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Abstract. Toupin's version of the Saint-Venant's principle in linear elasticity is generalized to the
case of linear elastic porous materials. That is, it is shown that, for a straight prismatic bar made of a
linear elastic material with voids and loaded by a self-equilibrated system of forces, at one end only,
the internal energy stored in the portion of the bar which is beyond a distance s from the loaded end
decreases exponentially with the distance s.

Introduction

Mathematical versions of Saint- Venant's principle in linear elasticity due to Stern-
berg, Knowles, Zanaboni, Robinson and Toupin have been discussed by Gurtin
[1] in his monograph. Later developments of the principle for Laplace's equation,
isotropic, anisotropic, and composite plane elasticity, three-dimensional problems,
nonlinear problems, and time-dependent problems are summarized in the review
articles by Horgan and Knowles [2] and by Horgan [3]. For a linear elastic homo-
geneous prismatic body of arbitrary length and cross-section loaded on one end
only by an arbitrary system of self-equilibrated forces, Toupin [4] showed that the
elastic energy U ( s) stored in the part of the body which is beyond a distance s
from the loaded end satisfies the inequality

~ U(s) ~ U(O)exp[-(s -l)jsc(l)]. (1)

;J~ The characteristic decay length sc( 1) depends upon the maximum and the mini-
mum elastic moduli of the material and the smallest nonzero characteristic frequen-
cy of the free vibration of a slice of the cylinder of length 1. By using Ericksen's
[5] estimate for the norm of the stress tensor in terms of the strain energy density,
one can show that sc( 1) depends on the maximum elastic modulus and not on the
minimum elastic m~dulus.

Inequalities similar to (1) have been obtained by Berglund [6] for ,linear elastic
micropolar prismatic bodies, by Batra [7-9] for non-polar and micropolar lin-
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ear elastic helical bodies and prismatic bodies of linear elastic materials with
microstructure, and by Batra and Yang [10] for linear piezoelectric materials.
Herein we prove a similar result for a straight prismatic body made of a linear
elastic material with voids.

We assume that the cross-sections are materially uniform in the sense that one
cross-section can be obtained from the other by a rigid body motion. Thus the
material properties are independent of the axial coordinate of the point. Ericksen .

[5] has discussed material uniformity in more general terms.

"
Governing Equations for Linear Elastic Porous Materials

Let the finite spatial region occupied by the linear elastic porous body with voids
be V, the boundary surface of V be S, the unit outward normal of S be ni, and S
be partitioned as

Su U ST = S, Su n ST = 0. (2)

The governing equations without body sources and boundary conditions for
quasi static deformations of the body in rectangular Cartesian coordinates are [11,

12]

Tij,i = 0, hi,i + 9 = 0 in V,

Tij = ~ = CijklSkl + Bij<l> + Dijk<l>,k in V,

9 = -~=-B.'S.._l:"'-d."" in V8<1> '3 '3 <. 'f' "f',' ,

8Wh. = -=D kl ,S kl+ d."' + A.."'. in V, 8'" . ' "f' '3'f',3 ,
'f','

Sij = !(Uj,i + Ui,j) in V,
Ui = Ui on Su, niTij = fj on ST, nihi = h on Sh, (3)

where Ui is the displacement, Tij the stress tensor, Sij the strain tensor, <I> the
change in volume fraction, hi the equilibrated stress vector, and 9 the intrinsic ;;

equilibrated body force. Su and ST are parts of the boundary S on which mechanical
displacement and traction are prescribed as Ui and fi, respectively; and the normal
component of the equilibrated stress vectornihi is prescribed ash on S. Throughout ;.)

this paper, a repeated index implies summation over the range of the index, and a
comma followed by an index j stands for partial differentiation with respect to x j.
W(Sij, <1>, <I>,i) is the internal energy density function given by

W = .!CijklSijSkl + !~<I>2 + !Aij<l>,i<l>,j

+BijSij<l> + DijkSij<l>,k + di<l><I>,i, (4)
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which is assumed to be a positive definite, homogeneous quadratic function of the
ten variables Sij, </>, </>,i [10,11]. To save some writing we denote the ordered triplet
(Sij, </>, </>,i) by r and write W as

W = ! r . Er . (5)

Thus E is a linear transformation from a 1 O-dimensionallinear space into a
10-dimensionallinear space. Because of the positive definiteness of W

8W 8W 2. ar . ar = Er . Er = r . E r ~ aMr . Er = 2aMW, (6)

where aM is the supremum of the eigenvalues ofE.

