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We use the energy equivalence principle and the Mori-Tanaka method of considering the
interaction among inclusions to derive the effective thermo-electro-mechanical properties of
a 4-phase composite consisting of an elastic matrix and shape memory alloy, piezoelectric
and inert (nonpiezoelectric) inclusions. It is shown that the shapes and the volume fraction
of inert (e.g. air) inclusions significantly influence the effective properties of the composite,
and the addition of soft inert inclusions decreases the axial stress required to initiate the phase
transformation in the SMA inclusions, and increases the electromechanical coupling constant.
The 4-phase composite makes a very good sensor to measure low values of the applied axial
stress since the axial strain induced by an axial stress of 80 MPa is 2%, and the sensitivity of
the sensor is improved by the addition of soft spherical inert inclusions. With a suitable choice
of the matrix material, its compliance can be adjusted and its shape made to conform to that
of the host structure.

Key words: smart composite, effective moduli, Eshelby tensors, static deformations, ellipsoidal
inclusions

1 Introduction

A “smart composite” comprised of piezoelectric ceramic (PZT�) and/or shape memory alloy (SMA) in-
clusions embedded in a polymer matrix can be designed to control it’s shape when subjected to different
loads. However, the manufacturing process inevitably introduces in the composite nonpiezoelectric (NPZT)
or inert inclusions such as voids. Soon after the appearance of barium titanate as a useful piezoelectric ce-
ramic, researchers at the Naval Research Laboratory embedded it in a polymer matrix to make a flexible
hydrophone material (Smith, 1989). Since then a variety of piezocomposite materials, usually called piezo-
composites, have been manufactured by suitably combining a PZT with a polymer phase (e.g. see the web site
http://www.matsysinc.com/piezopg.html). Piezocomposites have been used as electromechanical and medical
ultrasonic imaging transducers. They are more suitable for damage monitoring since their impedance can
be matched with that of the host structure and their mechanical peroperties can be tailored as needed. A
cost effective piezocomposite with the desired electromechanical coupling constants and impedance can be
manufactured by controlling the shape, the size and the volume fraction of the PZTs, and the materials of the
two phases. Here we investigate effective electromechanical properties of a four phase composite comprised
of PZT, SMA, and NPZT inclusions in a polymer matrix with the ultimate goal of ascertaining if the addition

Dedicated to Professor Ingo M̈uller on the occasion of his 65th birthday
� The abbreviation PZT is used for a generic piezoelectric ceramic rather than any specific material.
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of suitable SMA and NPZT inclusions can be exploited to improve upon properties of the piezocomposite.
We emphasize at the outset that not every known effect in a PZT and a SMA has been incoroporated in the
analysis. In order to keep the analysis tractable, only infinitesimal deformations are considered. This is reason-
able because the ultimate tensile strain of the brittle PZT material is about 0.1 to 0.2%. Stress induced phase
transformations in the SMA are considered because that is the primary actuation mechanism for an SMA.
However, hysteresis and domain switching effects in the PZT and temperature induced phase transformations
in the SMA have not been considered. Accordingly, when hysteresis and domain switching effects in the PZT
are important, the effective moduli derived here are applicable only for isothermal monotonic mechanical or
electric loading of the piezocomposite along the axis of polarization of the PZT inclusions. These material
and geometric nonlinearities and coupled thermo-electro-mechanical effects can be considered in a numerical
study which is not pursued here. Nevertheless expressions given here for the effective electroelastic moduli
can be used to decide which combination of PZT, SMA and NPZT inclusions in a polymer matrix will be
most suitable for achieving a desirable goal. Also, the goal of finding the optimum combination of PZT,
SMA, and matrix materials and the NPZT inclusions for maximizing a given system property is not pursued
here; however tools to achieve this goal are developed. The SMA inclusions are assumed to be electrically
insulated from their surrounding medium so that they do not short circuit the electric potential applied to the
bounding surfaces. Thus the composite can exhibit piezoelectric properties. We briefly review below some of
the previous work on porous piezocomposites.

Ting (1990) observed that the hydrostatic piezoelectric coefficient of an 1-3 piezocomposite increases
when cavities are added to the matrix. Lynn et al. (1981), Klicker et al. (1982) and Haun et al. (1983)
found that making the matrix of an 1-3 piezocomposite porous enhances it’s sensitivity to the hydrostatic
pressure. In the notation 1-3 the 1 refers to the one-dimensionally connected PZT phase, and the 3 to the
three-dimensionally connected polymer or matrix phase. An 1-3 piezocomposite with a porous matrix is
denoted as 1-3-0; the 0 referring to the polymer porosity which is not connected in the composite.

Hikita et al. (1983) have investigated the effect of pores on the electromechanical properties of a porous
piezocomposite. Paul and Nelson (1996) have studied the effect of voids on the flexural vibrations of a
composite hollow cylinder. Haun and Newnham (1986) have developed a model to predict the effective
electroelastic constants of an 1-3-0 piezocomposite comprised of one large void containing PZT rods in the
center of the composite. However, this geometric configuration is rather unrealistic. Avellaneda and Swart
(1998) employed the effective medium approach to delineate the performance of a porous 1-3 piezocomposite
and accounted for the effect of pores by modifying Young’s modulus of the matrix. Their approach does not
account for shapes of voids, the interaction among them, and the change in their shapes during the deformation
process.

Here we develop constitutive relations for thermoelectroelastic deformations of a 4-phase composite made
of PZT, NPZT and SMA inclusions embedded in an elastic matrix, and account for shapes of voids, interactions
among inclusions, and phase transformations in the SMA. Note that cavities or air bubbles can be modeled
as NPZT inclusions. The composite body is assumed to be at a uniform temperature, and expressions for
effective thermal moduli such as thermal conductivity are not derived. In a previous paper (Jiang and Batra,
2001) we used the mean field theory and the Mori-Tanaka method to derive macroscopic constitutive relations
of a 3-phase composite consisting of PZT and SMA inclusions embedded in an elastic matrix. Here we use
the energy equivalence principle and deduce expressions for the effective moduli of a 4-phase composite
wherein the fourth phase is the NPZT inclusions. These expressions are used to deduce effective moduli of
the 4-phase composite mode of an elastic matrix, PZT inclusions made of BaTiO3, SMA inclusions made of
a NiTi alloy, and the NPZT inclusions are made of a material either harder or softer than the elastic matrix.
No attempt has been made to select the best combination of materials from the ones commercially available
to optimize a material modulus. It is shown that many of the thermoelectroelastic properties of the 4-phase
composite are superior to those of the 3-phase composite when the NPZT inclusions of appropriate shapes
and material are added to the 3-phase composite.

