 0 0.9623 0.9625 0.021
0 0.0000 0.0000 0 1.0000 1.0000 0
Table 3

Comparison of first eight nondimensional frequencies of a clamped rectangular plate (L, = 2L,) (a) with the solution of Liew and Teo

[20] for L,/h =8 and (b) for L./h =4, 12 and 20

Mode Plate theory K =5 Liew & Teo % Difference
1(a) 0.5500 0.5422 —1.4455
2(a) 0.6937 0.6787 —2.2045
3(a) 0.9358 0.9020 —3.7542
4(s) 1.0177 1.0144 —0.3273
5(a) 1.1472 1.1259 —1.8873
6(a) 1.2524 1.1826 —5.9058
7(a) 1.2547 1.2316 —1.8765
8(s) 1.3635 1.3575 —0.4405
L.J/h=4 L.J/h=12 L./h=20

Mode Frequency (K = 5) Mode Frequency (K = 3) Mode Frequency (K = 3)
1(a) 1.4261 1(a) 0.2844 1(a) 0.1154

2(a) 1.7787 2(a) 0.3616 2(a) 0.1492

3(s) 2.0393 3(a) 0.4957 3(a) 0.2102

4(a) 2.3313 4(a) 0.6383 4(a) 0.2794

5(a) 2.6792 5(a) 0.6760 5(a) 0.2958

6(s) 2.7358 6(s) 0.6774 6(a) 0.3070

7(s) 2.8787 7(a) 0.6983 7(a) 0.3559

8(a) 2.9518 8(a) 0.8014 8(a) 0.4026




R.C. Batra, S. Aimmanee | Computers and Structures 83 (2005) 934-955 943

Qian et al. [18] predict these frequencies and the in-plane
modes of vibration. Batra and Aimmanee [15] have dis-
cussed in detail edge conditions and material symmetries
which admit these pure distortional modes of vibration.
With an increase in the aspect ratio, the frequency of the
pure distortional in-plane modes of vibration relative to
that of the flexural modes increases. For example, for
L,/h = 4, the first, the fourth and the eighth frequencies
correspond to pure distortional in-plane modes of vibra-
tion but for L./h = 12, the third and the sixth frequencies
are for pure distortional in-plane modes of vibration.

For each value of m and n in (37) there are infinitely
many through-the-thickness modes of vibration with
frequencies noticeably higher than those of flexural
modes, e.g. see Vel and Batra [22]. Batra et al. [13] used
the present mixed higher-order shear and normal
deformable plate theory to determine natural frequencies
and wave propagation in a simply supported orthotropic
plate. They assumed the form (37) for displacements and
thus simplified the problem considerably. However,
expressions (37) for displacements are valid for simply
supported plates only.

The non-dimensional frequencey, @, listed in Table 1
is related to the dimensional frequency, @, by

2(1+v)p
—

w = wh

(38)

It is clear that for L,/h=4,8,12 and 20, the computed
first ten frequencies match very well with their corre-
sponding analytical values, and the maximum difference
between the two is less than 4.2% for L./h =4 and 8. A
fifth-order mixed shear and normal deformable plate
theory was used to compute frequencies of these plates.
However, for L,/h =12 and 20, a third-order mixed
shear and normal deformable plate theory was em-
ployed, and the error between the computed and the ex-
act first ten frequencies was less than 4.1% for L, /h =12
and less than 10% for L,/h = 20. The latter rather large
difference occurs for the eighth mode that correspond to
m =5, n = 1. Note that a large value of K captures better
the through-the-thickness variation of different field
variables. However, to adequately represent variations
of displacements in the x;- and x,-directions, one needs
to refine the FE mesh. The number of nodes used in the
xi-direction is not enough to represent well the four or
five half-sine waves in the x;-direction.

In order to see if the plate theory can accurately pre-
dict through-the-thickness distribution of the transverse
normal and the transverse shear stresses, we have listed
in Table 2 their values computed from the plate theory
and the analytical solution. The maximum error in o33
is less than 2% and that in g3 is around 1%o; these stresses
have been computed from Egs. (12)4 5 of the plate theory.

