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Abstract. We use Signorini’s expansion to analyse deformations of a straight, prismatic, isotropic,
stress free, homogeneous body made of a second-order elastic material and loaded as follows. It is
first twisted by an infinitesimal amount and then loaded by applying surface tractions, with nonzero
resultant forces and/or moments, only at its end faces. The centroid of one end face is taken to be
rigidly clamped. By using a semi-inverse method, the problem is reduced to that of solving two plane
elliptic problems involving six arbitrary constants that characterize flexure, bending, extension, and
torsion superimposed upon the infinitesimal twist. It is shown that the Clebsch hypothesis is not
valid for this problem. A second-order Poisson’s effect, not of the Saint-Venant type, and generalized
Poynting effects may also occur in these problems.
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1. Introduction

Since Saint-Venant [1, 2] solved the problem of extension, bending, torsion and
flexure of a prismatic body made of a linear elastic, isotropic and homogeneous
material, and loaded at its end faces only, Clebsch [3] and Voigt [4, 5] have charac-
terized these solutions. Clebsch noted that in Saint-Venant’s solutions the surface
tractions on a plane passing through the axis of the prismatic body are parallel to
the axis, and Voigt observed that the stress tensor is at most an affine function of the
axial coordinate. Iesan [6–9] has analysed the Saint-Venant problem for inhomo-
geneous and anisotropic linear elastic bodies, elastic dielectrics, and microstretch
elastic solids. Dell’Isola and Rosa [10, 11] and Davì [12] have studied the problem
for linear piezoelectric bodies and dell’Isola and Batra [13] for linear elastic porous
solids.
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114 A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM

Rivlin [14] studied the problem of extension superimposed upon an infinites-
imal twist for isotropic, homogeneous prismatic bodies made of a second-order
elastic material. The work has been extended to general nonlinear elastic solids by
Green and Shield [15]. Green and Adkins [16] noted that when the centroid of one
end-face is rigidly clamped (in the sense that its displacements and infinitesimal
rotations vanish), then the compatibility conditions for the loads in Signorini’s ex-
pansion method [17] are automatically satisfied. We recall that Signorini’s method
reduces the solution of a nonlinear elastic problem to that of a series of linear
elastic problems with loads determined at each step by the solution of the previous
linear problems. Truesdell and Noll [18] have discussed Signorini’s expansion and
summarized other works based on this method.

Here we use Signorini’s expansion to analyse the Saint-Venant problem for a
straight, isotropic, stress-free and homogeneous prismatic body made of a second-
order elastic material with the assumption that the first term in the expansion for the
displacement field corresponds to an infinitesimal twist of the body. We use a semi-
inverse method to reduce the problem of the determination of the second term in
the expansion to two plane elliptic problems – one for the warping function and the
other for the in-plane displacements. The loads (body forces and surface tractions)
in these two problems are proportional to the square of the initial twist per unit
length. As pointed out by Truesdell and Noll [18] Signorini’s method delivers only
those solutions that are in the neighborhood of solutions of a linear elastic problem
with the same loads as for the nonlinear problem. Generalized Poynting effects
are shown to arise in the coupling not only of second-order extension but also of
second-order torsion, bending and flexure with first-order torsion. For a cylindrical
rod loaded to obtain an extension superimposed upon an initial infinitesimal twist,
the two plane problems are solved and the Poynting effect [19] is delineated. When
the resultant axial force vanishes, the elongation of the rod equals that found earlier
by Wang and Truesdell [20].