We note that the response of a SMA inclusion can be modeled as either pusedoelastic (Müller, 1998) or
thermo-elasto-plastic (e.g. see Cherkaoui et al., 2000) and it undergoes a phase transformation with a change
in stress and/or temperature. Thus the macroscopic response of the 4-phase composite studied herein will be
thermo-electro-elasto-plastic.
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2 Representative volume element

Consider a representative volume element (RVE) of randomly oriented SMA, PZT and NPZT inclusions
embedded in an NPZT matrix. The RVE encompasses large enough volume so that it’s effective properties
are invariant with respect to it’s rigid translations within the body. In rectangular Cartesian coordinates, linear
constitutive relations for the constituents of the 4-phase composite are (e.g., see Lines and Glass, 1977)

σij = Cr
ijkl (εkl − ε̄r

kl ) − er
kij Ek − λr

ij θ, (1)

Di = er
ikl εkl + kr

ij Ej + pr
i θ, (2)

s = λr
ij εij + pr

i Ei + ωr θ, (3)

where r = M , P, N and S for the matrix, PZT, NPZT and SMA inclusions respectively. Note that

ε̄r
kl = 0 for r �= S, (4a)

and

pr
i = 0 and er

ikl = 0 for r �= P. (4b)

Here σij is the stress tensor, εij the strain tensor appropriate for infinitesimal deformations, ε̄S
ij the transforma-

tion strain in the SMA, Ei the electric field, Di the electric displacement, θ the change in the temperature from
that in the reference configuration, and s the entropy density. Furthermore, Cijkl = Cjikl = Cklij are the elas-
ticities, λij the stress-temperature moduli, kij the dielectric constants, pi the pyroelectric constants, eijk = eikj

the piezoelectric constants, and ω the change in entropy density caused by a unit change in the temperature.
A repeated index implies summation over the range of the index. For r = S the transformation induced stress
represented by CS

ijkl ε̄
S
kl essentially smears the austenite/martensite together into a homogeneous medium. A

more rigorous treatment would have been to consider the martensite moduli and the transformation strain to
compute this transformation induced stress. However, for practical purposes, the approach followed herein
should be adequate.

We note that two phases, namely austenite and martensite, can coexist in the SMA, and their volume
fractions depend upon the state of stress and the temperature. Here we assume that the temperature is kept
constant and study only the stress induced phase transformations. The material properties of an SMA can be
determined from those of the austenite and the martensite phases by using either the mean field theory or the
energy equivalence method or the rule of mixtures. Lu and Weng (2000) regarded the martensite phase as an
inclusion in the austenite phase of the SMA to estimate it’s effective moduli. However, we follow Boyd and
Lagoudas (1994) and assume that the rule of mixtures approximates well the overall properties of an SMA;
this simplifies the work significantly without introducing appreciable errors. Thus

CS
ijkl = (1 − ξ)Ca

ijkl + ξCm
ijkl (5)

and similar relations hold for αS
ij , kS

ij , pS
i and ωS, where αS

ij is the coefficient of thermal expansion of the
SMA. In (5) superscripts a and m signify quantities for the austenite and the martensite respectively, and the
volume fraction ξ of the martensite phase is given by

ξ =
ε̄e

ε̄max
, ε̄e =

(
2
3
ε̄ij ε̄ij

) 1
2

, ε̄ij = ε̄S
ij , (6)

where ε̄max is the maximum value of the equivalent transformation strain ε̄e, which is regarded as a material
property (Song et al., 1999).
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3 Free energy of the RVE

Taking the infinitesimal strains, the electric field and the temperature as independent variables, the electric
Gibbs free energy density, g, for electro-thermo-mechanical deformations of a body is given by (e.g. see
Lines and Glass, 1977)

g =
∫ (εij ,Ei ,θ)

(0,0,0)
(σij dεij − Di dEi − sdθ). (7)

Since the electric Gibbs free energy density is a state function, the integration in (7) is path independent.
Substitution from constitutive relations (1)-(3) into (7) yields

gr =
1
2

(σij εij − Di Ei − sθ), r = M , P, N ,

gS =
1
2

(σij εij − Di Ei − sθ) − 1
2

CS
ijkl εij ε̄kl . (8)

In the derivation of (8)2, the transformation strain ε̄ij in the SMA has been taken to be a constant; in general,
ε̄ij will be a function of εij . A possibility is to set ε̄ij equal to the mean value of the transformation strain
during the deformation process. The average electric Gibbs free energy density of the RVE of the composite
is related to that of its constituents by

G =
1
v

∫
v

gdv =
1
v

∑
r =M ,P,S,N

∫
vr

gr dv =
4∑

i =1

Gi , (9)

where v is the volume of the RVE, vr is the volume of the r -th phase, and

G1 =
1

2v

∫
v

σij εij dv, G2 = − 1
2v

∫
v

Di Ei dv,

G3 = − 1
2v

∫
v

sθdv, G4 = − 1
2v

∫
vs

ε̄ij C
S
ijkl εkl dv. (10)

Let the essential boundary conditions prescribed on the bounding surfaces of the RVE correspond to the
uniform strain ε0

ij , the uniform electric field E0
i , and the uniform temperature change θ0 in the RVE. Then∫

v

σij εij dv = ε0
ij

∫
v

σij dv,

∫
v

εij dv = ε0
ij v,

∫
v

Di Ei dv = E0
i

∫
v

Di dv,

∫
v

Ei dv = E0
i v. (11)

Substituting from constitutive relations (1)-(3) into (10) and using relations (11), we arrive at

G1 =
1
2
ε0

ij


CM

ijkl ε
0
kl − λM

ij θ0 +
∑

r =P,S,N

f r
〈
∆Cr

ijkl εkl − ∆λr
ij θ
〉

r
− f P

〈
eP

kij Ek
〉

P
− f S

〈
CS

ijkl ε̄kl
〉

S


 ,

G2 = − 1
2

E0
i


kM

ij E0
j + pM

i θ0 +
∑

r =P,S,N

f r
〈
∆kr

ij Ej + ∆pr
i θ
〉

r
+ f P

〈
eP

ikl εkl
〉

P


 ,

G3 = − 1
2
θ0


λM

ij ε0
ij + pM

i E0
i + ωM θ0 +

∑
r =P,S,N

f r
〈
∆λr

ij εij + ∆pr
i Ei + ∆ωr θ

〉
r
− f S

〈
∆λS

ij ε̄ij
〉

S


 ,

G4 = − 1
2

f S
〈
ε̄ij C

S
ijkl εkl

〉
S

,

(12)
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where f r (r = P, S, N ) is the volume fraction of the r -th phase,

∆Cr
ijkl = Cr

ijkl − CM
ijkl , (r = P, S, N ), (13)

and similar relations hold for ∆λr
ij , ∆kr

ij , ∆pr
i and ∆ωr . In (12),

< (·) >r =
1
vr

∫
vr

(·)dv, r = P, S, N . (14)

In terms of the effective thermoelectroelastic moduli C̄ijkl , ēijk , k̄ij , λ̄ij , p̄i , ω̄ and fields, σ̄∗
ij , D̄∗

i , s̄∗ and
Ḡ∗ of the RVE, the energy density of the RVE can be written as

Ḡ =
1
2

{
ε0

ij C̄ijkl ε
0
kl − 2E0

i ēikl ε
0
kl − E0

i k̄ij E
0
j − 2θ0λ̄ij ε

0
ij

−2θ0p̄i E
0
i − θ0ω̄θ0 + 2σ̄∗

ij ε
0
ij − 2D̄∗

i E0
i − 2s̄∗θ0 − Ḡ∗} , (15)

where Ḡ∗ is the initial value of the electric Gibb’s free energy, and σ̄∗
ij , D̄∗

i and s̄∗ are, respectively,
values of the residual stress, the residual electric displacement and the residual entropy density caused by the
transformation strain. These are determined from the transformation strain ε̄ij , the electromechanical properties
of the matrix and the inclusions, and the method used to account for the interaction among inclusions and
the matrix.

