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Abstract. We use asemi-inverse method to study deformations of astraight, prismatic, homogeneous
body made of a porous, linear elastic, and isotropic material and loaded only at its end faces by
self equilibrated forces. Asin the classica theory, the problem is reduced to solving plane elliptical
problems. It is shown that the Clebsch/Saint-Venant and Voigt hypotheses are not valid for this
problem.
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1. Introduction

Since Saint-Venant [1, 2] solved the problem of extension, bending, torsion, and
flexure of a prismatic body made of a homogeneous and isotropic linear elastic
material and loaded at its end faces only, there has been considerable interest in
generalizing it [3-12]. Clebsch [3] observed that in Saint-Venant's solutions the
surface tractions on a plane passing through the axis of the prismatic body are
paralel tothe axis. Voigt [4, 5] hypothesized that the stresstensor is either constant
along the axis or depends linearly upon the axial coordinate. Other investigators
[6-12] have analysed the problem for inhomogeneous and anisotropic linear elastic
bodies, elastic dielectrics, microstretch elastic solids, and piezoelectric materials.
Here we study the Saint-Venant problem for alinear elastic porous material. The
theory for such materials has been developed by Nunziato and Cowin [13] who
have a so studied the bending of a beam [14] made of this material. They applied
surfacetractions equipollent to abending moment only at the end faces of the beam
and found that surface tractions were also required on its lateral walls. Batra and
Yang [15] have proved Toupin’s version of the Saint-Venant principle for linear
elastic porous materials.

The solution for the Saint-Venant problem has been reduced to that of solving
two planeélliptic problems; their solutionswill givethewarping of the cross-section
and in-plane displacements as a function of the axial and in-plane coordinates. It
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is also shown that the Saint-Venant/Clebsch and Voigt hypotheses are not valid for
this problem. An appropriate criterion is that the second derivative with respect to
the axial coordinate of the in-plane components of the stress tensor must vanish.
Moreover, the vanishing of the first derivative with respect to the axial coordinate
of the in-plane components of the stress tensor is not equivalent to the vanishing
of these componentsasisthe casein classical linear elasticity [4, 5].

2. Formulation of the Problem

Equations governing quasi static deformations of alinear elastic, porous, isotropic,
and homogeneous material in the absence of body forces and extrinsic equilibrated
forcesare

DivT =0, Divh+¢g =0, D
where

T = A(trE)1 + 24E + 81,

h = aGrad ¢, g=—C¢— B(trE). @)
Here T isastresstensor, h the flux of porosity ¢, g the density of self-equilibrated
body forcesfor the porous material, Div the three-dimensional divergence operator,
A and . Lamé's constants, «, 8 and ¢ are material constants that characterize the
effect of porosity, tristhetrace operator, E theinfinitesimal strain tensor, 1 thethree-
dimensional identity tensor, and Grad the three-dimensional gradient operator.

Let e be aunit vector along the axis of the prismatic body. We set

u=we+yv, h = a(¢'e+ grad ¢),
T=veRet+tRet+ext+T, ©
E=SymGradu=ce®et+y®e+e®y+E,

where

=uw =9 v =3V +gradw),
’ . (4)
=2

(gradv + (gradv)T),

u is the displacement field, and grad (div) is the two-dimensional gradient (diver-
gence) operator with respect to coordinates in the cross-section A. Thus w gives
the displacement and = the coordinate of a point along the axis of the prismatic
body, v the components of displacement in the plane of the body, € the axial strain,

o the axial stress, T the in-plane stress tensor, E the in-plane infinitesimal strain
tensor, t the shear stress on the cross-section A, ~ the shear strain corresponding to
the shear stresst, and the tensor product @ between two vectorsa and b is defined
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by (a® b)c = (b - c)a for every vector c. The constitutive relations (2) and the
decompositions (3) yield

T = \trE +¢) + B¢|1 + 2uE,

R (5)
o= AtrE+¢€) + 2ue + B¢, t = p(V + gradw),

where 1 is the two-dimensional identity tensor. Substitution from (3) and (4) into
(1) yields

(A + p)divv' + (A + 2p)w” + B¢ + pAgw =0,
pVv" + (A4 p)gradw’ + gograd ¢ + 2uAgv + (A + p) graddivv = 0, (6)
agd” + aApep — Cp — B(divv +w') =0,

where A isthe 2-dimensional Laplace operator in A. Equations (6) are the field
equationsfor the determination of v, w, and ¢, and correspond to Navier'sequations
in elastostatics; the latter are obtained by setting 5 = 0in (6)1,2. This form of the
equations exploits the geometry of the prismatic body (e.g. see DiCarlo [16]). We
assume that the strain energy density is positive definite; thus [13]

p>0, A+35u>0, (>0, >0, (A+pu){—48°>0. ©

For the prismatic body A x [0, ] of axial length I, we assume that its mantle
0A x [0,1] is traction free and it is loaded at the ends. Thus pertinent boundary
conditions are

Tn=0, t-n=0, gad$-n=0, ondAx][0,I],

(8)
/TndA:F, /rxTndA:M,/h-ndA:H.
A A A

Here F and M are the resultant force and resultant moment applied at the end faces
A x {0} and A x {l}, H isthe resultant flux of porosity, and n is the outward
directed unit normal to the surface.

