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Abstract. We use Signorini’s expansion to analyse deformations of a straight, prismatic, isotropic,
stress free, homogeneous body made of a second-order elastic material and loaded as follows. It is
first twisted by an infinitesimal amount and then loaded by applying surface tractions, with nonzero
resultant forces and/or moments, only at its end faces. The centroid of one end face is taken to be
rigidly clamped. By using a semi-inverse method, the problem is reduced to that of solving two plane
elliptic problems involving six arbitrary constants that characterize flexure, bending, extension, and
torsion superimposed upon the infinitesimal twist. It is shown that the Clebsch hypothesis is not
valid for this problem. A second-order Poisson’s effect, not of the Saint-Venant type, and generalized
Poynting effects may also occur in these problems.
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1. Introduction

Since Saint-Venant [1, 2] solved the problem of extension, bending, torsion and
flexure of a prismatic body made of a linear elastic, isotropic and homogeneous
material, and loaded at its end faces only, Clebsch [3] and Voigt [4, 5] have charac-
terized these solutions. Clebsch noted that in Saint-Venant’s solutions the surface
tractions on a plane passing through the axis of the prismatic body are parallel to
the axis, and Voigt observed that the stress tensor is at most an affine function of the
axial coordinate. lesan [6-9] has analysed the Saint-Venant problem for inhomo-
geneous and anisotropic linear elastic bodies, elastic dielectrics, and microstretch
elastic solids. Dell'lsola and Rosa [10, 11] and Davi [12] have studied the problem
for linear piezoelectric bodies and dell’'lsola and Batra [13] for linear elastic porous
solids.
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Rivlin [14] studied the problem of extension superimposed upon an infinites-
imal twist for isotropic, homogeneous prismatic bodies made of a second-order
elastic material. The work has been extended to general nonlinear elastic solids by
Green and Shield [15]. Green and Adkins [16] noted that when the centroid of one
end-face is rigidly clamped (in the sense that its displacements and infinitesimal
rotations vanish), then the compatibility conditions for the loads in Signorini’s ex-
pansion method [17] are automatically satisfied. We recall that Signorini’s method
reduces the solution of a nonlinear elastic problem to that of a series of linear
elastic problems with loads determined at each step by the solution of the previous
linear problems. Truesdell and Noll [18] have discussed Signorini’s expansion and
summarized other works based on this method.

Here we use Signorini’'s expansion to analyse the Saint-Venant problem for a
straight, isotropic, stress-free and homogeneous prismatic body made of a second-
order elastic material with the assumption that the first term in the expansion for the
displacement field corresponds to an infinitesimal twist of the body. We use a semi-
inverse method to reduce the problem of the determination of the second term in
the expansion to two plane elliptic problems — one for the warping function and the
other for the in-plane displacements. The loads (body forces and surface tractions)
in these two problems are proportional to the square of the initial twist per unit
length. As pointed out by Truesdell and Noll [18] Signorini’s method delivers only
those solutions that are in the neighborhood of solutions of a linear elastic problem
with the same loads as for the nonlinear problem. Generalized Poynting effects
are shown to arise in the coupling not only of second-order extension but also of
second-order torsion, bending and flexure with first-order torsion. For a cylindrical
rod loaded to obtain an extension superimposed upon an initial infinitesimal twist,
the two plane problems are solved and the Poynting effect [19] is delineated. When
the resultant axial force vanishes, the elongation of the rod equals that found earlier
by Wang and Truesdell [20].

