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Via Eudossiana n. 18, 00184 Roma, Italy
2Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061-0219, USA

Received 27 December 1996; in revised form 8 April 1997

Abstract. We use a semi-inverse method to study deformations of a straight, prismatic, homogeneous
body made of a porous, linear elastic, and isotropic material and loaded only at its end faces by
self equilibrated forces. As in the classical theory, the problem is reduced to solving plane elliptical
problems. It is shown that the Clebsch/Saint-Venant and Voigt hypotheses are not valid for this
problem.
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1. Introduction

Since Saint-Venant [1, 2] solved the problem of extension, bending, torsion, and
flexure of a prismatic body made of a homogeneous and isotropic linear elastic
material and loaded at its end faces only, there has been considerable interest in
generalizing it [3–12]. Clebsch [3] observed that in Saint-Venant’s solutions the
surface tractions on a plane passing through the axis of the prismatic body are
parallel to the axis. Voigt [4, 5] hypothesized that the stress tensor is either constant
along the axis or depends linearly upon the axial coordinate. Other investigators
[6–12] have analysed the problem for inhomogeneous and anisotropic linear elastic
bodies, elastic dielectrics, microstretch elastic solids, and piezoelectric materials.
Here we study the Saint-Venant problem for a linear elastic porous material. The
theory for such materials has been developed by Nunziato and Cowin [13] who
have also studied the bending of a beam [14] made of this material. They applied
surface tractions equipollent to a bending moment only at the end faces of the beam
and found that surface tractions were also required on its lateral walls. Batra and
Yang [15] have proved Toupin’s version of the Saint-Venant principle for linear
elastic porous materials.

The solution for the Saint-Venant problem has been reduced to that of solving
two plane elliptic problems; their solutions will give the warping of the cross-section
and in-plane displacements as a function of the axial and in-plane coordinates. It
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is also shown that the Saint-Venant/Clebsch and Voigt hypotheses are not valid for
this problem. An appropriate criterion is that the second derivative with respect to
the axial coordinate of the in-plane components of the stress tensor must vanish.
Moreover, the vanishing of the first derivative with respect to the axial coordinate
of the in-plane components of the stress tensor is not equivalent to the vanishing
of these components as is the case in classical linear elasticity [4, 5].

2. Formulation of the Problem

Equations governing quasistatic deformations of a linear elastic, porous, isotropic,
and homogeneous material in the absence of body forces and extrinsic equilibrated
forces are

Div T = 0; Div h + g = 0; (1)

where

T = �(trE)1 + 2�E + ��1;

h = �Grad�; g = ���� �(tr E):
(2)

Here T is a stress tensor, h the flux of porosity �, g the density of self-equilibrated
body forces for the porous material, Div the three-dimensional divergence operator,
� and � Lamé’s constants, �; � and � are material constants that characterize the
effect of porosity, tr is the trace operator, E the infinitesimal strain tensor, 1 the three-
dimensional identity tensor, and Grad the three-dimensional gradient operator.

Let e be a unit vector along the axis of the prismatic body. We set

u = we + v; h = �(�0e + grad �);

T = �e
 e + t
 e + e
 t + T̂;

E = Sym Grad u = "e 
 e + 
 
 e + e
 
 + Ê;

(3)

where

" = w0 � @w
@z
; 
 = 1

2 (v
0 + gradw);

Ê = Sym grad v = 1
2(grad v + (grad v)T );

(4)

u is the displacement field, and grad (div) is the two-dimensional gradient (diver-
gence) operator with respect to coordinates in the cross-section A. Thus w gives
the displacement and z the coordinate of a point along the axis of the prismatic
body, v the components of displacement in the plane of the body, " the axial strain,
� the axial stress, T̂ the in-plane stress tensor, Ê the in-plane infinitesimal strain
tensor, t the shear stress on the cross-sectionA, 
 the shear strain corresponding to
the shear stress t, and the tensor product 
 between two vectors a and b is defined
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by (a 
 b)c = (b � c)a for every vector c. The constitutive relations (2) and the
decompositions (3) yield

T̂ = [�(tr Ê + ") + ��]1̂ + 2�Ê;