The principle of energy equivalence states that

4∑
i =1

Gi = Ḡ. (16)

However, from (16), one cannot obtain effective properties of the composite because one does not know
strains and electric fields within the inclusions. Therefore, we employ approximate methods to get strains and
electric fields from fields applied on the bounding surfaces of the RVE and eigenfields within the inclusions.

4 Effective thermoelectroelastic properties of the composite

Recalling that boundary conditions applied on the boundaries of the RVE correspond to the uniform strain ε0
ij ,

the uniform electric field E0
i , and the uniform temperature change θ0, the average strain ε̂r

ij and the average

electric field Êr
i in the PZT (r = P), the SMA (r = S) and the NPZT (r = N ) inclusions are given by

ε̂r
ij = Lr

ijkl ε
0
kl + Nr

ijk E0
k + Rr

ij θ
0 + ε∗∗r

ij ,

Êr
i = Pr

ikl ε
0
kl + Qr

ik E0
k + Jr

i θ0 + E∗∗r
i . (17)

Expressions for tensors Lr
ijkl , Nr

ijk , Rr
ij , Pr

ikl , Qr
ik , Jr

i and for the interaction tensors, ε∗∗r
ij , and E∗∗r

i that account
for the interaction among inclusions vary with the approximate method used to derive them. For example, if
the dilute solution method is used to obtain ε̂r

ij and Êr
i , then tensors L, N etc. equal the thermoelectroelastic

Eshelby tensors for a single inclusion embedded in an infinite matrix, and ε∗∗r
ij and E∗∗r

i equal respectively
ε̄r

ij and 0 in the inclusion. However, if the interaction among inclusions is considered, then tensors L, N, ε∗∗r
ij

and E∗∗r
i etc. can be obtained by the Mori-Tanaka method, the self-consistent estimates or other approximate

methods. Expressions for tensors L, N etc. and interaction fields ε∗∗r
ij and E∗∗r

i based on the Mori-Tanaka
method are given in the Appendix.

Substituting from (17) into (12) and the results into (16), and considering the arbitrariness of the applied
fields, we obtain following expressions for the effective thermoelectroelastic moduli of the composite:
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C̄ijkl = CM
ijkl + sym

{ ∑
r =P,S,N

f r
〈
∆Cr

ijmnLr
mnkl

〉
r
− f P

〈
eP

mij P
P
mkl

〉
P

}
,

ēkij =
1
2

{
f P
〈
eP

kmnL
P
mnij + eP

mij Q
P
mk

〉
P

+
∑

r =P,S,N

f r
〈
∆kr

kmPr
mij − ∆Cr

ijmnNr
mnk

〉
r

}
,

k̄ij = kM
ij + sym

{ ∑
r =P,S,N

f r
〈
∆kr

imQr
mj

〉
r

+ f P
〈
eP

imnNP
mnj

〉
P

}
,

λ̄ij = λM
ij +

1
2

{
f P
〈
eP

mij J
P
m

〉
P

+
∑

r =P,S,N

f r
〈
∆λr

mn

(
Lr

mnij +Imnij
)

+∆pr
mPr

mij −∆Cr
ijmnRr

mn

〉
r

}
,

p̄i = pM
i +

1
2

{
f P
〈
eP

imnRP
mn

〉
P

+
∑

r =P,S,N

f r
〈
∆kr

ij J
r
j + ∆λr

mnN
r
mni + ∆pr

m(Qr
mi + δmi)

〉
r

}
,

ω̄ = ωM +
∑

r =P,S,N

f r
〈
∆ωr + ∆λr

ij R
r
ij + ∆pr

i J r
i

〉
r
,

σ̄∗
ij =

1
2

{ ∑
r =P,S,N

f r
〈
∆Cr

ijmnε
∗∗r
mn

〉
r
− f P

〈
eP

mij E
∗∗P
m

〉
P

− f S
〈
ε̄mnC

S
mnpq(Ipqij + LS

pqij )
〉

S

}
,

D̄∗
i =

1
2

{ ∑
r =P,S,N

f r
〈
∆kr

ij E
∗∗r
j

〉
r

+ f P
〈
eP

imnε
∗∗P
mn

〉
P

+ f S
〈
ε̄mnC

S
mnpqN

S
pqi

〉
S

}
,

s̄∗ =
1
2

{ ∑
r =P,S,N

f r
〈
∆λr

ij ε
∗∗r
ij + ∆pr

i E∗∗r
i

〉
r
− f S

〈
ε̄ij (λS

ij − CS
ijmnRS

mn)
〉

S

}
,

Ḡ∗ = f S
〈
ε̄ij C

S
ijmnε

∗∗S
mn

〉
S

. (18)

Here “sym” stands for the symmetric part of a tensor, i.e., sym(Aijkl ) = 1
2 (Aijkl +Aklij ), and sym(Bij ) = 1

2 (Bij +Bji ),
and Iijkl is the fourth-order unit tensor, viz., Iijkl = (δikδjl + δil δjk )/2 where δij is the Kronecker delta.

In the space of strain, electric field and temperature, constitutive relations of the composite obtained from

σ0
ij =

∂G

∂ε0
ij

, D0
i = − ∂G

∂E0
i

, s0 = − ∂G
∂θ0

, (19)

are

σ0
ij = C̄ijkl ε

0
kl − ēkij E

0
k − λ̄ij θ

0 + σ̄∗
ij ,

D0
i = ēikl ε

0
kl + k̄ij E

0
j + p̄i θ

0 + D̄∗
i ,

s0 = λ̄ij ε
0
ij + p̄i E

0
i + ω̄θ0 + s̄∗. (20)

Note that effective elasticities C̄ and effective dielectric constants k̄ exhibit symmetries C̄ijkl = C̄klij and
k̄ij = k̄ji even when the shapes of the PZT, SMA and NPZT inclusions are different. However, when effective
properties are derived by the mean field theory, effective elasticities C̄ and effective dielectric constants k̄
may not exhibit such symmetries; e.g. see Qiu and Weng (1990).

If the independent variables are stress, electric field and temperature, the thermodynamic function is
the Gibbs free energy F which can be obtained from the electric Gibbs free energy G by the Legendre
transformation

F = −(G − σ0
ij ε

0
ij ), (21)

where σ0
ij is given by (20)1. Therefore, we have

F =
1
2

{
σ0

ij M̃ijkl σ
0
kl + 2E0

i d̃ikl σ
0
kl + E0

i k̃ij E
0
j + 2θ0α̃ij σ

0
ij

+ 2θ0p̃i E
0
i + θ0ω̃θ0 + 2ε̃∗

ij σ
0
ij + 2D̃∗

i E0
i + 2s̃∗θ0 + G̃∗

}
, (22)
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where

M̃ijkl = C̄−1
ijkl , d̃ikl = ēimnM̃mnkl,

k̃ij = k̄ij + d̃imnējmn, α̃ij = M̃ijkl λ̄kl ,

p̃i = p̄i + ēimnα̃mn, ε̃∗
ij = −M̃ijkl σ̄

∗
kl ,

D̃∗
i = D̄∗

i + ēimnε̃
∗
mn, ω̃ = ω̄ + α̃ij λ̄ij ,

s̃∗ = s̄∗ + λ̄ij ε̃
∗
ij , G̃∗ = Ḡ∗ − σ̄∗

ij ε̃
∗
ij .