2. Formulation of the Problem

Equations governing quasistatic deformations of a second-order elastic, isotropic
and homogeneous body in the absence of body forces are

DivT =0, 1)
where
a1 2 2
T = l,L|:<Ot]_IE + 2E + E(IHHT + ZIE) +Ol3]E —|—O[4IIE>1

+(0[5+2)1EE—O[11EHT — (HT)2+066E2i|. (2)
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HereT is the first Piola—Kirchhoff stress tensor, Div is the three-dimensional
divergence operator with respect to coordinates in the reference configuraison,
the shear modulus,

H = Gradu 3

is the displacement gradient,= x — X is the displacement and X denote re-
spectively the position vectors of a material point with respect to a fixed rectangular
Cartesian coordinate system in the present and reference configurations, and Grad
is the gradient operator with respect to referential co-ordinates. Furthermore,

E=2H+H" 4)

is the infinitesimal strain tensok, = ua; is a Lamé constant of linear elasticity,
and as, a4, a5 and ag are nondimensional material constants for a second-order
elastic material. In (2Jg denotes the trace &, I+ the trace oHH,

IIe = 31— Ig2) (5)

is the second-invariant @&, andl is the identity tensor. The reader is referred to
Wang and Truesdell [20] for details of deriving the constitutive relation (2) and for
references to other authors who have derived it.

In order to study the Saint-Venant problem, we consider a prismatic body
A x [0, £] with cross-section4 and axial length¢, and assume that its mantle
04 x [0, £] is traction free. At the centroid of the end fagex {0} =: Ag, we
assume that

U=O, H—HTZO (6)

That is, the centroid of4q is fixed and the infinitesimal rotation there vanishes.
Henceforth, we place the origin of the rectangular Cartesian coordinate system
at the centroid of4,. Green and Adkins [16] have pointed out that under condi-
tions (6), there is no compatibility condition required by the first-order loads in
the Signorini’'s series expansion of the solution. Further, the mantle< [0, ¢]

is taken to be traction free but surface tractions are applied on the end#Agces
and A, := A x {£}; these surface tractions are determined subsequently in the
semi-inverse method used to analyse the problem. Thus

TN =0 ond x [0, ], (7)

whereN is an outward unit normal to the boundary in the reference configuration.
In Signorini’'s method, we assume that the displacement fieléhs a series
expansion

u= in”u("), (8)

n=1
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wheren is a small, yet to be determined, parameter in the problem. Thus, provided
sufficient conditions of regularity,

H :innH(n), Ezin"E(”), (9)
n=1 n=1

and, up to second order if

Ie = ntrED 4+ n2trg?,

IZ = n(rEM)?,
LPl-(rED)? + tr EVY)),
Iyyr = n2tr (HOHOT,

(10)
Ilg =

Substitution from (9) and (10) into (2) yields

00
T=) #'T", (11)
n=1

where

TO = 2uE® + AtrED)1,

T@ — T@ M[{%tr(H(l)H(l)T) + 2(tr E<l>)2}
+az(trEY)% + {%(tr(EmZ) — (tr E<l>>2>}
x 14 (a5 + 2)(trED)ED

—ay(trEMH®" — (HO")2 4 a6E<1>2], (12)

T — 2uE®@ 4 AtrE@1L
From (1), (7) and (11), we conclude thatfo= 1, 2, ...

DivT™ =0, inA x[0,¢],

(13)
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We note thaff~ is obtained fromT® whenE® is replaced byE® in the ex-

pression forT M. Also, T andT? are symmetric tensors; howeVvEf? is not
symmetric.

Let e denote, in the reference configuration, a unit vector along the axis of the
prismatic body. We introduce the following decompositions.

X=r+4£&e

u® — w(")e—i- V(”),

TO = sVege+rtP@e+ext?® +-|A-<l>’

_ _ _ ~(2)

T? —57%e@e+t’ @e+ext? +T ,
where

E™ = sym gradv”,

qw™

K (15)
y® = L + gradw®),

€™ — W —

sym gradv = Z(gradv + (gradv)”),

and grad(div) is the two-dimensional gradient (divergence) operator with respect
to coordinates in the cross-sectiott Thusw gives the displacement argdthe
coordinate of a point along the axis of the prismatic badfe displacement in the
plane of the body, and the tensor prodgcbetween two vectora andb is defined

in terms of the Euclidean inner product as follows:

(a®b)c=(b-c)a (16)

for every vectorc.
For the initial infinitesimal twist, we assume that

v = £1(xr), w? = ¢, (17)

wherer is the angle of twist per unit length, is the Saint-Venant warping function
in linear elasticity, andxr) equalse x r. The displacement field (17) implies that

E® = ¢ sym{[(+r) + gradp] @ €} =: = symly® @ €] (18)
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and thus
trE® = 0. (19)
The warping functiorp is a solution of

divgrad¢ =0 in A,
grad¢ -n = —(xr)-n onoaA.