Fonnulation of the Problem

Consider an unstressed prismatic bar with materially uniform cross-sections and
made of a linear elastic porous material. Introduce a fixed rectangular Cartesian
coordinate system so that in the unstressed reference configuration the x3-axis
coincides with the axis of the bar, one end is contained in the plane X3 = 0 and
for points in the bar X3 ~ O. Since the cross-sections of the bar are assumed to be
materially uniform, E depends only on Xl and X2. Hence

W = W(Sij, </>, </>,i, XA), A = 1, 2 (7)

in which W is a homogeneous quadratic function of the indicated variables except

XA.
An infinitesimal rigid body displacement is described by a uniform translation

Ci and a rotation bji = -bij. The displacements associated with a rigid body
displacement are

Wi = Ci + bjiXj. (8)

Thus if

Vi = Ui + Wi, (9)
then .

..
, Sij(V) = Sij(U), (10)

and W(Sij, </>, </>,i, XA) is unchanged.
'. The equations and boundary conditions for quasi static deformations of the

prismatic bar are

(~ ) = 0, (~ ) - ~ = 0 in V,
8Sij ,i 8</>,i,i 8</> (11)

niTij = tj, nihi = 0 on S,
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where we have assumed that ST = S. We are interested in the case when the part
X3 = 0 of the boundary S is loaded and the remainder of the boundary is traction
free; hence tj is nonzero only at X3 = O. In order that there exists a solution to
(11), the applied loads must be self-equilibrated and must satisfy

[ ti dS = 0, [ilkjXjtk dS = O. (12)
Jco Jco

Here moments are taken with respect to the origin, £ijk is the alternating tensor,
and C s is the cross-section of the body contained in the plane X3 = s. With the
definition

U(s) = [ WdV, (13)
JX3~S

we state and prove below the
,

THEOREM. If a prismatic body made of a linear elastic porous material and
with materially uniform cross-sections is loaded on Co by a self-equilibratedforce
system, then

U(s) ~ U(O) exp[-(s -l)/sc(l)], (14)

where

sc(l) = 2(aM/Ao(I»1/2, (15)

AO( 1) is the smallest nonzero eigenvalue of the following eigenvalue problem

( 8W ) (8W) 8W. - ~ = AUj, ..- aT + {iJ: = A</> 10 V,
tJ ,i 'I',t ,i 'I' (16)

niTij = 0, nihi = 0 on S,

fora slice of the prismatic body of axial length 1. In (16) V is the region of the slice
between X3 = sand X3 = s + 1, S is the total boundary surface ofV.

Proof of the Theorem. Recalling (13) and W is a homogeneous quadratic func-
tion of the indicated variables except XA, we have by Euler's theorem

11 ( 8W 8W 8W )U(s) = 2 ~Sij + {iJ:</> + aT</>,i dV ~
X3~S tJ 'I' 'I',t

11 ( 8W 8W 8W )= 2 ~Uj,i + -8'" </>+ _8'" .</>,i dV "
X3~S tJ 'I' 'I',t

1 [ ( 8W 8W )= 2Jr ni~Uj + niaT</> dS
c. tJ 'I',t

1 1 ( 8W 8W )= -2 ~Uj + ~</> dB, (17)
c. 3J '1',3
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where we have used the strain-displacement relation (3)6, the divergence theorem
and nk = -O3k on Cs.

Using the inequality

2 f fh dV ::;; a f r dV + ~ f h2 dV, (18)
Jv Jv a Jv

which holds for a > 0 and is a consequence of the Schwarz and the geometric-
arithmetic mean inequalities (e.g. see Toupin [4]), we obtain

1l aw 1 ( l aw aw 1 1 )-2 -as.ujdS::;;"4 aI -as .-as . dS + - ujujdS. (19)
C. 33 C. 33 33 at C.