(23)

Thus, constitutive relations of the composite in the space of stress, electric field and temperature obtained
from

ε0
ij =

∂F

∂σ0
ij

, D0
i =

∂F

∂E0
i

, s0 =
∂F
∂θ0

, (24)

are

ε0
ij = M̃ijkl σ

0
kl + d̃pij E

0
p + α̃ij θ

0 + ε̃∗
ij ,

D0
i = d̃ikl σ

0
kl + k̃ipE0

p + p̃i θ
0 + D̃∗

i ,

s0 = α̃ij σ
0
ij + p̃i E

0
i + ω̃θ0 + s̃∗. (25)

5 Phase transformations in the SMA

The evolution of the volume fraction, ξ, of the martensite depends upon the state of stress and temperature
in the SMA. The stress state in the SMA is given by

σS
ij = U S

ijkl σ
0
kl + V S

ijk E0
k + WS

ij θ0 + σ∗∗S
ij , (26)

which is analogous to (17). Here

U S
ijkl = H 5S

ijmnLσ
mnkl, V S

ijk = H 5S
ijmnNσ

mnk,

WS
ij = F 3S

ij + H 5S
ijmnRσ

mn, σ∗∗S
ij = S5S

ijkl ε̄kl − f SU S
ijkl

〈
S5S

klmnε̄mn
〉

S
, (27)

and expressions for tensors H 5S
ijkl , S5S

ijkl , Lσ
ijkl , Nσ

ijk and Rσ
ij are given in the Appendix. When all of the SMA

inclusions are likewise oriented, we have

σ∗∗S
ij = YS

ijkl ε̄kl , (28)

where

YS
ijkl = (Iijmn − f SU S

ijmn)S5S
mnkl. (29)

Let Σ̇0
ij equal the change of stress in the SMA inclusions due to the variation of the applied fields σ0

ij , E0
i

and θ0, and Σ̇ξ
ij the change of stress in the SMA due to the evolution of the martensite phase. That is

Σ̇0
ij = U S

ijkl σ̇
0
kl + V S

ijk Ė0
k + WS

ij θ̇0,

Σ̇ξ
ij =

(
∂U S

ijkl

∂ξ
σ0

kl +
∂V S

ijk

∂ξ
E0

k +
∂WS

ij

∂ξ
θ0 +

∂YS
ijkl

∂ξ
ε̄kl

)
ξ̇ + YS

ijkl
˙̄εkl , (30)

where a superimposed dot indicates the change or the increment. Using (6)1 and (6)2, one can express ξ̇
in terms of ˙̄εij . Following Boyd and Lagoudas (1994), Song et al. (1999) and Cherkaoui et al. (2000), we
assume that



94 B. Jiang, R. C. Batra

˙̄εij =

{
Λ̇sS

ij , for the forward transformation,

Λ̇reε̄ij for the reverse transformation,
(31)

where Λ̇ and Λ̇re are proportionality factors to be determined from the consistency condition, and sS
ij is the

deviatoric stress tensor in the SMA inclusion. Note that dimensions of Λ̇ and Λ̇re are different. Finding the
incremental change in quantities from (26) and using (6), (30) and (31), we arrive at

Λ̇ = −
sS

ij Σ̇
0
ij − 2

3
sS

e
∂sfS

e

∂θ
θ̇0

sS
ij

[
2

3ε̄maxε̄e
Σ̇ξ

ij (ε̄kl s
S
kl ) + YS

ijkl s
S
kl

] , (32)

for the forward (austenite → martensite) transformation, and

Λ̇re = −
sS

ij Σ̇
0
ij − 2

3
sS

e
∂srS

e

∂θ
θ̇0

sS
ij

[
ε̄e

ε̄max
Σ̇ξ

ij + YS
ijkl ε̄kl

] (33)

for the reverse (marteniste → austenite) transformation. Here

sS
e =

(
3
2

sS
ij sS

ij

) 1
2

(34)

is the equivalent or the effective or the von Mises stress. The forward transformation initiates when sS
e = sfS

e (θ)
and the reverse transformation begins when sS

e = srS
e (θ). Note that sfS

e (θ) and srS
e (θ) are temperature dependent

material parameters. However, in the present work, the temperature is assumed to be uniform throughout the
body and is held constant. Also, θ̇0 = 0.

The transformation relation (31) smears out finer details of the phase transformation in the SMA. At
the microscopic level, both the austenite and the martensite are orthotropic materials, and the transformation
strain depends upon lengths of Burger’s vectors and rotations of lattice vectors. Lu and Weng (2000) consider
some of these effects in developing constitutive relations of a composite consisting of an elastomer matrix
and SMA inclusions.

6 Comparison with results from other models

To the authors’s knowledge, there is no experimental data available in the open literature on the effective
moduli of a 4-phase composite comprised of a polymer matrix, PZT, SMA and NPZT inclusions. Therefore,
we can compare results with either a 2-phase or a 3-phase composite. In order to establish the validity of
our results, we note that present values of the effective thermoelectroelastic moduli of a 3-phase composite
with PZT and SMA inclusions of the same shape embedded in an elastic matrix (i.e. f N = 0) reduce to those
of Jiang and Batra (2001) who derived them by using the mean field theory. The formulae of the effective
properties are different in the two approaches, but the numerical values come out to be same. However, when
the PZT and the SMA inclusions are of different shapes, the energy equivalence method used here and the
mean field theory approach adopted in Jiang and Batra (2001) may not give same values of the effective
electroelastic moduli. For example, the energy equivalence method preserves the symmetrices C̄ijkl = C̄klij and
k̄ij = k̄ji but the mean field theory does not. In the absence of SMA and NPZT inclusions, i.e., f N = f S = 0,
values of the effective moduli are identical with those of Jiang et al. (1999). Jiang et al.’s results compared
well with experimental findings of Chan and Unsworth (1989).

Setting f S = 0, and taking the PZT inclusions as cylindrical with their axis of polarization and hence of
transverse isotropy along the x3-axis and the NPZT inclusions as spherical voids, we compare in Figs. 1–3
present values of the hydrostatic charge coefficient, dh = (d̃3ii ), the hydrostatic figure of merit, dhgh(= dh/k̃33),
and the hydrostatic electromechanical coupling factor kh(= d2

h/(k̃33m), m = (2(M̃1111 +M̃1122)+4M̃1133 +M̃3333)
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with those obtained by Avellaneda and Swart (1998). We have taken Young’s modulus of spherical voids
equal to zero, Poisson’s ratio equal to that of the stycast matrix which is modeled as an isotropic material
and the relative dielectric constant equal to 1. We presume that voids are filled with air, and their volume
fraction, f N , is determined from

f N = φ(1 − f P )/(1 − ρair/ρstycast) � φ(1 − f P ), (35)

where φ is the porosity. Equation (35)2 follows from (35)1 since ρair � ρstycast. Values of material moduli
used in the calculations are listed in Table 1. Results plotted in Figs. 1 through 3 reveal that values of
dh , dhgh and kh computed with the present method are close to those obtained by Avellaneda and Swart
(1998) for small volume fractions of the PZT inclusions. Whereas the two sets of results agree qualitatively
for large values of f P and f N , they differ quantitatively. Possible reasons for these differences are the neglect
in Avellaneda and Swart’s work of the interaction among the PZT5A inclusions, and of the effect of their
shapes and orientations. Avellaneda and Swart set the dielectric constant of the porous matrix equal to that
of the stycast material and account for the presence of pores by modifying Young’s modulus of the stycast
matrix.