(20)

We recall that (13) are satisfied fer = 1, and in the following we seek their
solution forn = 2. The governing equations can be written as

5@ 4 divi® = 200+ wET®  in A x [0, €], (1)

Py .2

(7 4dvT = 2+ wgrad[(n) - (gradg)] — (1 — u> ) y?
—M%div (PP ey®), inAxIo 1, (22)

t? N = —u&(r -N)z2,  ond.A x [0, €], (23)

22
T N = {rzu(*r)@)grad(p

1 o
‘[ <é* - ’74) (r@ -y ®) = P2

-(grad¢) + 2(A + M)sz]f}N, ondA x [0, €], (24)

wherel is the two-dimensional identity tensor. The aforestated form of the equa-
tions exploits the geometry of the prismatic body, and in doing so we have closely
followed Di Carlo [21].
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3. A Saint-Venant/Almansi Solution

As shown by dell'lsola and Batra [13] the Clebsch hypothesis may not always be
valid. Hence in the following analysis we use a semi-inverse method, looking for
solutions of (21) through (24) having the form

2 _ .
w —E i!w,(r),

i=0

m %-i

2 _ .

Ve = 'EO l.!v,(r),
1=

E(z) = Z f—!ai, (25)

Fori > 2, (21)—(24) become

Oiy1+ div tis1 = 0 inwA,

~ (26)
tive+ divT, =0 in#,
t;-N=0 onow,
A (27)
T,N=0 onadws.
Equations (26) and (27) imply that
/ O'i+ldA = 0, / tl'_;,_]_dA = 0, / r x tl'_;,_]_dA =0. (28)
A A A

Substitution fore;, 4, t;y1 €tc. in (26) and (27) in terms of displacements yields
the following.
A+ 2 wi2 + A+ w)div vy + nAgw; =0 in A, 29)
WVig2 + (A + wgradw; 1 + (A + p)grad divy; + nAgv; =0 in A,
w(Viy1 +gradw;) -N=0 onaA,

) (30)
[2« sym gradv; + A(w; 41+ divVv;)IIN=0 ona,
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whereAry, is the Laplacian operator in the plasethat containsa. Fori > 3, (29)
and (30) have the solution

w; = 0 andv; = rigid body motion in%, (32)

and (28) yields that the constants appearing3h), must vanish. Thus the dis-
placement field$25); and(25), take the following forms:

3 2
w®(r, §) = Fws + %wz(l’) + Ewa(r) + wo(r),
3 2 (32)
VA, &) = = (V3 + (5)wg) + S Va(1) + EVa(1) + Vo(1).
In (32) and below, quantities with superscript zero denote constants.
Fori = 2, (21)—(24) yield
UARwr, =0 N A,
T (33)
Fv, =0 in A,
(gradwy) - N = —(V3 + (+r)@3) - N ond.A, )
R 34
(GV2 + AwdHN = —272(L + )N 0N,
where
G = pu sym grad+ Al div
and
F =divG = uAg + (A + p) grad div (35)

is the Navier operator. Fér= 1, the integral version of (21) and (22) owgrand
the global balance of torque give

A/ (divvo)dA + (h + 2u)wh + 20204 = 0,

A

/ [vg + (xMNwsz + gradw,]d A = 0, (36)
A

/ (xr) - [vg + (xMNws3 + gradw,]d A = 0.
A

A solution of (33); and(34), is

wa(r) = wd — V3 -1 4+ &3p(r), (37)
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and (36)3 requires thatog = 0. However, when on the mantle surface tractions
whose resultant is a linearly varying torque are applied, thgmill not vanish
and the warping function fow, will equal that for the linear elastic problem. A
solution of (33), and(34), is