2. Formulation of the Problem

Equations governing quasistatic deformations of a second-order elastic, isotropic
and homogeneous body in the absence of body forces are

Div T = 0, (1)

where

T = µ

[(
α1IE + 2E+ α1

2
(IHHT + 2I 2

E)+ α3I
2
E + α4IIE

)
1

+(α5+ 2)IEE− α1IEHT − (HT )2+ α6E2

]
. (2)

elas1318.tex; 15/05/1998; 9:51; p.2



F. DELL’ISOLA ET AL. 115

HereT is the first Piola–Kirchhoff stress tensor, Div is the three-dimensional
divergence operator with respect to coordinates in the reference configuration,µ is
the shear modulus,

H = Gradu (3)

is the displacement gradient,u = x − X is the displacement,x andX denote re-
spectively the position vectors of a material point with respect to a fixed rectangular
Cartesian coordinate system in the present and reference configurations, and Grad
is the gradient operator with respect to referential co-ordinates. Furthermore,

E = 1
2(H + HT ) (4)

is the infinitesimal strain tensor,λ = µα1 is a Lamé constant of linear elasticity,
andα3, α4, α5 andα6 are nondimensional material constants for a second-order
elastic material. In (2)IE denotes the trace ofE, IHHT the trace ofHHT ,

IIE = 1
2(I

2
E − IE2) (5)

is the second-invariant ofE, and1 is the identity tensor. The reader is referred to
Wang and Truesdell [20] for details of deriving the constitutive relation (2) and for
references to other authors who have derived it.

In order to study the Saint-Venant problem, we consider a prismatic body
A × [0, `] with cross-sectionA and axial length̀ , and assume that its mantle
∂A × [0, `] is traction free. At the centroid of the end faceA × {0} =: A0, we
assume that

u = 0, H − HT = 0. (6)

That is, the centroid ofA0 is fixed and the infinitesimal rotation there vanishes.
Henceforth, we place the origin of the rectangular Cartesian coordinate system
at the centroid ofA0. Green and Adkins [16] have pointed out that under condi-
tions (6), there is no compatibility condition required by the first-order loads in
the Signorini’s series expansion of the solution. Further, the mantle∂A × [0, `]
is taken to be traction free but surface tractions are applied on the end facesA0

andA` := A × {`}; these surface tractions are determined subsequently in the
semi-inverse method used to analyse the problem. Thus

TN = 0 on ∂A× [0, `], (7)

whereN is an outward unit normal to the boundary in the reference configuration.
In Signorini’s method, we assume that the displacement fieldu has a series

expansion

u =
∞∑
n=1

ηnu(n), (8)
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116 A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM

whereη is a small, yet to be determined, parameter in the problem. Thus, provided
sufficient conditions of regularity,

H =
∞∑
n=1

ηnH(n), E =
∞∑
n=1

ηnE(n), (9)

and, up to second order inη,

IE = η tr E(1) + η2 tr E(2),

I 2
E = η2(tr E(1))2,

I IE = 1
2η

2[−(tr E(1))2+ tr(E(1)
2
)],

IHHT = η2 tr (H(1)H(1)T ).

(10)

Substitution from (9) and (10) into (2) yields

T =
∞∑
n=1

ηnT(n), (11)

where

T(1) = 2µE(1) + λ(tr E(1))1,

T(2) = T
(2) + µ

[{
α1

2
tr(H(1)H(1)T )+ 2(tr E(1))2

}

+ α3(tr E(1))2+
{
α4

2
(tr(E(1)

2
)− (tr E(1))2)

}

× 1+ (α5+ 2)(tr E(1))E(1)

− α1(tr E(1))H(1)T − (H(1)T )2+ α6E(1)
2
]
, (12)

T
2 = 2µE(2) + λ tr E(2)1.

From (1), (7) and (11), we conclude that forn = 1,2, . . .

Div T(n) = 0, in A× [0, `],
T(n)N = 0, on∂A× [0, `]. (13)
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F. DELL’ISOLA ET AL. 117

We note thatT
(2)

is obtained fromT(1) whenE(1) is replaced byE(2) in the ex-

pression forT(1). Also, T(1) andT
(2)

are symmetric tensors; howeverT(2) is not
symmetric.