� = �(tr Ê + ") + 2�"+ ��; t = �(v0 + gradw);
(5)

where 1̂ is the two-dimensional identity tensor. Substitution from (3) and (4) into
(1) yields

(�+ �)div v0 + (�+ 2�)w00 + ��0 + ��Rw = 0;

�v00 + (�+ �) gradw0 + � grad�+ 2��Rv + (�+ �) grad div v = 0;

��00 + ��R�� ��� �(div v + w0) = 0;

(6)

where �R is the 2-dimensional Laplace operator in A. Equations (6) are the field
equations for the determination of v; w, and�, and correspond to Navier’s equations
in elastostatics; the latter are obtained by setting � = 0 in (6)1;2. This form of the
equations exploits the geometry of the prismatic body (e.g. see DiCarlo [16]). We
assume that the strain energy density is positive definite; thus [13]

� > 0; �+ 2
3� > 0; � > 0; � > 0; (�+ �)� � 4�2

> 0: (7)

For the prismatic body A � [0; l] of axial length l, we assume that its mantle
@A � [0; l] is traction free and it is loaded at the ends. Thus pertinent boundary
conditions are

T̂n = 0; t � n = 0; grad� � n = 0; on @A� [0; l];Z
A

Tn dA = F;
Z
A

r� Tn dA = M;

Z
A

h � n dA = H:
(8)

Here F and M are the resultant force and resultant moment applied at the end faces
A � f0g and A � flg, H is the resultant flux of porosity, and n is the outward
directed unit normal to the surface.

3. A Saint-Venant/Almansi Solution

Following Saint-Venant [1, 2] and Almansi [17], we assume

w = w0 + zw1 +
z2

2
w2 +

z3

6
w3; (9)

and similar expressions for v and �, where w0; w1; : : : ; �3 are functions defined on
the plane A. For the mantle to be free of surface tractions and moments per unit

elas1284.tex; 19/09/1997; 8:01; v.7; p.3
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length, we must have w3 = �3 = 0. Henceforth, we assume that w3 and �3 vanish
identically. From (9), (4) and (3)3 we obtain

T̂ = T̂0 + zT̂1 +
z2

2
T̂2 +

z3

3
T̂3; (10)

and, by equating like powers of z on both sides of (6) and (8)1, the following partial
differential equations:

Fv3 = 0; (11)

Fv2 + � grad�2 = 0; (12)

Fv1 + � grad�1 + (�+ �) gradw2 + �v3 = 0; (13)

Fv0 + � grad�0 + (�+ �) gradw1 + �v2 = 0; (14)

��Rw2 + (�+ �) div v3 = 0; (15)

��Rw1 + (�+ �) div v2 + ��2 = 0; (16)

��Rw0 + (�+ �) div v1 + ��1 + (�+ 2�)w2 = 0; (17)

div v3 = 0; (18)

��R�2 � ��2 � � div v2 = 0; (19)

��R�1 � ��1 � � (div v1 + w2) = 0; (20)

��R�0 � ��0 + ��2 � �(div v0 + w1) = 0; (21)

in A, and the following boundary conditions on @A:

(vi+1 + gradwi) � n = 0; i = 0; 1; 2; (22)

(2�Sym grad vi + �(div vi)1̂ + ��i1̂)n = 0; i = 0; 1; 2; (23)

(2�Sym grad v3 + �(div v3)1̂)n = 0; (24)

grad�i � n = 0; i = 0; 1; 2; (25)

where F = [2��R + (� + 2�) grad div] is the differential operator appearing in
Navier’s equations.

On recalling that the solution of Navier’s equations subjected to null tractions is
a rigid body motion, Equations (11) and (24) have the solution v3 = v0

3 + !3e� r,
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where v0
3 and !3 are constants. Since the mantle is traction free, the torque on every

cross-section is the same. It requires that !3 = 0. Thus

v3 = v0
3; T̂3 = 0; (26)

and Equation (18) is identically satisfied. Equation (15) now implies that w2 is a
harmonic function, and (22) with i = 2 gives (gradw2) � n = �v0

3 � n. Thus

w2 = w0
2 � v0

3 � r: (27)