For the same volume fraction of the PZT inclusions, values of the hydrostatic charge coefficient and of the
hydrostatic figure of merit increase with an increase in the porosity of the composite. The same trend holds for
the electromechanical coupling factor kh only for small values of the volume fraction of the PZT inclusions.
For f P > 0.075, an increase in the porosity of the composite decreases the value of the electromechanical
coupling factor. We note that the dielectric constant of air is less than that of the stycast, and the interactions
among densely distributed PZT5A inclusions play a significant role in influencing the electroelastic moduli
of a piezocomposite. Also, as shown below, these moduli are very sensitive to the shapes and the orientations
of the inclusions.

Figure 4 depicts the variation of Young’s modulus, E , in the x3-direction with the porosity for an isotropic
linear elastic matrix containing ellipsoidal voids of aspect ratio R; similar results hold for the bulk modulus.
The principal axes of lengths a1, a2 and a3 of the ellipsoid are aligned along the x1, x2 and x3 axes respectively,
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Table 1. Values of nonvanishing material moduli used to compare results with those of Avellaneda and Swart

PZT 5A Stycast

C1111 (GPa) 120.0 12.34

C1122 (GPa) 75.18 5.19

C1133 (GPa) 75.09 5.19

C3333 (GPa) 111.0 12.34

C1313 (GPa) 21.1 3.575

e131 (C/m2) 12.3 0

e311 (C/m2) −5.4 0

e333 (C/m2) 15.8 0

k11/k0 916.0 4.0

k33/k0 830.0 4.0

k0 = 8.85 × 10−12 C/Vm2

0 0.25 0.5 0.75

1

2

3

4

5

6

7

8

9

1, 2

3

4

5

6

(GPa)

Porosity

1 R=1.0e+30
2 R=1.0e+1
3 R=1.0
4 R=1.0e-1
5 Avellaneda and Swart (1998)
6 Hill (1965)

R=a3 /a1 a1=a2

Fig. 4. Variation of Young’s modulus with
the porosity for different shapes of ellip-
soidal voids; a1, a2 and a3 are princi-
pal axes of the ellipsoid along x1, x2 and
x3 axes respectively. Results are compared
with those obtained by the Mori-Tanaka
method, the self consistent technique, and
those assumed by Avellaneda and Swart
who took it from Gibson and Ashby’s book

and R = a3/a1, a1 = a2. Large values of the aspect ratio R imply that the pores are cylindrical, and small
values are for penny shaped pores. For penny shaped pores, E decreases nearly affinely with the increase in
the porosity. The rule of mixtures gives an affine decrease of E with an increase in the value of φ; e.g. see
Passman and Batra (1984). Passman and Batra, like Cowin and Nunziato (1983) allow for the deformations
of voids and thus the porosity changes as the body is deformed. However, they do not account for the shapes
of the pores. For the same value of the porosity, cylindrical pores of height/diameter ≥ 10 change Young’s
modulus by the same amount, and the decrease in the value of E is more for cylindrical pores than that for
the spherical and the penny shaped pores. The parabolic dependence of E upon the porosity φ employed
by Avellaneda and Swart, who took it from Gibson and Ashby’s (1988) book, agrees with that obtained by
presuming spherical pores only if φ ≤ 0.1.
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Figures 5 and 6 compare the presently computed effective axial stress vs. the effective axial strain behavior
of a composite made of an elastomer matrix and SMA inclusions with those of Lu and Weng (2000). Material
properties of the elastomer and the SMA are given in Lu and Weng’s paper. They employed a two-level
micromechanical theory, one at the inclusion (austenite-martensite) level, and the other at the macroscopic
level consisting of the transforming inclusions and the inactive matrix. Here we have glossed over the first
one by using the rule of mixtures (5) to derive properties of the SMA from those of its constituents. Figure
5 exhibits results for three values of the volume fractions of cylindrical SMA inclusions and Fig. 6 for
three shapes (R = 5, 10, 100) of the 30% prolate SMA inclusions. Results from the two approaches agree
qualitatively but differ quantitatively because of the different phase transformation criteria and the difference
in deriving properties of the SMA inclusions from its two phases.

Having satisfactorily compared the presently computed values of the effective moduli of the two-phase and
the three-phase composites with those obtained from other models and/or experimental results, we conclude
that the derived expressions for the effective moduli are correct.

7 Results and discussion

We now give results for the 4-phase composite made of an elastic matrix, PZT inclusions made of BaTiO3,
SMA inclusions made of a NiTi alloy, and NPZT inclusions. Values of nonvanishing moduli of these materials
are listed in Table 2, and all of the material moduli of the NPZT inclusions are set equal to β times the
corresponding material moduli of the matrix. The SMA, the matrix and the NPZT materials are modeled
as isotropic and the PZT as transversely isotropic with the x3-axis as the axis of polarization and hence of
transverse isotropy. The surfaces of the SMA inclusions are assumed to be electrically insulated from the
surrounding media so that they do not short circuit the electric field applied to the boundaries of the RVE.
We investigate cases for which the PZT and the SMA inclusions are either cylindrical or spherical and the
NPZT inclusions are either cylindrical, spherical or penny shaped. The temperature of the composite in the
stress free reference configuration is taken to be uniform and equal to 10◦C; it is assumed to stay constant
throughout the deformation process. Results have been computed with f P = f S = 0.15, f N is taken as either
0 or 0.15, and β = 10−3 and 102 which respectively model soft and hard particles.

7.1 Axial stress-axial strain relations

Figures 7 through 10 display effects of the shapes of the soft and the hard NPZT inclusions on the axial stress
vs. the axial strain relations of the 4-phase composite loaded axially in the x3-direction. These results have
been computed from (25)1 by setting E0 = 0, θ0 = 0 and σ0

ij = σ0
33δi3δj 3. It is clear that the energy dissipated

during cyclic axial load, as indicated by the area of the hysteresis loop, is more for the spherical PZT and
SMA inclusions than that for the cylindrical PZT and SMA inclusions. Also, the applied axial stress at the
initiation of the phase transformation in the SMA inclusions is a little lower for the cylindrical PZT and
SMA inclusions than that for the spherical PZT and SMA inclusions. Note that the average axial strain in the
cylindrical SMA and PZT inclusions and the matrix is the same. However, in general, the lateral strains in
them will be different. For the spherical SMA and PZT inclusions, even the axial strains in the three phases
need not be equal to each other.

