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Abstract. We use Noether’s theorem to derive energy-momentum tensors for a simple elastic material,
a nonsimple elastic material of grade two, a simple elastic dielectric and a nonsimple elastic dielectric
of grade two. The technique is easily extendable to a nonsimple elastic dielectric of any grade.

Introduction

The concept of the force acting on a defect, e.g., an impurity, vacant lattice site,
dislocation, inclusion, void or a crack, is related, in a broad sense, to the notion of
an inhomogeneity. Eshelby [1] showed that the force on a defect in an elastic body
equals the integral of an energy-momentum tensor over a closed surface enclosing
only this defect; subsequently he [2] derived the energy-momentum tensor for a
second-grade elastic material which is nonsimple according to Noll [3]. Recently
Maugin and Trimarco [4] used a general variational principle and the concept
of pseudomomentum to derive the energy-momentum tensor for a second-grade
elastic material. By invoking the ideas of a basic reference configuration, Maugin
and Epstein [5], Epstein and Maugin {6], Maugin and Trimarco [4] and Maugin et
al. [7] have derived energy-momentum tensors for simple electromagnetic elastic
materials.

Here we use Noether’s theorem [8] to derive the energy-momentum tensor for
simple and nonsimple elastic dielectrics. This approach requires considerably less
work as compared to the techniques employed previously and is easily extendable
to electromagnetic materials of grade N. We note that Noether’s theorem has been
used by Knowles and Sternberg [9] to derive conservation laws in linearized and
finite elastostatics, by Golebiewska-Herrmann [10] to obtain a unified formulation
leading to all conservation laws of continuum mechanics, by Pak and Herrmann
[11] to obtain conservation laws and the material momentum tensor for an elastic
dielectric, and by Maugin [12] to obtain pseudo-momentum and Eshelby’s material
tensor in electromagneto-mechanical framework. Maugin [12] noted that the work
can be extended to nonsimple hyperelastic solids but did not provide any results.
Maugin and Trimarco [13] have applied Noether’s theorem to study Eshelby’s
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Noether’s Theorem

We state a version of Noether’s theorem [8] appropriate for our work; according
to Soper [14] earlier versions of the theorem were given by Hamel [15]. For fields
¢j(X),J = 1,2,..., N, depending upon coordinates X*,a = 1,2,..., M, the
Lagrangian £ in general will be a function of X, ¢ and derivatives of ¢ up to some
finite order. That is

L = L($1,0007,0a0804,...; X7), Q)
where
aa¢.] = 6¢J/8Xaa aaaﬁ¢J = 32¢J/8X°‘8Xﬁ. (2)

The variation of the Hamiltonian action A is given by

§A = / 55097 4X, 3)
where

6L aL oL oL

2= % s, 95 4

ddy 0ds ( i M3 ) +0 3;6 (6(aaaﬂ¢-])> * @

Throughout this paper a repeated index implies summation over the range of the
index.
Consider invertible and properly smooth transformations

X% = Xa(i; €), (5)
#(X) = 8(¢(X), X; ¢)
such that fore = 0,X = X and ¢ = ¢. Let
- _ = 90,X) *6;,X) ¢\ %
A—/C(ﬁJ(X)’ 6701 ’aYﬁaya,---»X) dX, ©)
0¢s(X) 0%¢s(X
Ae) = / (zb (X), ¢j§,, ), 5 X%(Xl, ;X) dX. )

The action is said to be invariant under transformations (5) if

A(e) = A= A(0) VeandVéy(X), J=1,2,...,N. (8)
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Noether’s theorem states that if the action .A is invariant under a set of transfor-
mations of the coordinates and the fields, then there exist conserved currents 7
such that

9, T 6¢ = %—&m, ©
where
o0Xe oL oL
~TJ%e = L— e+ ————6 Y
T = L5 ¢t 5a87) % T 3(0a0567) P%

ac
% (a”(ba_m_)) Pat:

It can be shown that

6dg M’J .G

E— = "a (aa¢.]) 66

It is evident from equation (9) that when fields ¢;(X) satisfy the Euler-Lagrange
equations of motion, viz.,

oL
ddg

the current 7€ is conserved.
Substitution from (10) and (11) into (9) yields

=0,

—ja “‘E AL AL r}ﬁ = { ﬂjfl;’
5 de  d(d.pg) | de dr
al i 5 o L ane
'Fawna},m_,a“’[ 3~ O

ac 0% ax"
~9% (a(aaaﬂqn)) [ 9 (a""”)w] +

Note that X% can include time, and ¢5,J = 1,2,..., N, are arbitrary fields
involved in the Lagrangian. Suppose now that the Lagrangian does not depend
upon one of the coordinates, say X A. Then the action is invariant under the trans-
formations

X*X,e) =X + €63,

— — (14a)
QJ(¢9 X7 6) = ¢J(X)
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and

oxe 0%,

2

Here ¢ ;} is the Kronecker delta which equals one when A = u and zero otherwise.
Equations (13) and (14b) result in the following;:

; 3L
.J.r.ll = il — ?'g i o i
oy Jrl-.,L .lr: iy ‘.{.-r., F,b,f ]—L” If'.j“ r‘”]
aL L . oL
r‘i‘f'r'fﬂ:fﬂ.ﬁ}"]'m"‘ heg) — On (m) Ods +

where T} is the canonical energy-momentum tensor whose components have
the physical dimensions of an energy density. Equation (15) will be used below
repeatedly. In terms of the energy-momentum tensor, the force F on a defect or
an inhomogeneity in the reference configuration is given by

F= / TYN, dS,
S

where the closed surface S encloses the defect in the reference configuration, and
N is an outward unit normal to 5.

