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ABSTRACT

Elastic materials whose local state depends upon the first and second order gradients of the deformation,
the temperature, its gradient and the time rate of change of the temperature are studied according to an in-
equality proposed by Green and Laws. It is shown that in such materials either thermal disturbances can
propagate with finite speed in the linear theory, and the constitutive quantities do not depend upon the second
order gradients of the deformation or the constitutive quantities may depend upon the second order gradients
of the deformation and in the linear theory thermal disturbances do not propagate with finite speed. In the
latter case the entropy inequality reduces to the Clausius-Duhem inequality.

Introduction

In [1] Green and Laws proposed an entropy inequality for the entire body and showed
that for homogeneous bodies it reduces to the following inequality

(1.1)

Here '1 is the specific entropy, Po is the mass density in the reference configuration,
r is the supply per unit mass of the internal energy, q is the heat flux per unit surface
area in the reference configuration, <I> > 0 is a constitutive quantity, a superposed dot
indicates material time differentiation and ,A stands for differentiation with respect
to coordinates X A in the reference configuration. The entropy inequality (1.1) is more
general than the Clausius-Duhem inequality in which <I> is taken equal to the absolute
temperature r For simple heat conductors [1] and for simple elastic materials [2]
studied according to the inequality (1.1) Green et al recovered results obtained earlier
by Muller [3,4] using his own inequality for supply free bodies. For these materials
Green et al showed that <I> is a function of T and t and assuming that

0<1>aT + 0 (1.2)
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they proved [1] that in the linear theory thermal disturbances can propagate with finite
speed.

In [5] inequality (1.1) is used to study non-simple heat conductors whose local state
depends upon the empirical temperature e and all of its first and second order derivatives
with respect to time and the space variable. For such isotropic heat conductors, it is
shown that c/J i,s a function of e and all of its first order derivatives. Propagation of weak
thermal disturbances is also studied and a upiqueness theorem for the linear theory is

proved.
In this paper we study non-simple thermoelastic materials whose local state depends

upon the empirical temperature e, its gradient, the time rate of change of temperature,
the deformation gradient F and its gradient and show that c/J depends upon e and o.

Furthermore, we show that either iJc/J/iJO = 0, or the specific internal energy e, 17, q and
the stress tensor S do not depend upon the second order gradients of the deformation.
When iJc/J/iJO = 0, thermal disturbances do not propagate with finite speed in the linear
theory. Also the inequality (1.1) reduces to the Clausius-Duhem inequality. However,
in this case, e and 17 can depend upon the gradient of the deformation gradient. This
differs from Gurtin's result [6] that the presence of higher order gradients of the deforma-
tion than the first in the constitutive equations for e and 17 is ruled out by the Clausius-
Duhem inequality. This is due to the fact that whereas in here 0 is included as a con-
stitutive variable, Gurtin considers fields of deformation, temperature and temperature
gradient defined over the entire body as the constitutive variable.

Non-simple elastic materials whose local state is characterized by the temperature,
the deformation gradient and the first and second order gradients of the temperature
and the deformation gradient were studied by Chen et al [7] according to an entropy
inequality proposed by Gurtin and Williams [8].

2. Preliminaries

We refer the deformation of the continuum to a fixed set of rectangular Cartesian axes
and study materials for which the following balance laws hold.

. \, C'! ! ,0...:pI = PO' ".( = ~etF, FjA = Xi,A' ,

Po vi = SiA,A+Pobi, (2.1)

PoB = -qA,A+SiAxi,A+POr.

Here x = x(X, t) gives the present position of the material particle that occupied place
X in the reference configuration, P is the mass density at time t, b is the specific body
force and SiA is the Fiola-Kirchoff stress tensor. Introducing the definition

t/I = I: - '1</J (2.2)

and eliminating r from (2.1)5 and (1.1) we obtain the following inequality

Po(tfr+'1t!»-SiAXi,A+ ~ ~ O. (2.3)
'. ' c@\
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Consider a material characterized by the five response functions $, ~, c$, Sand q
which are assumed to be functions of the deformation gradient F, its gradient
GiAB = Xi AB' the empirical temperature e, its gradient gA = e A and the time rate of'. '
change of temperature e. Thus

1/1 = $(F,G,e,O,g), '1 = ~(F,G,e,O,g),
S = S(F,G,e,O,g}, 4> = $(F,G,e,O,g), (2.4)

q = q(F,G, e, 0, g).

Assume that the response functions (2.4) are twice continuously differentiable functions
of their arguments and that all quantities are referred to a reference configuration in
which the body is homogeneous. Substitution of (2.4) into (2.1)3.4 gives field equations
for x and e. Since the constitutive functions (2.4) are assumed to be functions of G,
the material is not simple in the 5ense of Noll [9].

3. Restrictions from the entropy inequality

Referring the reader to [1,2,5, 10] for details, we use an argument due to Coleman
and Noll [10] and conclude that the following are necessary and sufficient conditions
in order that every solution of the field equations satisfies (2.3).

