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The force on a lattice defect in an elastic body
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Abstract

It is shown that the force on a lattice defect in an elastic body is, like the force on a disclination in a nematic
liquid crystal, a real force which, for equilibrium, must be balanced by an external force applied to the closed
surface enclosing the defect.

Introduction

We refer to an imperfection such as an interstitial and impurity atom, vacant lattice
site or a dislocation as a lattice defect. Nabarro [1] defines the force on a segment of a
dislocation in an elastic solid so that the energy which could in principle be extracted
by letting the segment undergo a small displacement is the scalar product of the force
and the displacement. A force on a lattice defect, an inter-phase interface or a crack tip
can be similarly defined. Mathematically, the force F on a defect presently located at
the position y in an elastic body may be expressed as (Eshelby [2])

F=- '(%(le+ Fex:)f (1.1)

where E;, and E,,, equal, respectively, the strain energy of the body and the potential
energy of surface tractions acting on its boundary. For a linear elastic body, the strain
energy density at a screw or edge dislocation approaches infinity [3]. Similar behavior
of the strain energy density may occur at a defect in a nonlinear elastic body. This
necessitates the modification of equation (1.1) to the following equation

- —lim 2 (E*
F= —ehiI(l)ay(Eint—}-Eext)' (12)
Ej is the strain energy of the same elastic body except that it now has a hypothetical
spherical hole (cylindrical tube in 2-dimensional problems) of radius € centered at y.
In computing Ej7, the deformation field used is the same as that employed to find E,,.

Eshelby [2] showed that the force on a defect in an elastic body can be expressed as
the integral of an elastic energy-momentum tensor over a surface embracing the defect.
He calls this force a configurational force in order to distinguish it from an ordinary
force which can be directly balanced by a weight or spring. In a rather recent paper,
Eshelby [4] has proved that the energy-momentum tensor appropriate for finding the
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force on a disclination in a nematic liquid crystal is, to within an unimportant
hydrostatic pressure, the same as the Ericksen stress tensor [5] which gives the traction
that the fluid exerts on a surface element in it. This implies that the supposed
configurational force on a disinclination in a nematic liquid crystal is in fact a real
force exerted on the core of the disinclination by the surrounding medium. Here we
show that the configurational force on a defect in a nonlinear elastic solid is also a true
force exerted on the core of the defect by the surrounding medium. This force can be
calculated either by integrating the surface tractions acting on the coré of the defect or
by integrating a quantity, that resembles the energy-momentum tensor of Eshelby, over
a closed surface embracing the defect. In a way, we clarify the various terms to be used
in Eshelby’s energy-momentum tensor for the nonlinear elastic solid.

Preliminaries

We use a fixed set of rectangular Cartesian coordinate axes and denote the position of
a material particle in the reference configuration by XX (K =1, 2, 3) and the present
position of the same material particle in the current configuration by x’ (i=1, 2, 3).
Then

x'=x'( XX) (2.1)
or its inverse
XK= Xx%(x") (2.2)

describes the deformation of the body. Here we assume that relations (2.1) and (2.2)
are invertible except possibly in the neighborhood of a defect, if any, in the body. We
use below
GKk=XxX = """,
! P

the inverse of the deformation gradient
A
axx’
rather than F to describe the deformation in the neighborhood of a material point.
Let the body occupy a 3-dimensional, bounded and smooth region & in the present
configuration, and let W(G(x), X(x)) denote the strain energy density per unit
present volume of the material point X currently situated at the place x. We note that
for a body that is homogeneous in the reference configuration, W will, in general,
depend upon X. We assume that W is smooth enough so that the various operations
indicated below are meaningful. Loosely speaking, W € C?(-, -) will suffice. Equations
governing the deformations of the body are (e.g., see Ericksen [6])

Fip (2.4)

aWw (4 .
— —— =0 in§,
, aG,.") axx
t,n,=f on 3,9, (2.6)

x.=X. on 3,2 =930 — 9,0, 2.7
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where

ATrr

aGK

is the Cauchy stress tensor, f; is the surface traction per unit present area acting on the
part 9,Q of the boundary 9Q of the body, n; is the outward unit normal on the
boundary 0%, §;; is the Kronecker delta, X, is a prescribed function of X K on 9,9, and
the usual summatlon convention on repeated indices is used. Since det[GX] is assumed
to be nonzero, eqn. (2.5) is equivalent to 7;; . =0. We refer the reader to Ericksen’s
elegant paper [6] for the derivation of eqns. (2.5) and (2.6), their relation to other forms
of balance laws, and some other interesting topics in elastostatics.

Now let us assume that an elastic body occupying the region Q in the present
configuration and subjected to surface tractions f; on the part 3,2 of the boundary and
prescribed current position vectors X, on the part 9,Q of the boundary has only one
defect at a point y in the interior of 2. Furthermore, let ¥ denote the spherical region
of radius e centered at y, and let

—_ K
t,.j=W8,.j— G y

E= - VW dv+E,_,, (2.9)
where E,,, is the potential energy of sur\face tractions f; on 9,{. Since f; depends upon
the deformation of 9,2, E.,, is to be computed by integrating the expression

dE_ .= —| f dx,ds.
X
The deformation field (2.1) or (2.2) and hence the value of E will depend upon, among
other factors, the position y of the defect. Eqns. (2.5) and (2.6) will hold everywhere in
Q — V. For a straight line defect such as an edge or a screw dislocation through y, we
take for V a cylindrical region of radius € with its axis coinciding with the line defect.
Henceforth, this modification of ¥ to the cylindrical region for a line defect will be
implied without expressly stating so.

In the following we assume that |AX |, |Ax| and |AG| are of the order of |Ay|
where |-| signifies the magnitude of the enclosed quantlty For example, |Ay| =
(Ay, Ay)'2.