Let e denote, in the reference configuration, a unit vector along the axis of the
prismatic body. We introduce the following decompositions.

x = r + ξe,

u(n) = w(n)e+ v(n),

E(n) = ε(n)e⊗ e+ γ (n) ⊗ e+ e⊗ γ (n) + Ê(n),

T(1) = σ (1)e⊗ e+ t(1) ⊗ e+ e⊗ t(1) + T̂(1),

T
(2) = σ (2)e⊗ e+ t

(2) ⊗ e+ e⊗ t
(2) + T̂

(2)
,

(14)

where

Ê(n) = sym gradv(n),

ε(n) = w(n)′ = ∂w(n)

∂ξ
,

γ (n) = 1
2(v

(n)′ + gradw(n)),

sym gradv = 1
2(gradv+ (gradv)T ),

(15)

and grad(div) is the two-dimensional gradient (divergence) operator with respect
to coordinates in the cross-sectionA. Thusw gives the displacement andξ the
coordinate of a point along the axis of the prismatic body,v the displacement in the
plane of the body, and the tensor product⊗ between two vectorsa andb is defined
in terms of the Euclidean inner product as follows:

(a⊗ b)c= (b · c)a (16)

for every vectorc.
For the initial infinitesimal twist, we assume that

v(1) = ξτ(∗r), w(1) = τφ, (17)

whereτ is the angle of twist per unit length,φ is the Saint-Venant warping function
in linear elasticity, and(∗r) equalse× r . The displacement field (17) implies that

E(1) = τ sym
{[
(∗r)+ gradφ

]⊗ e
} =: τ sym[γ (1) ⊗ e] (18)
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118 A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM

and thus

tr E(1) = 0. (19)

The warping functionφ is a solution of

div gradφ = 0 in A,

gradφ · n = −(∗r) · n on ∂A.
(20)

We recall that (13) are satisfied forn = 1, and in the following we seek their
solution forn = 2. The governing equations can be written as

σ (2)′ + div t
(2) = −2(λ+ µ)ξτ2, in A× [0, `], (21)

t
(2)′ + div T̂

(2)
= τ2(λ+ µ)grad

[
(∗r) · (gradφ)

]− (λ− µα4

2

)
γ (1)

−µα6

4
div

(
γ (1) ⊗ γ (1)

)
, in A× [0, `], (22)

t
(2) · N = −µξ(r ·N)τ 2, on∂A× [0, `], (23)

T̂
(2)

N =
{
τ2µ(∗r)⊗ gradφ

−
[(

1

2
λ+ µα4

4

)(
γ (1) · γ (1))− τ2λ(∗r)

·(gradφ)+ τ2(λ+ µ)ξ2

]
Î
}

N, on ∂A× [0, `], (24)

whereÎ is the two-dimensional identity tensor. The aforestated form of the equa-
tions exploits the geometry of the prismatic body, and in doing so we have closely
followed Di Carlo [21].
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F. DELL’ISOLA ET AL. 119

3. A Saint-Venant/Almansi Solution

As shown by dell’Isola and Batra [13] the Clebsch hypothesis may not always be
valid. Hence in the following analysis we use a semi-inverse method, looking for
solutions of (21) through (24) having the form

w(2) =
m∑
i=0

ξ i

i!wi(r),

v(2) =
m∑
i=0

ξ i

i! vi (r),

σ (2) =
m∑
i=0

ξ i

i! σi,

t
(2) =

m∑
i=0

ξ i

i! ti ,

T̂
(2)
=

m∑
i=0

ξ i

i! T̂i .

(25)

For i > 2, (21)–(24) become

σi+1+ div ti+1 = 0 in A,

ti+1+ div T̂i = 0 in A,
(26)

ti ·N = 0 on∂A,

T̂iN = 0 on ∂A.
(27)

Equations (26) and (27) imply that∫
A

σi+1dA = 0,
∫

A

ti+1dA = 0,
∫

A

r × ti+1dA = 0. (28)

Substitution forσi+1, ti+1 etc. in (26) and (27) in terms of displacements yields
the following.