Table 3 lists first eight natural frequencies for a
clamped rectangular plate with L,=2L, and L,/h=

4,8,12 and 20. For L,/h =8, computed frequencies are
found to differ from those reported by Liew and Teo
[20] by less than 6%; the maximum difference is for the
sixth frequency and corresponds to an antisymmetric
mode of vibration. Liew and Teo used the differential
quadrature method to compute frequencies; thus their
solution is also approximate. A comparison of results
listed in Tables 1 and 3 reveals that edge conditions sig-
nificantly influence not only the natural frequency but
also the mode shape. As stated by Batra and Aimmanee
[15] in-plane pure distortional modes are inadmissible in
a clamped plate. With an increase in the aspect ratio
from 4 to 20, the first nondimensional natural frequency
decreases from 0.7854 to 0.0589 for a simply supported
plate and from 1.4261 to 0.1154 for a clamped plate.
Whereas for a simply supported plate the mode shape
changes from pure distortional for L,/h = 4 to antisym-
metric for L,/h = 20, there is no change in the first mode
shape for a clamped plate. Fig. 2 exhibits through-the-
thickness distributions of the transverse normal stress
and the transverse shear stress on two or three vertical
lines for the clamped rectangular plate vibrating in the

——— @xL, =0.46875, y/L =0.03125 \ /
@x/L =0.46875, yiL =0.46875 N/
-4 1 @ /L, =0.03125, yL =0.46875
-1.0 -0.5 0.0 0.5 1.0
(a) 2/(h/2)
1.2
1.0
0.8
S
=
o
o 0.6 y
= / \
N / \
0.4 / \
© / \
/ ——— @ XL =046875, y/L =0.28125 \
024 / @ L, =0.21875, yiL 046675 \
0.0 T T T
-1.0 -0.5 0.0 0.5 1.0
(b) z/(h/2)

Fig. 2. Through-the-thickness distribution of: (a) the transverse
normal stress, and (b) the transverse shear stress for a clamped
rectangular plate vibrating in the fundamental mode.
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Table 4

First eight nondimensional frequencies of a CFCF rectangular plate (L, = 2L,) clamped on edges x, =0 and x, = L,
L.J/h=4 L.J/h=38 L.J/h=12 L./h=20

Mode Frequency (K = 5) Mode Frequency (K = 95) Mode Frequency (K = 3) Mode Frequency (K = 3)
1(a) 1.2974 1(a) 0.5020 1(a) 0.2591 1(a) 0.1048
2(a) 1.3322 2(a) 0.5184 2(a) 0.2688 2(a) 0.1091
3(s) 1.5093 3(a) 0.5902 3(a) 0.3085 3(a) 0.1264
4(a) 1.5196 4(a) 0.7493 4(a) 0.3926 4(a) 0.1630
5(s) 1.9242 5(s) 0.7542 5(s) 0.5018 5(a) 0.2239
6(a) 1.9396 6(s) 0.9630 6(a) 0.5294 6(a) 0.2688
7(a) 2.5350 7(a) 1.0046 7(a) 0.6137 7(a) 0.2740
8(a) 2.5537 8(a) 1.1009 8(a) 0.6251 8(a) 0.2936

fundamental mode. These plots verify that the boundary
condition of null tractions on the top and the bottom
surfaces are very well satisfied. The through-the-thick-
ness distribution of the transverse shear stress is para-
bolic and is nearly the same on the two vertical lines
considered. Near some points on the clamped surfaces,
the transverse normal stress exhibits a boundary-layer
like phenomenon.

——— @L,=0475, yiL =0.025
@ XL, =0.475, yiL =0.475

1.2
1.0
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N
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(b) z/(h/2)

Fig. 3. Through-the-thickness distribution of the transverse
shear stress: (a) ;3 and (b) g3 for a clamped-free rectangular
plate vibrating in the fundamental mode.

We have listed in Table 4 the first eight frequencies of
a rectangular plate with L, =2L,, the edges x, =0 and
L, clamped and the other two traction free, and aspect
ratio L,/h =4, 8, 12 and 20. Frequencies of plates with
L,/h =4 and 8 were computed with K= 5, and of other
plates with K = 3. Pure distortional modes are inadmis-
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@) 2(h/2)
1.2
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— —— 2zh=-05, yL,=0.5

0.0 02 04 06 08 1.0
(b) x-normalized(x/L,)