3. A Saint-Venant/Almans Solution

Following Saint-Venant [1, 2] and Almansi [17], we assume

22 23

w = wo + zw1 + w2 + —ws, 9

2 6
and similar expressionsfor v and ¢, where wg, w1, . . ., ¢3 are functions defined on
the plane A. For the mantle to be free of surface tractions and moments per unit
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length, we must have w3z = ¢3 = 0. Henceforth, we assume that w3 and ¢3 vanish
identically. From (9), (4) and (3)3 we obtain

~ ~ ~ zz ~ z3 ~

T=ToteTo+ 5T2+ 5T, (10)
and, by equating like powers of z on both sides of (6) and (8)1, the following partial
differential equations:

Fv3 =0, (11)
Fv;y + porad¢r = 0, (12)
Fvi+ Bograd g + (A + p) grad wy + pvs = 0, (13)
Fvo+ ggrad o + (A + p) gradwy + pve = 0, (14)
pAgw2 + (A + p) divvsy = 0, (15)
pARw1 + (A + p) divva + Bdp =0, (16)
pAgwo + (A + p) divvy + 81 + (A + 2u)we = 0, (17)
divvs =0, (18)
aA g2 — (P2 — Bdivvy =0, (19)
aAgrp1— (1 — B (divvi +w2) =0, (20)
aAgpo — (o + ag2 — B(divve +w1) =0, (21)

in A, and the following boundary conditions on 0.4:

(Viqr +gradw;) -n=0, i=0,1,2, (22)
(2u Symgradv; + A(divv;)1+ Bp;1)n =0, i=0,1,2, (23)
(2u Sym gradvs + A(divvs)i)n = 0, (24)
grad¢; -n=0, i=0,12, (25)

where F' = [2ulA R + (A + 2u) grad div] is the differential operator appearing in
Navier's equations.

On recalling that the solution of Navier's equations subjected to null tractionsis
arigid body motion, Equations (11) and (24) havethe solution vs = V3 + wse x r,
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whereV§ and w3 are constants. Sincethe mantleistraction free, thetorque on every
cross-section is the same. It requiresthat ws = 0. Thus

v3=V3, T3=0, (26)

and Equation (18) isidentically satisfied. Equation (15) now implies that w» isa
harmonic function, and (22) with i = 2 gives (gradws) - n = —v3 - n. Thus

wy = w3 —Vg-r. (27)

In (27) and below, quantities with superscript zero denote constants.

Scarpetta [19] and lesan [18] have shown that the boundary-value problem
defined by Equations (12), (19), (23), and (25) (for 7 = 2) hasaunique solution for
v, and ¢, to within arigid body motion. Since null fields satisfy these equations,
therefore,

p2=0,  Vo(r) =i+ wrexr (28)
give every solution of the problem. The reasoning given aboveto conclude ws = 0

also givesw, = 0. From (16) and (28) we conclude that w1 isaharmonic function,
and the boundary condition (22) with ¢ = 1 requires that

wy = wd —V3-r. (29)
Equations (13), (20), (23), and (25) (for i = 1) can be simplified to

Fvy + Bgrad gy = A3,
aAqul—Cqﬁl—ﬁdivvl:ﬁ(wg—vg-r), inA (30)
Tin=0, (grad¢1)-n=0, ondA.

Scarpetta’s[19] and lesan’s [18] theorems imply that the boundary-value problem

(30) has a unique solution which must depend linearly upon v3 and w3. From
Equations (1)1, (3)3, (8)1 we conclude that

/o’dA:—/(divt)dA:— t-nds=0, (31)
A A 0A
and, therefore,

(O + 21)uwA = —ﬁ/A¢1 dA—A /A(div vi)dA +V3-FAN+20)  (32)

Vo - TAN + 2p), (33)
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where T is the position vector of the centroid of the cross-section of area A, and
T isdefined by Equations (32) and (33). We also note that T1 may not vanish, but
t1 =1t =0.

Once wo and ¢g are found by solving the elliptic problem defined by (17), (21),
(23) and (25) (for : = 0), the complete solution to the Saint-Venant problem is
determined. Because of the presence of ¢g and ¢, in these equations, the porosity
will influence the warping of the cross-section.

4. Clebsch/Saint-Venant and Voigt Hypotheses

The Clebsch/Saint-Venant hypothesis in classical linear elasticity is T = 0 and
the Voigt hypothesisis T' = 0 or T; = 0. Podio-Guidugli [20] has proved the
equivalence of these two hypotheses. We show here that these hypotheses are
not valid for alinear elastic porous material. We first recall the following result:
if f € C%(A) and there exists a function u such that f1 = Symgrad u, then
Agrf =0.