Va(r) = V3 + (N3 — (T2 + vw) T, (38)
wherev = m is Poisson’s ratio. Now36), yields
w = 0. (39)

Fori =1, (21)—(24) reduce to

Awi =0 inw#,
Fvi=AV] in A,
(40)
(gradws) - N = — (V3 + (x1)wI) - N 0ond.A,
(GVON = A(V3 -1 —w)hN  on A,
and a solution 0f40); and(40)3 may simply be written as
wa(r) = wi — V3 - r+wae (r). (41)
The balance of torque implies that
M/ (xr) - (Vo + gradw;)d A — rzu/ r-gradg =0
A A (42)

:wozrzufﬁr-gradq)
2 Jo—D

k]

where Jy is the polar moment of inertia anfl := |, r - xgrade is the so called
Dirichlet integral, and (38) simplifies to

w?u [, r-grade

Vo(r) = vg + Jo D xT — T°r. (43)
A solution of (40), and(40)4 is
Vi(r) = V] + (:1)] — vwdr 4+ 2u[r @ 1 + (x1) ® (x)IV3. (44)

In order that the axial forces be balanced, we must have

wd= 0. (45)
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Fori = 0, the governing equations are

Agwo=2V3-1 in A,

Fvo = A (V) — w3 grade) + pt?r + div{ [(/\ + )72 (*r) - (grade)

1 (s7) ~ MO :
_ <§k _ ’uZ) ),(l) . y(l)]| — Ty(l) ® y(l) in A, (46)

(gradwg) - N = —v; - N onaws,

(GVoN = {[A(Vg 1 —w?) + T2A(xr) - (grade) — (%A + %)

y®. y(l)]i + ut?(+xr) ® (grad¢)}N onoA.

A solution of equations (46) is

wo(r) = wg + Wo(r),

Vo(r) = V8 4 (xMawo — vwdr “7)
+30[r @1 — (x1) ® (x1)1V3 + Vo(r),
with
wo(0) = 0, Vo(0) = 0, grad¥p|, = (grad¥o|,)". (48)

Functionswg(r) andvg(r) are solutions of

Arog =0 inA,

Fiy = diV{ [(k + W T(xr) - (gradg) — (%A - %) yO. y(l)]f

_ %yu)@)yu)} in s,

(gradwg) - N = —v; - N onaws, (49)
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(GVp)N = {|:)»12(*r) - (grade) — (%A + %) y(l) ) y(l)]r

+ ut?(xr) @ grad¢>}N on .

Equations (6) require that

wg =0, V8 =0, Vg_) = gradlbo(O),

(50)
o

gradvg

o = (gradvp

Thus we have six non-zero scalar constants, nam@ygug, and the compo-
nents of the vectorsd, v, which characterize respectively the (second-order)
flexure, bending, extension and torsion. The corresponding resultant forces and
moments on the faca, are

Ny = Ew?A—I—Af diV\70dA+(A+2,u)a)8/¢dA
A A

1
472 (E’\ _ % - %) (Jo— D)+ t2(h + 1) D, (51)

Sy = u(gradﬂ)o|o)a%+uf(gradﬁ)o) dA
A

1
+M/,A, Eu[r @1 — (1) ® (+r)]V3dA, (52)

My = EJV5— A/ (1) div Vo dA + & (*Syp) + T2 (A + )
A
1
X f (xr) ® (xr) (grade) dA — (—A S e _)
A
x/ Iy 1% r da, (53)
A

Ty = M{a)(l’/ (xr) - (*r +grada)—8) dA + / [(r - r)(xr) - V3] dA}, (54)
A w A

1

where

E=pn@r+21)/(+p),

(55)
J= f (xr) ® (xr) dA.
A
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E is Young's modulus and a tensor of inertia.

It is clear from the aforestated analysis that the small parameéte(8) can be
identified with the infinitesimal twist per unit length, included in (17). The prob-
lem of determining the additional displacement fial@ caused by the loads su-
perimposed upon the twisted bar has been reduced to that of solving two boundary
value problems (cf. (49)) in the plane.