Fig. 4. For a clamped-free rectangular plate vibrating in the
first mode: (a) through the thickness distribution of the trans-
verse normal stress on two vertical lines, and (b) the variation of
o11 on two horizontal lines.
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sible in this plate too. Comparing the first flexural fre-
quency listed in Tables 1, 3 and 4 we find that for each
one of the four values of L./h, the simply supported
plate has the lowest frequency and the clamped plate
the highest. For each one of three edge conditions, the
first eight frequencies of a plate with L,/h =20 corre-
spond to antisymmetric modes of vibration but those
of a plate with L,/h =4, 8 and 12 have at least one mode
amongst the first eight for which deformations are sym-
metric about the midsurface of the plate; a plate theory,
such as the classical one, that neglects deformations
symmetric about the midsurface will not capture this
vibration mode. Fig. 3 evinces through-the-thickness
distribution of the transverse shear stresses o3 and 6,3
on two arbitrarily chosen vertical lines. Whereas the var-
iation of ¢,3 is parabolic on one line, on the other line it
seems to exhibit a boundary layer type behavior at
points adjacent to the top and the bottom traction free
surfaces of the plate. The variation of ¢;3 on the two
lines is not parabolic. In all of these four cases, ;3
and o,3 vanish, as they should, on the top and the bot-
tom surfaces of the plate. The through-the-thickness dis-
tribution of ¢33 for a clamped-free plate plotted in Fig.
4a is similar to that of a clamped-clamped plate. Results
depicted in Fig. 4b reveal that the axial stress, o;y, is
essentially constant in the central (4/10)th of the plate.
Again, the boundary condition of ¢1; =0 at x; = 0 and
L, is well satisfied.

The compatible version of the present mixed higher-
order shear and normal deformable plate theory has
been successfully used to analyze free and forced vibra-
tions of a thick functionally graded plate [18,25-28].

Table 5
Comparison of the present approach with the FEM

5. Comparison of present approach with the solution of
the 3D problem by the FEM

Batra et al. [21] found that a uniform 40 x 40 FE mesh
of 20-node brick elements with four elements in the thick-
ness direction coupled with three-dimensional linear elas-
ticity equations gives reasonably accurate values of the
first ten natural frequencies. Thus displacement compo-
nents in each direction are approximated with piecewise
quadratic functions. This mesh results in 177,147 degrees
of freedom (DOF) for a plate free at the edges. With the
present plate theory, a 40 x 40 uniform FE mesh of 8-
node elements on the midsurface of the plate and K=5
has 118,098 DOF and gives equally accurate values of
first ten natural frequencies, and stress distributions in
the plate. Furthermore, in the present plate theory, we
can split the free-vibration problem into two sub-prob-
lems, i.e., one for symmetric modes and the other for
anti-symmetric modes. Thus, the number of DOF in
the higher order plate theory for each sub-problem will
be 59,049 resulting in a considerable saving in the CPU
time relative to that needed for the conventional FEM.

Other differences between the present approach and
the FEM are delineated in the following Table 5.

6. Comparison of the present mixed higher order Plate
theory with other higher order Plate theories

The key advantages of the present mixed higher order
plate theory over other higher order plate theories are
listed in Table 6.

Item

Present higher-order plate theory

Finite Element method

Input needed
Refine computed frequencies

Refine through-the-thickness mode shapes

Through-the-thickness variation of displacements

Variation of displacements in the in-plane directions
Through-the-thickness variation of transverse stresses

Through-the-thickness variation of in-plane stresses

Traction boundary conditions on the top
and/or the bottom surfaces

Boundary conditions on the edges

Effort required to prepare the input file

CPU time
Can separate symmetric and antisymmetric modes

2-dimensional mesh on the mid-surface
Increase the order, K, of the plate theory
and/or refine the 2-dimensional mesh

Increase the order, K, of the plate theory
Polynomial of order K

Same as for the FEM
Polynomial of order (K + 1)

Polynomial of order (K — 1)
Satisfied exactly at every point

Satisfied in the weak sense
Considerably less as compared

to that for the FEM

Less as compared to that for the FEM
Yes

3-dimensional mesh

Add more elements in the
thickness direction and/or
in other two directions
Add more elements in the
thickness direction
Usually piecewise linear
or quadratic

Usually constant or piecewise
linear within each element
Usually constant or piecewise
linear within each element
Satisfied in the weak sense

Satisfied in the weak sense




946 R.C. Batra, S. Aimmanee | Computers and Structures 83 (2005) 934-955

Table 6

Comparison of the present mixed higher order plate theory with other higher order plate theories

Ttem

Present mixed theory

Other theories

Order of polynomial for transverse stresses

Traction boundary conditions on the top and/or the bottom surfaces

Stresses computed from equations of the plate theory
Tangential tractions on the top and/or the bottom surfaces

Equal pressure loads on the top and the bottom surfaces

Order of governing partial differential equations

(K+2) (K-1)
Exactly satisfied May not be exactly satisfied
Yes No

May be non-zero;
exactly satisfied
Make contributions
for all values of K
2

Tacitly set equal to zero;
not exactly satisfied
Usually contribute only for K> 0

Generally 4

7. Conclusions

We have used the finite element method and the
mixed higher-order shear and normal deformable
plate theory of Batra and Vidoli [8] to compute nat-
ural frequencies of a rectangular plate made of an
isotropic and homogeneous material. The edges of
the plate are either simply supported or clamped, or
two opposite edges are clamped and the other two
are free. The length, L., of the plate in the x;-direc-
tion equals either L, or 2L,; L, being the length in
the x,-direction. The plate theory exactly satisfies
boundary conditions of null tractions on the top
and the bottom surfaces of the plate. All components
of the stress tensor are computed from equations of
the plate theory.