In (27) and below, quantities with superscript zero denote constants.
Scarpetta [19] and Iesan [18] have shown that the boundary-value problem

defined by Equations (12), (19), (23), and (25) (for i = 2) has a unique solution for
v2 and �2 to within a rigid body motion. Since null fields satisfy these equations,
therefore,

�2 = 0; v2(r) = v0
2 + !2e� r (28)

give every solution of the problem. The reasoning given above to conclude !3 = 0
also gives !2 = 0. From (16) and (28) we conclude that w1 is a harmonic function,
and the boundary condition (22) with i = 1 requires that

w1 = w0
1 � v0

2 � r: (29)

Equations (13), (20), (23), and (25) (for i = 1) can be simplified to

Fv1 + � grad�1 = �v0
3;

��R�1 � ��1 � � div v1 = �(w0
2 � v0

3 � r); in A

T̂1n = 0; (grad�1) � n = 0; on @A:

(30)

Scarpetta’s [19] and Iesan’s [18] theorems imply that the boundary-value problem
(30) has a unique solution which must depend linearly upon v0

3 and w0
2. From

Equations (1)1, (3)3, (8)1 we conclude that

Z
A

�0 dA = �

Z
A

(div t) dA = �

Z
@A

t � n ds = 0; (31)

and, therefore,

(�+ 2�)w0
2A = ��

Z
A

�1 dA��

Z
A

(div v1) dA+ v3
0 � rA(�+ 2�) (32)

� v3
0 � rBA(�+ 2�); (33)
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78 FRANCESCO DELL’ISOLA AND R.C BATRA

where r is the position vector of the centroid of the cross-section of area A, and
rB is defined by Equations (32) and (33). We also note that T̂1 may not vanish, but
t1 = t2 = 0.

Once w0 and �0 are found by solving the elliptic problem defined by (17), (21),
(23) and (25) (for i = 0), the complete solution to the Saint-Venant problem is
determined. Because of the presence of �0 and �1 in these equations, the porosity
will influence the warping of the cross-section.

4. Clebsch/Saint-Venant and Voigt Hypotheses

The Clebsch/Saint-Venant hypothesis in classical linear elasticity is T̂ = 0 and
the Voigt hypothesis is T0 = 0 or T̂1 = 0. Podio-Guidugli [20] has proved the
equivalence of these two hypotheses. We show here that these hypotheses are
not valid for a linear elastic porous material. We first recall the following result:
if f 2 C2(A) and there exists a function u such that f 1̂ = Sym grad u, then
�Rf = 0.

We now prove that T̂2 = 0 if and only if v2 = constant. T̂2 = 0 implies that
tr T̂2 = 0, or

div v2 = �(�=(�+ �))�2; (34)

and hence

Sym grad v2 = ���21̂=2(�+ �): (35)

Because of the above stated result, �R�2 = 0. Now recalling (7)3, Equations (34)
and (19) yield �2 = 0. Thus Equation (35) gives

v2 = v0
2 + !2e� r; (36)

and because the mantle is traction free, therefore !2 = 0, which proves the result
since the converse is trivial.

The second result of this section is that T̂1 = 0 rules out flexure. We first note
that

T̂1 = 2�Sym grad v1 + � (div v1)1̂ + (�w2 + ��2)1̂: (37)

T̂1 = 0 implies tr T̂1 = 0 which gives div v1 = �(�w2 + ��1)=(� + �), and,
therefore,

2 Sym grad v1 = �(�w2 + ��1)1̂=(�+ �); �R�1 = 0; (38)

where we have used the aforestated result, andw2 is harmonic (cf. the line following
Equation (26)). From (20) we now conclude that 

�2

�+ �
� �

!
�1 �

��

�+ �
w2 = 0: (39)
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Recalling (27), (33) and (25) with i = 1, we conclude that v0
3 = 0 which rules out

flexure.
We remark that T̂1 = f(r)1̂ also rules out flexure. Indeed, from (30)1 and (30)3,

one again gets f = 0.
Following reasoning similar to that given above, one can prove that T̂0 = 0

implies v0
2 = 0 and hence no bending. It explains why Cowin and Nunziato [14]

imposed nonzero tractions on the lateral surface of the porous beam deformed in
bending.