(λ+ 2µ)wi+2 + (λ+ µ)div vi+1+ µ1Rwi = 0 in A,

µvi+2 + (λ+ µ)gradwi+1+ (λ+ µ)grad divvi + µ1Rvi = 0 in A,
(29)

µ(vi+1 + gradwi) · N = 0 on∂A,

[2µ sym gradvi + λ(wi+1+ div vi )Î ]N = 0 on∂A,
(30)
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120 A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM

where1R is the Laplacian operator in the planeP that containsA. Fori > 3, (29)
and (30) have the solution

wi = 0 andvi = rigid body motion inP , (31)

and (28) yields that the constants appearing in(31)2 must vanish. Thus the dis-
placement fields(25)1 and(25)2 take the following forms:

w(2)(r , ξ) = ξ3

6
w0

3 +
ξ2

2
w2(r)+ ξw1(r)+w0(r),

v(2)(r , ξ) = ξ3

6
(v0

3+ (∗r)ω0
3)+

ξ2

2
v2(r)+ ξv1(r)+ v0(r).

(32)

In (32) and below, quantities with superscript zero denote constants.
For i = 2, (21)–(24) yield

µ1Rw2 = 0 in A,

Fv2 = 0 in A,
(33)

(gradw2) ·N = −(v0
3+ (∗r)ω0

3) · N on ∂A,

(Gv2+ λw0
3Î )N = −2τ2(λ+ µ)N on ∂A,

(34)

where

G = µ sym grad+ λÎ div

and

F = div G = µ1R + (λ+ µ) grad div (35)

is the Navier operator. Fori = 1, the integral version of (21) and (22) overA and
the global balance of torque give

λ

∫
A

(div v2)dA + (λ+ 2µ)w0
3A+ 2τ2λA = 0,∫

A

[v0
3 + (∗r)ω3+ gradw2]dA = 0,∫

A

(∗r) · [v0
3 + (∗r)ω3+ gradw2]dA = 0.

(36)

A solution of(33)1 and(34)1 is

w2(r) = w0
2 − v0

3 · r + ω0
3φ(r), (37)
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F. DELL’ISOLA ET AL. 121

and (36)3 requires thatω0
3 = 0. However, when on the mantle surface tractions

whose resultant is a linearly varying torque are applied, thenω0
3 will not vanish

and the warping function forw2 will equal that for the linear elastic problem. A
solution of(33)2 and(34)2 is

v2(r) = v0
2+ (∗r)ω0

2 −
(
τ2+ νw0

3

)
r , (38)

whereν = λ
2(λ+µ) is Poisson’s ratio. Now(36)1 yields

w0
3 = 0. (39)

For i = 1, (21)–(24) reduce to

1w1 = 0 in A,

Fv1 = λv0
3 in A,

(gradw1) ·N = −
(
v0

2+ (∗r)ω0
2

) ·N on∂A,

(Gv1)N = λ(v0
3 · r −w0

2)N on ∂A,

(40)

and a solution of(40)1 and(40)3 may simply be written as

w1(r) = w0
1 − v0

2 · r+ω0
2φ(r). (41)

The balance of torque implies that

µ

∫
A

(∗r) · (v2+ gradw1)dA− τ2µ

∫
A

r ·gradφ = 0

⇒ ω0
2 =

τ2µ
∫
A r · gradφ

J0−D ,

(42)

whereJ0 is the polar moment of inertia andD := ∫
A r · ∗gradφ is the so called

Dirichlet integral, and (38) simplifies to

v2(r) = v0
2+

τ2µ
∫
A r ·gradφ

J0−D ∗ r − τ 2r . (43)

A solution of(40)2 and(40)4 is

v1(r) = v0
1+ (∗r)ω0

1 − νw0
2r + 1

2ν[r ⊗ r + (∗r)⊗ (∗r)]v0
3. (44)

In order that the axial forces be balanced, we must have

w0
2 = 0. (45)
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122 A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM

For i = 0, the governing equations are

1Rw0 = 2v0
3 · r in A,

Fv0 = λ
(
v0

2 − ω0
2 gradφ

)+ µτ2r + div

{[
(λ+ µ)τ2 (∗r) · (gradφ)

−
(

1

2
λ− µα4

4

)
γ (1) · γ (1)

]
Î − µα6

4
γ (1) ⊗ γ (1)

}
in A, (46)

(gradw0) ·N = −v1 ·N on∂A,

(Gv0)N =
{[
λ(v0

2 · r −w0
1)+ τ2λ(∗r) · (gradφ)−

(
1

2
λ+ µα4

4

)

γ (1) · γ (1)
]
Î + µτ2(∗r)⊗ (gradφ)

}
N on ∂A.