For L,/h =4 and 8, the fifth-order mixed shear and
normal deformable plate theory gives frequencies and
through-the-thickness distributions of transverse shear
and normal stresses that are very close to the analyti-
cal solution of the problem for a simply supported
plate. For L./h=12 and 20, frequencies computed
from the third-order plate theory agree well with those
obtained from the analytical solution of the problem.
First eight frequencies of a clamped rectangular plate
with L,/L,=2 and L,/h=38 are found to match well
with the results of Liew and Teo [20]. The through-
the-thickness distribution of transverse shear stresses
suggests the existence of a boundary layer phenome-
non adjacent to the top and the bottom surfaces of
the plate. Natural frequencies and through-the-thick-
ness distributions of transverse stresses have also been
computed for a rectangular plate with two opposite
edges clamped and the other two traction free.

Appendix A

For a transversely isotropic material with x;-axis as
the axis of transverse isotropy matrices C”?, C*, C*",
etc. of Eq. (5) in terms of the more familiar elastic con-
stants are

1 -V 0
cr :EL1 —Vi2 1 0 ,
0 0  2(1+vp)
00
=10 0],
00
—V31
c” :EL3 V31 ¢
0 0 0O (%)
1)
= {0 0 0}’
C — {1/}‘13 0 }
0 s

Ctn: 0
0 )

cr— (- g 0}
c"={0 0},

nn 1 Viz V3
C —_ E_‘3 [1]7 E_l —_— E_3 .
In Egs. (8) E; and E; are Young’s moduli along the x;-
and the x3-axes, respectively, v and v;3 are Poisson’s
ratios in the x;x,- and the xjx3-planes respectively,
and py3 is the shear modulus in the xjx3-plane. There
are five elastic constants: Ey, E3, via, Vi3, ft13-

For an orthotropic material with coordinate planes

aligned along the planes of material symmetry
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cr=[-2 -2 0], C"=[0 0],

Cr=—[], W m e (40)
" E1 E;’ E, Ei

Here E;, E, and E; are Young’s moduli along the x;-,
x;- and x3-axes respectively, vy, v3 and v;3 are Poisson’s
ratios and p;», io3 and p;3 are shear moduli in the x;x,-,
xpx3- and x3x;- planes respectively. Nine elastic con-
stants characterize an orthotropic material.

For monoclinic, triclinic, hexagonal and trigonal
materials, it is simpler to use numerical values of elastic
constants to find the compliances.

Appendix B

For K =7, modified Legendre polynomials are

Lo(z) = 2‘5[6 (93 + 126022 — 6930z* + 120122° — 64352°),
Li(2) —L\ﬁ(dél + 13860z° — 540542°
1\Z _256 3 z 1z Z

+ 732027 — 364652°),

~ 1 P2
Ly(z) = 356 \[ (—495 + 726022 — 34650z*
+ 60060z° — 321752%),

~ . .1 ] 3 s

Ls(z) =556 \[7( 3549z + 345802° — 126126z
+ 180180z" — 85085z"),

. 1 V2

Ly(z) = 3563 == (117 4 70202* — 57330z*
+1081082° — 579152%),

- )
Ls(z) =55¢ \/77(~8252 +273002" — 1871102°

+ 28314027 — 1337052°),

. 1 /2

Lo(z) =556 \/73(~975 + 273002 — 1228502*
+1801802° — 836652°),

. )

L1(2) = 535 | 75(~89252 + 1071002 — 3534302’

+ 43758027 — 1823252°).

Appendix C

For K =35, balance equations (17) for a plate with
null body forces become the following 18 equations:

N(;;;/,—pu(f, a=1,2,

yw \/_TO) *pu
1[}[} \/“T D= P”
VT ~ \/ﬁTﬁ = piily,
) —3V3TY — 37O = pir¥,
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TO) = pu
- \/52 :pug”,
V152 79“% >

T fi — V750 V3550 = piif)
T —3v33W —3v750) = pil?,
—VITE® — /35500 — 3135 = piil).

For a free plate (i.e. null tractions on its top and bot-
tom surfaces) made of an isotropic material, and K =1,
3 and 5, the solution of equations (18) for N, T and
2@ in terms of strains is given below.
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