Our main result is the following
THEOREM: Let 2 CQ be a closed surface enclosing the defect. Then the force F, on it is
given by

oW _ . .
F= fz(WS el )n ds—ft,.jnf ds, (2.10)

where n is the outward unit normal to =.

Proof of the Theorem.

Let the defect undergo a virtual infinitesimal displacement Ay. Because of this, the
deformation field in £ and the current shape of the body will change. We denote by
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Q* the region occupied by the body after the defect has moved to y+ Ay, V* the
spherical region of radius ¢ centered at y + Ay. Then

E*=f W(GK + AGK, XX+ AXX)dv+E

ext (

The change in E because of the displacement A y of the defect can be written as

AE=f wW(G, X) Axin.ds—f W(G, X) Ay'n, ds
a0 ! av e

+[ [W(G+AG, X+AX)-W(G, X)] dv—f fiAxids. (3.2
Q-V dia

Here and below the unit normal on 3V points into £ — V whereas n on 0§ points out
into the exterior of . Since XX are co-ordinates of a material point in the reference
configuration, '

AXX+GF Ax'=0. (3.3)
To the first order in |AX | or | Ax|, the third term on the right-hand side of (3.2) may
be simiplified as follows.

[ [W(G+4G, X+AX)-W(G, X)] dv

-/ W pGxy ¥ Axx| gy
a-v| 0GK axx

W aw
= f " l I l.l-\:-r} i l I; El-'_k {;hf j-r.l] dl‘

a

e
j.mz Gk r

f_.r"' Ayin, ds
|:]l[‘_"‘L

G Ax'n, ds+ f

- Q—V( axx \BG,K) y
In deriving (3.6) from (3.5)we have integrated by parts, used the divergence theorem,
and have set Ax=Ay’ on dV. The various terms in the integrands of (3.6) are

evaluated at (GX, XX). Note that the integrand of the third integral on the right-hand
side of (3.6) is zero because of (2.5). Substitution from (3.6) into (3.2) gives

. ow .
= 2K - _ ——GK i
AE= m[(Wa v KG )n f]Axf ds /6V(W8 aGKG )Ayn, ds,

[a% b 74

where W and are evaluated at (G, X). Because the boundary condition (2.6) is

satisfied, the first integral on the right-hand side of (3.7) vanishes. Since, to the first
order in|Ay]|,
oE

AE= ;-‘-"Ay ,
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therefore, from (3.7)

) o aw . ‘
—= / ' Ws. . — f GK 'n‘ ds = / t..n. ds. (3.8)
dy, ol YooagKk Jay

Let X be any closed surface (or a cylindrical tube) enclosing ¥ and hence the defect.
Since there is no other defect in the body, various fields such as ¢,; are smooth in the
region enclosed between 2 and dV. If there were other defects present in 2, we would
need to choose 2 so that it surrounds V" and has no defect other than the one included

in V. Thus the integration in (3.8) may be performed over = rather than dV. Hence

B_E__ t..n.ds
ay,. "Eijj )

Recalling (1.2), taking the limit of both sides as ¢ = 0, and noting that the right-hand
side is independent of e gives (2.10).

Remarks

Eqn. (2.10) gives the present force on a defect and since it is obtained by integrating
the surface tractions over a closed surface embracing the defect, it equals the force
exerted on the closed surface by the surrounding medium. This closed surface can be
taken to be the core of the defect. Our result (2.10) agrees with Eshelby’s [4] for the
force on a disclination in a nematic liquid crystal.

In a recent paper Nabarro [7] has given an outline of the calculations which confirm
the view that there is a real mechanical force between an edge dislocation and a line of
misfitting solute atoms lying parallel to its own plane, and in the conventional extra
half plane.

Expressions like (2.10); have been used by Rice [8] and others to find the force on
the tip of a crack. Rice’s path independent integral corresponds to the component of
Eshelby’s energy-momentum tensor in the direction of the crack. It seems that one
ought to be able to use eqn. (2.10) to find the present force on a crack tip even though
we have not explored this in any detail.

Acknowledgements

I am indebted to Professor J.L. Ericksen for his suggesting the problem, and for his
advice and encouragement during the course of this work. The work was done while
the author was visiting the Institute for Mathematics and its Applications and the
Department of Aerospace Engineering and Mechanics, University of Minnesota.

References

[1] F.R.N. Nabarro, Theory of Crystal Dislocations, Oxford University Press, 1967.
[2] 1.D. Eshelby, The Continuum Theory of Lattice Defects, Solid State Physics (editors F. Seitz and D.
Turnball), vol. 3, Academic Press, New York, 79-156, 1956.



8 R.C. Batra

[3] C. Teodosiu, Elastic Models of Crystal Defects, Springer-Verlag, Berlin, Heidelberg, New York, 1982.

{4] 1.D. Eshelby, The Force on a Disclination in a Liquid Crystal, Philosophical Magazine, 42A, 359-367,
1980.

(5] J.L. Ericksen, Equilibrium Theory of Liquid Crystals, in Advances in Liquid Crystals (ed. G. Brown), vol. 2,
Academic Press, New York, 233-298, 1976.

(6] I.L. Ericksen, Special Topics in Elastostatics in Advances in Applied Mechanics (ed. C.-S. Yih) Academic
Press, New York, 189-244, 1977.

[7] E.R.N. Nabarro, Material Forces and Configurational Forces in the Interaction of Elastic Singularities, in
The Mechanics of Dislocations (eds. E.C. Aifantis and J.P. Hirth), American Society of Metals, Menlo
Park, 1-3, 1983. ‘

[8] J.R. Rice, A path independent integral and the approximate analysis of strain concentrations by notches
and cracks, J. Appl. Mechs., 35, 379-386.