Similarly

1 l aw 1( l aw aw 1 1 2 )-2 ~<I>dS::;;"4 a2 ~~dS + - <I> dS, (20)
C. '1-',3 C. '1-',3 '1-'.3 a2 C.

and hence

1 [ 1 (aw aw aw aw aw aw)U(s) ::;; "4 {3 ~~ + BTBT + a-;:a-;: dB,
C. '3 '3 '1-'.' '1-'.' 'I-' 'I-'

+ ~ fa. (UjUj + <1>2) dS] , (21)

where we have set at = a2 = {3. Substituting from (6) into (21) results in

U(s) ::;; l [{3 fa. 2aMW dS + ~ fa. (UjUj + <1>2) dB] . (22)

Integration of both sides of (22) with respect to X3 from X3 = s to X3 = s + 1
for some 1 > 0 and setting

1 fs+1
IJs U(y)dy=Q(s,/) (23)

gives
{3aM f 1 f 2

, Q(s, I)::;; ~ J( WdV + 4 {31 J( (UjUj + <I> )dS, (24)

c.,! c.,!

in which
~

Cs.I = {X:XE V,s::;; x3::;;s+/}
= portion of the prismatic body between the planes

X3 = s and X3 = S + I. (25)

In order to bound the last integral on the right-hand side of (24) by an integral of
W, we consider the eigenvalue problem (16) on C s.l. By taking the inner product
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of (16)1 with Uj and (16)2 with c/J, adding the respective sides of the resulting
equations and integrating them over Cs,l, using the divergence theorem and the
boundary conditions (16)3,4, we obtain .

2.1; WdV
,\ = C.,I . (26)

fc (UjUj + c/Jc/J) dV',1

Since W = 0 for a rigid body displacement, the smallest eigenvalue is zero. In
order to eliminate the rigid body displacement and thereby the possibility of zero
eigenvalue we consider smooth fields Vi and c/J that satisfy .

1 (VjVj + c/J2) dV i 0, 1 Vj dV = 0, 1 fijkX jVk dV = O. (27)
C.,I C.,I C.,I

As shown by Toupin [4], for a given Ui we can choose Wi in (9) such that Vi satisfies
(27). Thus the lowest eigenvalue '\o( I) will satisfy the inequality

2fc WdV
0 < '\0(1) ~ fc (Vj~~ + c/Jc/J)dV. (28)

,,1

Substitution from (28) into (24) results in the following:

Q(s,l) ~ ~ [ WdV, (29)
1c.,1

in which

1 2
sc(l) =2f3aM + ~. (30)

We choose /3 = 2/(aM'\o)I/2 so that sc(l) takes on the minimum value

sc(l) = 2(aM/'\o)I/2. (31)

Differentiating (23) with respect to s yields

~ = ![U(s + I) - U(s)] == _! [ WdV. (32):'--
ds I I 1c.,1

This when combined with (29) results in i

Sc(l)~ + Q ~ O. (33)

Integrating (33) and using

U(s + I) ~ Q(s, I) ~ U(s), (34)
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which follows from the observation that U( 8) is a nonincreasing function of 8, we
arrive at

U(S2 + 1)
( ) ~ exp[-(s2 - sI)jsc(1)]. (35)

U 82

The choice SI = 0 and S2 = S - 1 gives the desired inequality (14).
. REMARKS. Even though inequality (14) ensures that the energy stored in the bar

beyond a distance s from the lo~ded end decreases exponentially with the distance
s, it is difficult to find the optimum decay rate unless one considers specific cross-

. sections. This is an inherent weakness of Toupin's version of the Saint-Venant

principle. The porosity affects the decay rate since aM in (15) and AO given by (26)
and (28) depend upon it; these effects can not be delineated unless one considers a
specific material and a simple cross-section of the prismatic body. Thus it is hard
to quantify the effect of porosity on the decay rate of the energy.
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