Irrespective of the shapes of the NPZT inclusions, hard NPZT particles which sustain more of the applied
tractions than the remaining constituents of the composite increase the applied axial stress required to initiate
the forward transformation in the SMA inclusions; this may not be very desirable for the hybrid composite.
However, as should be evident from the results plotted in Figs. 7 and 9, the soft NPZT particles of the three
shapes considered herein decrease the applied axial stress required to ensue the forward phase transformation
in the SMA inclusions; the exception being the penny shaped NPZT particles with the cylindrical PZT and
SMA inclusions in which case the axial stress required at the initiation of the transformation is increased
a little. When no phase transformation occurs in the SMA inclusions, the axial macroscopic strain induced
by the applied axial stress is more for soft cylindrical and spherical NPZT particles than that for soft penny
shaped particles. When the phase transformation is in progress, for the same value of the axial stress soft
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Table 2. Values of nonvanishing material moduli of the constituents of the 4-phase composite

Polymer(a) BaTiO(a)
3 Austenite(b) Martensite(b)

C1111 (GPa) 8.0 150.0 143.57 56.36

C1122 (GPa) 4.4 66.0 95.71 37.57

C1133 (GPa) 4.4 66.0 95.71 37.57

C3333 (GPa) 8.0 146.0 143.57 56.36

C1313 (GPa) 1.8 44.0 23.93 9.39

e311 (C/m2) 0 −4.35 0 0

e333 (C/m2) 0 17.5 0 0

e131 (C/m2) 0 11.4 0 0

k11/k (c)
0 4.0 1115.0 0 0

k33/k0 4.0 1260.0 0 0

λ11 (MPa/◦C) 1.008 1.974 3.685 0.8679

λ33 (MPa/◦C) 1.008 1.471 3.685 0.8679

p3(10−3C/m2 ◦C) 0 1.877 0 0

At 10◦C, sfS
e = 100 MPa, srS

e = 80 MPa, ε̄max = 0.048

∂sfS
e

∂θ
=

∂srS
e

∂θ
= 8 MPa/◦C (Ref. (b))

(a) Dunn, M.D., 1993;

(b) Song, G.Q., Sun, Q.P. and Cherakoui, C., 1999;

(c) k0 = 8.85 × 10−12 C/Vm2
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cylindrical, spherical and the penny shaped NPZT inclusions increase the macroscopic axial strain if the SMA
and the PZT inclusions are spherical (cf. Fig. 9). However, as shown in Fig. 7, for cylindrical SMA and
PZT inclusions and the same value of the applied axial stress, soft cylindrical and spherical NPZT particles
increase the macroscopic axial strain but the penny shaped ones decrease it. Thus the shapes of all three
inclusions and the interaction among them strongly influence the elastic properties of the 4-phase composite.
An examination of the results plotted in Figs. 7 through 10 suggests that soft spherical NPZT particles change
most the properties of the composite and this effect is more noticeable for spherical PZT and SMA inclusions
than for cylindrical PZT and SMA inclusions. Prior to the initiation of the phase transformation in the SMA
inclusions, the NPZT particles have very little effect on the elastic moduli of the 4-phase composite containing
cylindrical PZT and SMA inclusions but the effect is significant when the PZT and the SMA inclusions are
spherical.

Generally, the ultimate tensile strain of a PZT is about 0.1% to 0.2%. For the composite containing
cylindrical PZT and SMA inclusions, the axial strain in the PZT inclusions is nearly the same as the macro-
scopic axial strain in the composite. However, for the composite with spherical PZT and SMA inclusions, the
maximum principal tensile strain induced in the PZT inclusions is below 0.2% even at the completion of the
phase transformation in the SMA inclusions when the macroscopic axial strain is about 2%. The addition to it
of soft spherical NPZT inclusions increases this macroscopic strain. Thus the 4-phase composite can be used
as a sensor to effectively measure low values of the applied axial stress. Since elasticities of the PZT material
are higher than those of the matrix and the SMA, it is conceivable that a 3-phase composite comprised of
the polymer matrix, soft NPZT inclusions and the SMA inclusions will be a better sensor than the 4-phase
composite that also has PZT inclusions. An advantage of the composite sensor over that made of pure SMA
is that the former can be made compliant and its impedance adjusted to match that of the host structure.
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7.2 Axial stress-axial electric displacement relations

We have plotted in Figs. 11 through 14 the axial electric displacement, D0
3 , induced by the applied axial stress,

σ0
33. These values are computed from (25)2 by setting E0 = 0, θ0 = 0 and σ0

ij = σ0
33δi3δj 3. For cylindrical

PZT and SMA inclusions the addition of either soft or hard cylindrical, spherical and penny shaped NPZT
inclusions does not noticeably affect the electroelastic modulus d̃333 which equals the reciprocal of the slope
of the σ0

33 vs. D0
3 curve. However, when the PZT and the SMA inclusions are spherical (cf. Fig. 13), the

addition of soft NPZT inclusions noticeably alters the value of d̃333, and the change in its value depends upon
the shape of the NPZT inclusions. Out of the cylindrical, spherical and penny shaped soft NPZT inclusions,
the penny shaped ones increase most the value of d̃333. However, as shown in Fig. 14, hard penny shaped
NPZT particles significantly decrease the value of d̃333. Thus one way to improve upon the electromechanical
coupling constant d̃333 of the 3-phase composite made of an elastic matrix and spherical SMA and PZT
inclusions is to add soft penny shaped NPZT particles to it.

7.3 Axial electric field-axial strain relations

As was the case for the 3-phase hybrid composite comprised of the spherical PZT and SMA inclusions (Jiang
and Batra, 2001), a very high electric field is required to induce phase transformation in the SMA particles
even when NPZT inclusions are added to the 3-phase composite. Recall that the SMA inclusions are assumed
to be electrically insulated from the surrounding medium and the heat produced by the electric field has not
been considered. Therefore, we study the 4-phase composite only with cylindrical SMA and PZT inclusions.
Results computed from (25)1 by setting σ0 = 0, E 0

i = E 0
3 δi3 and θ0 = 0 and plotted in Fig. 15 reveal that

the addition of soft spherical NPZT particles increases the axial electric field required to induce the forward
phase transformation in the SMA inclusions; however, the addition of penny shape NPZT particles decreases
it. During the initial stage of the transformation, soft penny shape NPZT particles significantly increase the
macroscopic strain of the composite. However at the completion of the phase transformation in the SMA, the
macroscopic axial strain in the composite is less than that for no NPZT inclusions and with either spherical or
cylindrical PZT and SMA inclusions. From the plots of Fig. 16 we conclude that the addition of hard NPZT
particles decreases the applied electric field required to induce the initial forward phase transformation in the
SMA particles. During the early stages of the phase transformation, either spherical or penny shape NPZT
particles increase the electromechanical coupling properties of the 4-phase composite. The macroscopic axial
strain in the composite at the completion of the phase transformation is more for penny shape NPZT particles
than that for spherical NPZT particles.

Most of the commerically available PZTs can withstand an electric field of about 10 MV/m. Thus cylin-
drical PZT inclusions do not improve the effective piezoelectric constants of the 4-phase composite even
when rigid NPZT inclusions are added to the composite. However, when the piezoelectric constants, eijk ,
of the PZT are doubled, the applied electric field required to induce the phase transformation in the SMA
inclusion is essentially halfed.