Energy-Momentum Tensor for Nonsimple Elastic Dielectrics

We consider quasistatic deformations of a nonsimple elastic dielectric of grade
2; the results are easily extendable to an elastic dielectric of grade N. Also, in
principle, one can consider the dynamic case by modifying the Lagrangian to
include the kinetic energy density. Before applying equation (15) to an elastic
dielectric of grade 2, we apply it to the other three cases listed in the abstract. In
each case, because of the invariance of the strain energy density under uniform
translations, the action is invariant under the transformations (14a).

a. Simple elastic materials
For these materials,

L =-W(F;X), a7n

where W isthe strain-energy density per unit volume in the reference configuration,
F = 9z /0X is the deformation gradient, a two-point tensor. In order to use equation
(15) we rewrite the Lagrangian as

L=-W(z',0.a'; X%)
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and set ¢5 = z*§;7. With the notation F§ = dz¢/dX*, equation (15) yields
ow

oOF:’

which is the energy-momentum tensor derived by Eshelby [1].

T¢ = Wét — Fj

b. Nonsimple elastic materials of grade 2
For these materials

L = —-W(F,VF;X),

= —W(z‘,an‘,aAaumi;X“)

and with G, = 8,0,2* = OF} /X", equation (15) gives
OW W 9 ( oW )

TV = W6 - 1)

F*an 3G, ~Gia + 55 3G,

which agrees with the energy-momentum tensors derived by Eshelby [2] and
Maugin and Trimarco [4]. We note that they used different reasoning to arrive at
this result.

c. Simple elastic dielectrics

In terms of the electrostatic potential ¢, the electroelastic field E can be expressed
as

_ . 0d dX> B ox*
dzi = 9X*2 9 oz
where E) = —8¢/8X*. The Lagrangian can be written as

Ei=-

L = 1JeE-E — W(F,E; X)
= 1JeE-E — W(z',0x2t, 6, 0ne; X *),

where J = det(F) and ey is the dielectric constant for the vacuum. In order to
use Noether’s theorem we note that E is independent of F. With ¢; = {z*6;5, 9},
equation (15) gives

oc oL
+ By—

T¢ = -8 +F'6F, -

n

- OW oW OXH*OXVY .
+E| —=+Je

1]
We - Fgg 9E, 9z oz ov|)
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which differs from the energy-momentum tensor derived by Maugin and Epstein
[5] in that the last term on the right-hand side of (24) is missing in their expression,
it is a contribution from the free electric field %J eoE - E and equals its derivative

with respect to J,¢ = —E,‘. In deriving (24) we have also used the relation
dJ/6F = J(F~1)T, ,

d. Nonsimple elastic dielectrics of grade 2
For these materials,

L = JeE -E - W(F,G,E;X)
1JeoE - E — W(z%,8,2%,0,0,7%, ¢, 0,0; X*),

and equation (15) gives

, 0L - 0L oL _; 0 oL ;
b= L6+ Fae - Gl - o | 5 | FY
T = L+ Bgm + Bygg, ¥ acs, O ~ axv ((‘)G:,u)FA
; OW - ow 2
L b = _
= Wt "(‘)F;;+E’\[ o5, H 5 o EL}
;oW 0 (W)
“A9Gi, T aXv \aGi, ) N

Equation (26) is the energy-momentum tensor for nonsimple elastic dielectrics of
grade 2 and includes the previous three cases.

Conclusions

It has been shown that the use of Noether’s theorem gives an expression for the
energy-momentum tensor for four different classes of materials. In principle, the
method is easily extendable to nonsimple elastic dielectrics of grade N. By also
considering the magnetic field in the Lagrangian, the work can be extended to
nonsimple electromagnetic materials of grade N; Maugin [12] has derived the
Eshelby energy-momentum tensor for simple electromagnetic materials.
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Note added in Proof
The method illustrated above can also be used to derive the Ericksen tensor for
nematic liquid crystals by taking

L

1]

—W(n,F, Vn)
W(z',n', 8,zt, Oan’; X ),

where W is the strain-energy density per unit volume in the reference configuration,
and n is the director field. Noting that x and n are field variables, equation (15)
gives

oW

JL=T=wé - Fj G’

\oFT

which is the Ericksen tensor for nematic liquid crystals also derived recently by
Maugin and Trimarco {13].