4. Extension Superimposed upon Infinitesimal Twist for a Circular Bar

For this case

vg:vg:O, wy = w3 =0, w1 =0, ¢ =0, (56)

wy = w), Vo = —1r, vy =V,
and(46), and(46); reduce to

ARU)O = O in A,

(57)

gradwo-N = —V{-N o0nds.
Equations (57) have the solution

w0=w8—v2-r. (58)
The clamping conditions (6) require that

wg =0, (59)
and thus

VY =0, wo = 0. (60)

That is, there is no second-order warping, as is to be expected. The solution of
(46), and(46),4 is

2

Vo(r) = —vw?r + m

2

“RM [(2x + 3wk + /\kz]} r, (61)

{M(kl—)»kz)(r 1) = T

wherek; = 1+ "’6 =1- 2— and R is the radius of the cross-section of
the bar. We note that our compumar) differs from Rivlin’s assumed displace-
ment field ((6.4) of [14]) in some of the terms cubic in the in-plane coordinates.
Since the correction terms found by Rivlin are not included in his paper, our result
cannot be compared with his. However, the in-plane displacement given by (61)
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coincides with that found by Wang and Truesdell [20]. For an incompressible,
isotropic, homogeneous nonlinear elastic cylinder, Green and Adkins [16] consid-
ered a displacement field akin to that given by (61). From (61) we conclude that the
in-plane radial displacements have two components, one proportional to the radial
distance from the centroid and the other proportional to the cube of this distance;
both depend upon second-order elasticities and are proportiondl #so, the
in-plane tangential displacements are proportional’t®® and will probably play
a significant role in the deformations of thin-walled tubular specimens. The in-
plane displacements given by (61) are independent of the axial location of the
cross-section.

Equations (51) through (54) yield that the second-order resultant forces and
moments, except for the axial force, at the end fagevanish identically. The
resultant axial forcey, is given by

°umr R4

N EAt g

[0+ 205 — naw]. (62)

For N =0, (62) yields

2RZ(L+2 -2
g _ T A+ 2p)ae MOM. (63)
16 3L+ 2u

w

Thus a cylinder made of a second-order elastic material and twisted by applying
only torques at its end faces may elongate or contract depending upon the values
of second-order elasticities. This effect, first discovered by Poynting [19], has been
studied by Rivlin [14] and other®.g see Truesdell and Noll [18] for additional
references. Equation (63) is the same as that in Wang and Truesdell [20].

5. Conclusions

We have analysed the Saint-Venant problem for an isotropic and homogeneous
prismatic body made of a second-order elastic material. It is assumed that its de-
formations from the stress-free state consist of an infinitesimal twist and those
caused by the application of loads at its end faces only. The centroid of one end
face is taken to be rigidly clamped in the sense that the displacements and infinitesi-
mal rotations there vanish. The displacements superimposed upon the infinitesimal
twist are determined by the Signorini’'s method, and this problem is reduced to that
of solving two linear elliptic problems in the plane; the corresponding resultant
loads on an end face are given by (51) through (54).

The right-hand side of (51) gives the resultant traction applied on the end faces.
For zero resultant axial forceug’ need not vanish implying a change in the length
of the prismatic body. This effect has been delineated for a solid circular cylinder
in Section 4.
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~(2) 2
Equations (37), (38), and the constitutive relation Tor imply that T, is

a nonzero spherical tensor. Fro@7), we conclude thal, does not vanish in
general. Hence Clebsch’s hypothesis does not hold in this case.

Equation (38) yields Poisson’s effect linear in the in-plane position vedbot
quadratic in the axial coordinate Additionally, (46), gives Poisson’s effect, not
of Saint-Venant'’s type, which is independenttof

We note that constantg), v5, w? and »9 characterizing the flexure, bend-
ing, extension and torsion should be proportional-foin order for Signorini’s
expansion to be valid.
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