We now prove that T, = 0 if and only if v, = constant. T, = 0 implies that
trT,=0,o0r

divva = —(B/ (A + p)) P2, (34)
and hence
Symgrad vz = —B¢21/2(A + p). (35)

Because of the above stated result, A p¢p> = 0. Now recalling (7)3, Equations (34)
and (19) yield ¢, = 0. Thus Equation (35) gives

Vo = V3 +wexr, (36)

and because the mantle is traction free, therefore w, = 0, which proves the result
sincethe converseistrivial. R

The second result of this section is that T; = 0 rules out flexure. We first note
that

T1 =2uSymgradvy + A (divvy)1 + (Awz + Beo)1. (37)

T, = 0impliestr Ty = 0 which gives divvy = —( w2 + Bé1)/(A + ), and,
therefore,

2symgradvy = —(\wz + Bp1)1/(A+ ),  Arpr =0, (38)

wherewe have used the aforestated result, and w» isharmonic (cf. thelinefollowing
Equation (26)). From (20) we now conclude that

32 Bu
(A+M_C>¢l_>\+uw2_o' (39)
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Recalling (27), (33) and (25) with i = 1, we conclude that v§ = 0 which rules out
flexure.

Weremark that T; = f(r)1 also rules out flexure. Indeed, from (30); and (30)a,
oneagaingets f = 0. X

Following reasoning similar to that given above, one can prove that To = 0
implies vY = 0 and hence no bending. It explains why Cowin and Nunziato [14]
imposed nonzero tractions on the lateral surface of the porous beam deformed in
bending.

Thusthe Clebsch/Saint-Venant and Voigt hypotheses must be relaxed for study-
ing the Saint-Venant problem for linear elastic porous materials.

5. Summary

The Saint-Venant problem for aprismatic body of cross-section.A hasbeenreduced
to finding a solution of the following two elliptic problemsin the cross-section A:
the first defined by Equation (30) and the second by Equations (14), (17), (21),
(22), (23) and (25) with i = 0 and

wp=—V3-(r=Tg),  Vo(r)=V3,  wi=wl—V3-r. (40)
Letvy(r) and ¢, (r) be asolution of the boundary-value problem defined by Equa-
tions (30) with v§ = 1, then

Vi(r) = v3Vi(r) +wie x 1, ¢a1(r) = ¢y(r)vd, (41)

where 1§ is the magnitude of v3 and w; is an arbitrary constant. The six constants
v3, V3, w1, and w9 characterize, respectively, the flexure, bending, torsion, and
extension of the prismatic porous body as discussed below.

Extension: The only nonvanishing constant is w? and the solution of the second
plane elliptic problem to within arigid body motion is

A= P 2 +2
w0 o= (i) et @

For 8 # 0, the porosity affects noticeably the Poisson effect. Note that the denom-
inator in (42) is positive because of inequalities (6).

Torsion: The only nonzero constant is w;, and there is no coupling between the
displacement and porosity fields. When either nonzero tractions or nonvanishing
flux of porosity is prescribed on the mantle, then the two fields will be coupled
with each other.

Bending: The only nonvanishing constant is v3, and wo = 0. The functions ¢ and
Vo are solutions of Equations (14), (21), (40), (23) and (25) with ¢« = O. If one
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takes v and ¢q to be polynomials of degree 2 and 1 in r respectively, (in classical
linear elasticity v isapolynomial of degree2inr), then Equations (14), (21), and
(23) are satisfied but (25) is not. Cowin and Nunziato [14] studied bending of a
porous beam and found that vo and ¢o are not polynomialsin r. For their solution,
tractions on the lateral walls do not vanish and h - n = 0 on the end faces where
normal tractions equipollent to a moment only are applied.

In general, the axial stress o = Adivvg + (A + 2u)(—V3 - 1) + Beo, and the
locus of pointsin .4 where o vanishes may not be a straight line.

Flexure: Here the only nonzero constant is v3. We recall that the point with the
position vector T in (40)1 and defined by (33) need not coincide with the centroid
of the cross-section. Equations (30) determine v4, the part of the displacement
field u that is linear in z. However, v1 need not be quadratic in r. Consequently,
Equation (17) for warping function wg has a source term not necessarily affine
in r. Equations (14) and (21) with boundary conditions (23) and (25) withi = 0
have a rigid motion solution as in classical linear elasticity. Thus warping of the
cross-section and the Poisson effect are influenced by the porosity.

We note that the flux of double forces at the termina faces of the cylinder
has no effect on the Saint-Venant solutions away from these faces. An analysis
of the corresponding one-dimensional problem indicated that the porosity decays
exponentialy away from the loaded ends. However, the deformation fields in the
prismatic body and in particular the warping of the cross-section are influenced by
the porosity.
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