(3.1)

(3.2)

Heretofore and hereafter the round parantheses around the indices indicate symmetriza-
tion about the indices A, B, C etc. Assuming that q * 0, we conclude from (3.5) and

(3.6) that

iJ$
iJG

~=o,
ag

=0.
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and now from (3.2) that

~= o. (3.9)
oG

Differentiation of (3.3) and (3.4) with respect to G and the use of (3.8) and (3.9) gives

o~ ocT> 1 ocT> 04aG ae = 0, ~ ae aG = O. (3.10)

Thus either

a$
ae= 0,

or

!!1 = 0, ~ = o.
oG oG

\

If (3.12) holds, then from (3.1), (3.9) and (2.2) we obtain

0$ 0 o~ ,- .--
-=, - -~. ~.J.l.JJ

oG oG

(3.9), (3.8)2' (3.12) and (3.13) imply that the left-hand side of inequality (3.7) is linear in G
and since the inequality has to hold for all values of G for which the constitutive functions
(2.4) are defined, therefore,

~ = O. (3.14)
of

We now attempt to establish (3.14) even when (3.11) holds. However, in the remainder
of this section, we do not commit ourselves to either of the two alternatives (3.11) and
(3.12). We assume that the heat flux vanishes whenever the temperature gradient does i.e.

4(F, G, 0, e, 0) = O. (3.15)

In view of (3.15) we write 4 as

qA = -KAB(F,G, 0, e,g)gB' (3.16)

We note that the left-hand sideof(3. 7) has its maximum value namely zero in a process
in which e = 0, 9 = 0, usually called equilibrium. This definition of an equilibrium
process is slightly more general than that given in [7] according to which G would
also have to be a zero tensor. The necessary conditions for the left-hand side of (3.7)
to be maximum are that

(3.12)

-f}

~ IE +~IJ;;~ ";;'0, (3.17)

I ~
I GjAB

KA)CEOFj(B E

=0, (3.18)
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2c1i

I+tJIE~ E ~o,
021[1 1 O~ I ocr;

8080 E+ ao E"a"O

(3.20)

where 'f, is any vector and the index E implies that the quantity is evaluated in an
equilibrium process. It follows from (3.20) and (3.18) that

~I
of}

{3.21)KABIE* ~A~B ~ 0,

',..,
='0,KA)cIE* ;

v.1e conclude from (3.21) that KABIE* is positive semidefinite. Assuming that it is positive

definite, we conclude from (3.22) that

ocT>
I'aF = O. (3.24)
E

Thus <PIE is a function of () only. (3.24) and (3.20), imply that KcDIE is positive semi-

definite. One can obtain from (3.17), (3.9), (3.1), (3.3), (2.2) and (3.24) that

dftlE = i- LdtlE-
'PIE Po

which may be interpreted as Gibb's equation for non-simple elastic materials studied
here. (3.3), (3.19) and (3.23) give the following:

ot} I 0$ 1/ °$

~aeEME-rij

a~
1a8E

4. Remarks

Summarizing the preceeding results we note that should 0$/00= 0, then from (3.8)
and (3.24), it follows that 4> = $(0) so that the entropy inequality (1.1) reduces to the

~
IJFi(B E
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Clausius- Duhem inequality. The material is characterized by the three response functions
rli, ~ and 4. The response functions ~, e and 4 depend upon G so that the material is
non-simple. This suggests that if one includes 0 in the list of local state variables then
the Clausius-Duhem inequality does not rule out the possibility of spatial interaction.
Since 0$/80 + 0 is a necessary condition [1] for the propagation of thermal disturbances
with finite speed in the linear theory, therefore, when 8$/80 = 0, thermal disturbances
would not propagate with finite speed in the linear theory.

When 8$/80 + 0, it follows from (3.8), (3.9) and (3.14) that

cf> = $((},O),

t/t ~ t7i(F, e, e, g).

The two functions <l> and t7i characterize the material since g, ~ and 4 are determined
respectively, by (3.1), (3.3) and (3.4). The theory of non-simple elastic materials reduces
to that of the simple elastic materials studied in [2].

Another class of materials for which one gets results similar to that given by (3.10h
is the class of heat conductors which exhibit infinitesimal memory of the temperature
history. Such materials are studied in [11] wherein it is assumed that the local state

(N)
depends upon e, e, iJ,. .., e, e,A and Muller's entropy inequality is used. If one studies
these materials according to the inequality (1.1) one obtains that either

o<l>

~~O,

or
04
~)=o,
00

provided N ~ 2.

Acknowledgement

I am grateful to the referee for his suggestions and criticism.

REFERENCES

[1] A. E. Green and Laws, N., Arch Rational Mech. Anal., 45 (1972) 47-53~
[2] A. E. Green and Lindsay, K. A., J. Elasticity, 2 (1972) 1-7
[3] I. Muller, Proceedings of the CISM Meeting in Udine, Italy (1971)
[4] I. Muller, Arch. Rational Mech. Anal., 41 (1971) 319-332
[5] R. C. Batra, Letters Appl. Engng. Sciences, 3 (1975) 97-107
[6] M. E. Gurtin, Arch. Rational Mech. Anal., 19 (1965) 339-352
[7] P. J. Chen, Gurtin, M. E. and Williams, W.O., ZAMP, 20 (1969) 107-112
[8] M. E. Gurtin and Williams, W.O., Arch. Rational Mech. Anal., 26 (1967) 83-117
[9] W. No)l, Arch. Rational Mech. Anal., 2 (1958/59) 197-226 .

[10] B. D. Coleman and Noll, W., Arch. Rational Mech. Anal., 13 (1963) 167-178
[Ill R. C. Batra, Arch. Rational Mech. Anal., 530974) 359-365