Thus the Clebsch/Saint-Venant and Voigt hypotheses must be relaxed for study-
ing the Saint-Venant problem for linear elastic porous materials.

5. Summary

The Saint-Venant problem for a prismatic body of cross-sectionA has been reduced
to finding a solution of the following two elliptic problems in the cross-sectionA:
the first defined by Equation (30) and the second by Equations (14), (17), (21),
(22), (23) and (25) with i = 0 and

w2 = �v0
3 � (r� rB); v2(r) = v0

2; w1 = w0
1 � v0

2 � r: (40)

Let v1(r) and �1(r) be a solution of the boundary-value problem defined by Equa-
tions (30) with v0

3 = 1̂, then

v1(r) = v0
3v1(r) + !1e� r; �1(r) = �1(r)v

0
3 ; (41)

where v0
3 is the magnitude of v0

3 and !1 is an arbitrary constant. The six constants
v0

3, v0
2, !1, and w0

1 characterize, respectively, the flexure, bending, torsion, and
extension of the prismatic porous body as discussed below.

Extension: The only nonvanishing constant is !0
1 and the solution of the second

plane elliptic problem to within a rigid body motion is

w0 = 0; v0 = �

 
��� �2

2(�+ �)� � �2w
0
1

!
r; �0 = �

�(�2 + 2��)
2(�+ �)� � �2w

0
1: (42)

For � 6= 0, the porosity affects noticeably the Poisson effect. Note that the denom-
inator in (42) is positive because of inequalities (6).

Torsion: The only nonzero constant is !1, and there is no coupling between the
displacement and porosity fields. When either nonzero tractions or nonvanishing
flux of porosity is prescribed on the mantle, then the two fields will be coupled
with each other.

Bending: The only nonvanishing constant is v0
2, and w0 = 0. The functions �0 and

v0 are solutions of Equations (14), (21), (40), (23) and (25) with i = 0. If one
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takes v0 and �0 to be polynomials of degree 2 and 1 in r respectively, (in classical
linear elasticity v0 is a polynomial of degree 2 in r), then Equations (14), (21), and
(23) are satisfied but (25) is not. Cowin and Nunziato [14] studied bending of a
porous beam and found that v0 and �0 are not polynomials in r. For their solution,
tractions on the lateral walls do not vanish and h � n = 0 on the end faces where
normal tractions equipollent to a moment only are applied.

In general, the axial stress � = � div v0 + (� + 2�)(�v0
2 � r) + ��0, and the

locus of points in A where � vanishes may not be a straight line.

Flexure: Here the only nonzero constant is v0
3. We recall that the point with the

position vector rB in (40)1 and defined by (33) need not coincide with the centroid
of the cross-section. Equations (30) determine v1, the part of the displacement
field u that is linear in z. However, v1 need not be quadratic in r. Consequently,
Equation (17) for warping function w0 has a source term not necessarily affine
in r. Equations (14) and (21) with boundary conditions (23) and (25) with i = 0
have a rigid motion solution as in classical linear elasticity. Thus warping of the
cross-section and the Poisson effect are influenced by the porosity.

We note that the flux of double forces at the terminal faces of the cylinder
has no effect on the Saint-Venant solutions away from these faces. An analysis
of the corresponding one-dimensional problem indicated that the porosity decays
exponentially away from the loaded ends. However, the deformation fields in the
prismatic body and in particular the warping of the cross-section are influenced by
the porosity.
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Ing., Univ. di Roma ‘La Sapienza’, 1994.
17. E. Almansi, Sopra la deformazione dei cilindri sollecitati lateralmente, Atti Accad. Naz. Lincci

Rend. Cl. Sci. Fis. Mat. Natur. Ser 5 (1901) I:333, II: 400.
18. D. Iesan, Some theorems in the theory of elastic materials with voids, J. Elasticity 15 (1985)

215–224.
19. E. Scarpetta, Well posedness theorems for linear elastic materials with voids, Int. J. Engng. Sci.

33 (1995) 151–161.
20. P. Podio-Guidugli, Load symmetry and energy minimization in Saint-Venant’s Problem, Mechs.

Res. Communications 14 (1987) 387–393.

elas1284.tex; 19/09/1997; 8:01; v.7; p.9