A solution of equations (46) is

w0(r) = w0
0 + w̃0(r),

(47)
v0(r) = v0

0+ (∗r)ω0− νw0
1r

+1
2ν[r ⊗ r − (∗r)⊗ (∗r)]v0

2 + ṽ0(r),

with

w̃0(0) = 0, ṽ0(0) = 0, gradṽ0

∣∣
0 = (gradṽ0

∣∣
0)
T . (48)

Functionsw̃0(r) andṽ0(r) are solutions of

1Rw̃0 = 0 in A,

F ṽ0 = div
{[
(λ+ µ)τ2(∗r) · (gradφ)−

(
1

2
λ− µα4

4

)
γ (1) · γ (1)

]
Î

− µα6

4
γ (1) ⊗ γ (1)

}
in A,

(gradw̃0) ·N = −v1 ·N on∂A, (49)
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(Gṽ0)N =
{[
λτ2(∗r) · (gradφ)−

(
1

2
λ+ µα4

4

)
γ (1) · γ (1)

]
Î

+ µτ 2(∗r)⊗ gradφ

}
N on ∂A.

Equations (6) require that

w0
0 = 0, v0

0 = 0, v0
1 = gradw̃0(0),

gradv0

∣∣
0 = (gradv0

∣∣
0)
T .

(50)

Thus we have six non-zero scalar constants, namely,w0
1, ω

0
1, and the compo-

nents of the vectorsv0
3, v0

2, which characterize respectively the (second-order)
flexure, bending, extension and torsion. The corresponding resultant forces and
moments on the faceAξ are

Nf = Ew0
1A+ λ

∫
A

div ṽ0 dA+ (λ+ 2µ)ω0
2

∫
A

φ dA

+τ2

(
1

2
λ− µα4

4
− µα6

4

)
(J0−D)+ τ2(λ+ µ)D, (51)

Sf = µ(gradw̃0

∣∣
0)A+ µ

∫
A

(gradw̃0)dA

+µ
∫

A

1

2
ν[r ⊗ r − (∗r)⊗ (∗r)]v0

3 dA, (52)

Mf = EJv0
2 − λ

∫
A

(∗r) div ṽ0 dA+ µξ(∗Sf )+ τ2 (λ+ µ)

×
∫

A

(∗r)⊗ (∗r) (gradφ)dA−
(

1

2
λ− µα4

4
− µα6

4

)
×
∫

A

‖γ ‖2 ∗ r dA, (53)

Tf = µ
{
ω0

1

∫
A

(∗r) ·
(
∗r + grad

w̃0

ω0
1

)
dA+

∫
A

[(r · r)(∗r) · v0
3]dA

}
, (54)

where

E = µ(3λ+ 2µ)/(λ+ µ),
J =

∫
A

(∗r)⊗ (∗r)dA.
(55)
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124 A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM

E is Young’s modulus andJ a tensor of inertia.
It is clear from the aforestated analysis that the small parameterη in (8) can be

identified with the infinitesimal twist per unit length,τ , included in (17). The prob-
lem of determining the additional displacement fieldu(2) caused by the loads su-
perimposed upon the twisted bar has been reduced to that of solving two boundary
value problems (cf. (49)) in the plane.

4. Extension Superimposed upon Infinitesimal Twist for a Circular Bar

For this case

v0
3 = v0

2 = 0, w2 = w3 = 0, ω1 = 0, φ = 0,

w1 = w0
1, v2 = −τ2r , v1 = v0

1,
(56)

and(46)1 and(46)3 reduce to

1Rw0 = 0 in A,

gradw0 ·N = −v0
1 ·N on∂A.