7.4 Axial electric field-axial electric displacement relations

From the results obtained from (25)2 and plotted in Figs. 17 and 18, we see that the addition of hard
spherical or penny shape NPZT particles increases the dielectric constant of the 4-phase composite, because
hard particles have large dielectric constant. However, the addition of even soft cylindrical or penny shape
NPZT particles (cf. Fig. 17) whose dielectric constants are smaller than those of the matrix also enhances the
dielectric constant of the 4-phase composite.

7.5 Numerical values of effective moduli

In Tables 3 through 6 we have listed the computed values of the nonvanishing effective electromechanical
moduli of the 4-phase composite with the x3-axis aligned along the polarization axis of the PZT inclusions.
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PZT inclusions are assumed to be cylindrical and SMA inclusions either cylindrical or spherical with f P =
f S = 0.15. The soft NPZT inclusions are modeled as cylindrical, spherical and penny shape with β = 10−3.
Values given in Tables 3 and 5 are for the austenite SMA inclusions, and those in Tables 4 and 6 for the
martensite SMA inclusions. The material parameters for the constituents used in finding the effective moduli
are listed in Table 2. Knowing the volume fractions of the austenite and the martensite phases of the SMA
inclusions, approximate values of the effective moduli of the four phase composite can be estimated from
those given in these Tables by linear interpolation.

Table 3. Values of nonvanishing effective moduli for the 4-phase composite made of a polymer matrix, and cylindrical PZT and SMA
inclusions (f P = f S = 0.15) and soft NPZT inclusions (β = 10−3) of different shapes. The SMA material is modeled as austenite

f N = 0.15 f N = 0.30

Cylindrical Spherical Penny Cylindrical Spherical Penny

C̄1111 (GPa) 6.58 7.68 10.84 4.08 5.16 9.50

C̄1122 (GPa) 2.77 3.38 5.78 1.46 1.96 5.19

C̄1133 (GPa) 3.31 2.90 7.07 1.96 1.20 7.92

C̄3333 (GPa) 30.93 26.30 38.76 29.25 21.58 45.76

C̄1212 (GPa) 1.90 2.15 2.53 1.31 1.60 2.16

C̄1313 (GPa) 2.29 2.35 3.47 1.70 1.77 4.06

ē311 (C/m2) −3.85 × 10−2 −0.136 1.11 × 10−2 −2.72 × 10−2 −0.157 0.124

ē333 (C/m2) 2.99 2.64 3.52 3.01 2.38 4.30

ē131 (C/m2) 7.38 × 10−4 7.90 × 10−4 1.14 × 10−3 5.58 × 10−4 6.27 × 10−4 1.34 × 10−3

k̄11/k0 2.95 3.16 3.39 2.15 2.43 2.80

k̄33/k0 194.10 180.45 228.45 193.50 168.15 276.77

λ̄11 (MPa/◦C) 0.496 0.576 0.945 0.264 0.329 0.831

λ̄33 (MPa/◦C) 0.663 0.469 1.27 0.455 0.129 1.525

p̄1 (C/m2 ◦C) 0.0 0.0 0.0 0.0 0.0 0.0

p̄3(10−4 C/m2 ◦C) 2.73 2.866 2.77 2.71 2.90 2.768

Table 4. Values of nonvanishing effective moduli for the 4-phase composite made of a polymer matrix, and cylindrical PZT and SMA
inclusions (f P = f S = 0.15) and soft NPZT inclusions (β = 10−3) of different shapes. The SMA material is modeled as martensite

f N = 0.15 f N = 0.30

Cylindrical Spherical Penny Cylindrical Spherical Penny

C̄1111 (GPa) 6.43 7.49 10.51 3.99 5.03 9.20

C̄1122 (GPa) 2.77 3.37 5.69 1.47 1.97 5.09

C̄1133 (GPa) 3.26 3.02 6.74 1.93 1.42 7.32

C̄3333 (GPa) 24.79 21.20 31.36 23.12 17.18 36.61

C̄1212 (GPa) 1.83 2.06 2.41 1.26 1.53 2.05

C̄1313 (GPa) 2.17 2.22 3.24 1.61 1.68 3.71

ē311 (C/m2) −3.80 × 10−2 −0.134 1.09 × 10−2 −2.69 × 10−2 −0.156 0.121

ē333 (C/m2) 2.998 2.64 3.52 3.01 2.39 4.30

ē131 (C/m2) 7.16 × 10−4 7.66 × 10−4 1.09 × 10−3 5.44 × 10−4 6.10 × 10−4 1.26 × 10−3

k̄11/k0 2.95 3.16 3.39 2.15 2.43 2.80

k̄33/k0 194.10 180.45 228.45 193.50 168.15 276.77

λ̄11 (MPa/◦C) 0.478 0.556 0.902 0.254 0.319 0.787

λ̄33 (MPa/◦C) 0.566 0.425 1.098 0.362 0.121 1.265

p̄1(10−4 C/m2 ◦C) 0.0 0.0 0.0 0.0 0.0 0.0

p̄3(10−4 C/m2 ◦C) 2.73 2.86 2.77 2.71 2.89 2.77
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Table 5. Values of effective moduli for the 4-phase composite made of a polymeric matrix, cylindrical PZT, spherical SMA and ellipsoidal
NPZT inclusions. The SMA material is modeled as austenite and f P = f S = 0.15, β = 10−3

f N = 0.15 f N = 0.30

Cylindrical Spherical Penny Cylindrical Spherical Penny

C̄1111 (GPa) 6.83 7.98 11.21 4.27 5.41 9.90

C̄1122 (GPa) 2.79 3.42 5.86 1.47 1.99 5.29

C̄1133 (GPa) 3.21 2.99 6.90 1.87 1.39 7.72

C̄3333 (GPa) 25.04 21.03 32.42 23.27 16.76 39.05

C̄1212 (GPa) 2.02 2.28 2.67 1.40 1.71 2.31

C̄1313 (GPa) 2.33 2.39 3.53 1.73 1.81 4.13

ē311 (C/m2) −3.18 × 10−2 −0.141 3.88 × 10−2 −2.25 × 10−2 −0.167 0.184

ē333 (C/m2) 3.12 2.71 3.70 3.13 2.43 4.58

ē131 (C/m2) 7.77 × 10−4 8.36 × 10−4 1.21 × 10−3 5.83 × 10−4 6.60 × 10−4 1.42 × 10−3

k̄11/k0 3.16 3.40 3.67 2.28 2.60 3.02

k̄33/k0 180.56 168.68 209.96 180.00 157.84 250.09

λ̄11 (MPa/◦C) 0.493 0.578 0.946 0.258 0.331 0.836

λ̄33 (MPa/◦C) 0.603 0.457 1.173 0.393 0.149 1.385

p̄1(C/m2 ◦C) 0 0 0 0 0 0

p̄3(C/m2 ◦C) 2.62 × 10−4 2.80 × 10−4 2.57 × 10−4 2.61 × 10−4 2.854 × 10−4 2.42 × 10−4