(57)

Equations (57) have the solution

w0 = w0
0 − v0

1 · r . (58)

The clamping conditions (6) require that

w0
0 = 0, v0

1 = gradw0

∣∣
0, (59)

and thus

v0
1 = 0, w0 = 0. (60)

That is, there is no second-order warping, as is to be expected. The solution of
(46)2 and(46)4 is

v0(r) = −νw0
1r + τ2

8(λ+ 2µ){
µ(k1− λk2)(r · r)− µR2

λ+ µ [(2λ+ 3µ)k1 + λk2]
}

r , (61)

wherek1 = 1 + α6
4 , k2 = 1 − α4

2α1
andR is the radius of the cross-section of

the bar. We note that our computedv0(r) differs from Rivlin’s assumed displace-
ment field ((6.4) of [14]) in some of the terms cubic in the in-plane coordinates.
Since the correction terms found by Rivlin are not included in his paper, our result
cannot be compared with his. However, the in-plane displacement given by (61)
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coincides with that found by Wang and Truesdell [20]. For an incompressible,
isotropic, homogeneous nonlinear elastic cylinder, Green and Adkins [16] consid-
ered a displacement field akin to that given by (61). From (61) we conclude that the
in-plane radial displacements have two components, one proportional to the radial
distance from the centroid and the other proportional to the cube of this distance;
both depend upon second-order elasticities and are proportional toτ2. Also, the
in-plane tangential displacements are proportional toτ2R3 and will probably play
a significant role in the deformations of thin-walled tubular specimens. The in-
plane displacements given by (61) are independent of the axial location of the
cross-section.

Equations (51) through (54) yield that the second-order resultant forces and
moments, except for the axial force, at the end faceA` vanish identically. The
resultant axial force,N , is given by

N = EAw0
1 +

τ2µπR4

8(λ+ µ)
[
(λ+ 2µ)

α6

2
− µα4

]
. (62)

ForN = 0, (62) yields

w0
1 = −

τ2R2

16

(λ+ 2µ)α6 − 2µα4

3λ+ 2µ
. (63)

Thus a cylinder made of a second-order elastic material and twisted by applying
only torques at its end faces may elongate or contract depending upon the values
of second-order elasticities. This effect, first discovered by Poynting [19], has been
studied by Rivlin [14] and others;e.g. see Truesdell and Noll [18] for additional
references. Equation (63) is the same as that in Wang and Truesdell [20].

5. Conclusions

We have analysed the Saint-Venant problem for an isotropic and homogeneous
prismatic body made of a second-order elastic material. It is assumed that its de-
formations from the stress-free state consist of an infinitesimal twist and those
caused by the application of loads at its end faces only. The centroid of one end
face is taken to be rigidly clamped in the sense that the displacements and infinitesi-
mal rotations there vanish. The displacements superimposed upon the infinitesimal
twist are determined by the Signorini’s method, and this problem is reduced to that
of solving two linear elliptic problems in the plane; the corresponding resultant
loads on an end face are given by (51) through (54).

The right-hand side of (51) gives the resultant traction applied on the end faces.
For zero resultant axial force,w0

1 need not vanish implying a change in the length
of the prismatic body. This effect has been delineated for a solid circular cylinder
in Section 4.
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Equations (37), (38), and the constitutive relation forT̂
(2)

imply that T̂2 is

a nonzero spherical tensor. From(47)2 we conclude that̂T0 does not vanish in
general. Hence Clebsch’s hypothesis does not hold in this case.

Equation (38) yields Poisson’s effect linear in the in-plane position vectorr but
quadratic in the axial coordinateξ . Additionally, (46)2 gives Poisson’s effect, not
of Saint-Venant’s type, which is independent ofξ .

We note that constantsv0
3, v0

2, w
0
1 andω0

1 characterizing the flexure, bend-
ing, extension and torsion should be proportional toτ2 in order for Signorini’s
expansion to be valid.
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