Table 6. Values of effective moduli for the 4-phase composite made of a polymeric matrix, cylindrical PZT, spherical SMA and ellipsoidal
NPZT inclusions. The SMA material is modeled as martensite and f P = f S = 0.15, β = 10−3

f N = 0.15 f N = 0.30

Cylindrical Spherical Penny Cylindrical Spherical Penny

C̄1111 (GPa) 6.60 7.69 10.75 4.13 5.21 9.48

C̄1122 (GPa) 2.79 3.41 5.77 1.49 2.01 5.20

C̄1133 (GPa) 3.22 3.02 6.80 1.90 1.44 7.53

C̄3333 (GPa) 24.26 20.48 31.28 22.50 16.35 37.35

C̄1212 (GPa) 1.90 2.14 2.49 1.32 1.60 2.14

C̄1313 (GPa) 2.19 2.25 3.27 1.63 1.70 3.74

ē311 (C/m2) −2.57 × 10−2 −0.130 4.64 × 10−2 −1.82 × 10−2 −0.158 0.184

ē333 (C/m2) 3.07 2.68 3.63 3.08 2.41 4.48

ē131 (C/m2) 7.52 × 10−4 8.08 × 10−4 1.15 × 10−3 5.67 × 10−4 6.41 × 10−4 1.33 × 10−3

k̄11/k0 3.16 3.40 3.67 2.28 2.60 3.02

k̄33/k0 180.57 168.69 209.97 180.01 157.84 250.08

λ̄11 (MPa/◦C) 0.475 0.555 0.90 0.248 0.317 0.792

λ̄33 (MPa/◦C) 0.564 0.428 1.11 0.358 0.130 1.290

p̄1(C/m2 ◦C) 0 0 0 0 0 0

p̄3(C/m2 ◦C) 2.64 × 10−4 2.81 × 10−4 2.61 × 10−4 2.63 × 10−4 2.86 × 10−4 2.49 × 10−4

8 Conclusions

Based on the principle of energy equivalence and the Mori-Tanaka method of accounting for the interaction
among inclusions, we have derived macroscopic constitutive relations for a 4-phase composite comprised of
piezoelectric, nonpiezoelectric and shape memory alloy inclusions embedded in a non-electromechanically
coupled elastic matrix. The computed results show that the electromechanical properties of the composite are
significantly affected by the material moduli and the shapes of the nonpiezoelectric inclusions. In general, the
addition of soft nonpiezoelectric inclusions of appropriate shape will enhance the electromechanical properties
of the composite. The four-phase composite comprised of the spherical piezoelectric and shape memory alloy
inclusions and either cylindrical or spherical soft nonpiezoelectric inclusions will make a very good sensor
since an axial stress of approximately 80 MPa will produce an axial strain of about 2%. The addition of
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15% spherical voids enhances the induced axial strain by nearly 20%. The piezoelectric constants of the four
phase composite are not affected much by the addition of either soft or hard nonpiezoelectric inclusions. The
impedance of the four phase composite sensor can be adjusted to match with that of the host structure.

Acknowledgements. This work was partially supported by the NSF grant CMS9713453 to Virginia Polytechnic Institute & State Uni-
versity.

Appendix

The Mori-Tanaka approximation for thermoelectroelastic concentration tensors

The Mori-Tanaka method approximately accounts for the interaction among inclusions embedded in a matrix.
According to this method, expressions for the average strain and the average electric field in the PZT, the
SMA and the NPZT inclusions are given by (17) in which
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Tensors H 1r
ijkl , . . . , F 2r

i can be obtained from (A7) of Jiang and Batra (2001) wherein the added superscript r
is not included. In order to get values of these tensors for r = M , P , N and S , values of the corresponding
material moduli should be substituted in the right hand sides of (A7) of Jiang and Batra’s (2001) paper.

In the space of stress and electric field, we have
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and tensors H 1r
ijkl , . . . , F 2r

i can be evaluated from (A7) of Jiang and Batra’s (2001) paper as outlined above.

References

Avellaneda M, Swart PJ (1998) Calculating the performance of 1-3 piezoelectric composite for hydrophone applications: an effective
medium approach. J. Acoust. Soc. Am. 103, 1449–1467

Body JG, Lagoudas DC (1994) Thermomechanical response of shape memory composites. Journal of Intelligent Material Systems and
Structures 5, 333–346

Chan HLW, Unsworth J (1989) Simple model for piezoelectric ceramic/polymer 1-3 composite used in ultrasonic transducer applications,
IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 36, 434–441

Cherkaoui M, Sun QP, Song GQ (2000) Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforce-
ment, International Journal of Solids and Structures 37, 1577–1594

Cowin SC, Nunziato JW (1983) Linear elastic materials with voids. J. of Elasticity 13, 125–147
Dunn MD (1993) Micromechanics of coupled electroelastic composites: effective thermal expansion and pyroelectric coefficients. Journal

of Applied Physics 73, 3131–5140
Gibson LJ, Ashby MF (1988) Cellular Solids: Structures and Properties, Pergamon Press
Haun MJ, Moses P, Gururaja TR, Schulze WA, Newnham RE, Ferroelectrics 49, 259
Haun MJ, Newnham RE (1983) An experimental and theoretical study of 1-3 and 1-3-0 piezoelectric PZT-polymer composite for

hydrophone applications. Ferroelectrics 68, 123–139
Hikita K, Yamada K, Nishioka M, Ono M (1983) Effect of porous structure on piezoelectric properties of PZT ceramics. Japan J. Appl.

Phys. 22, 64–66
Hill R (1965) A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 13, 213–222
Jiang B, Fang DN, Hwang KC (1999) A unified model for piezocomposites with non-piezoelectric matrix and piezoelectric ellipsoidal

inclusions. International Journal of Solids and Structures, 36, 2707–2733
Jiang B, Batra RC (2001) Micromechanical modeling of a composite containing piezoelectric and shape memory alloy inclusions, Journal

of Intelligent Material Systems and Structures, (in press).
Klicker KA, Biggers JV, Newnham RE (1982) J. Amer. Ceramic Soc. 64, 5.
Lines ME, Glass AM (1977) Principles and Applications of Ferroelectrics and Related Materials, England: Oxford University Press.
Lu ZK, Weng GJ (2000) A two-level micromechanical theory for a shape memory alloy reinforced composite. International Journal of

Plasticity 16, 1289–1307
Lynn SY, Newnham RE, Klicker KA, Rittenmyer K, Safari A, Schulze WA (1981). Ferroelectrics 38, 955.
Müller I (1998) Six lectures on shape memory. CRM Proceedings and Lecture Notes 13, 125–161
Passman SL, Batra RC (1984) A thermomechanical theory for porous anisotropic elastic solid with inclusions. Arch. Rat’l Mechs.

Analysis 87, 11–33
Paul HS, Nelson VK (1996) Flexural vibration of piezoelectric composite hollow cylinder. Journal of the Acoustical Society of America,

99, 309–313
Qiu YP, Weng GJ (1990) On the application of Mori Tanaka theory involving transversely isotropic spheroidal inclusions. Int. J. of

Engineering Science 28, 1121–1137
Smith WA (1989) The role of piezocomposites in ultrasonic transducers, Proceedings of the IEEE Ultrasonic Symposium, 755–766
Song GQ, Sun QP, Cherkaoui C (1999) Role of microstructure in the thermomechanical behavior of SMA composites. ASME Journal

of Engineering Materials and Technology 121, 86–92
Ting RY (1990) The hydroacoustic behavior of piezoelectric composite materials. Ferroelectrics 102, 215–224


