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Abstract. For simple shearing and simple extension deformations of a homogeneous and isotropic
elastic body, it is shown that a linear relation between the second Piola–Kirchhoff stress tensor and
the Green–St. Venant strain tensor does not predict a physically reasonable response of the body.
This constitutive relation implies that the slope of the curve between an appropriate component of
the first Piola–Kirchhoff stress tensor and a deformation measure is an increasing function of the
deformation measure.
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For isotropic materials a generalization of Hooke’s law in linear elasticity to a linear
stress-strain relation in finite elasticity is the neo-Hookean constitutive relation [1]
which is an affine relation between the Cauchy stressσ and the left Cauchy-Green
tensorB, and is generally used for incompressible rubberlike materials. Another
possibility is to assume a linear relation between the second Piola–Kirchhoff stress
tensorS and the Green-St. Venant strain tensorE [2–4]. For infinitesimal defor-
mations, these two relations reduce to Hooke’s law as they should. This note is
intended to show that a linear relationship betweenS andE doesnot qualitatively
mimic the stress-strain response of most materials deformed in simple shear or
simple extension. For finite deformations of several elastic materials, the slope of
the nominal (or the first Piola–Kirchhoff) stress-strain curve is generally a non-
increasing function of strain when they are deformed either in simple shear or sim-
ple tension [5]. However, a linear relation betweenS andE for isotropic materials
predicts that this slope increases with the amount of deformation. Thus the insta-
bility load for such materials, assuming that it can be found, will be unrealistically
large.

We consider homogeneous and quasistatic deformations of an isotropic and ho-
mogeneous body that is stress free in the reference configuration. Thus the balance
of linear momentum is identically satisfied. Let

S= λ(tr E)1+ 2µE (1)

190598.tex; 27/06/1995; 8:07; p.1
[copy prep / disc] INTERPRINT MOIRA ELAS2100 P.E. 190598 (elaskap:mathfam) v.1.15



244 R.C. BATRA

represent a linear constitutive relation for the elastic body. In order for (1) to re-
duce to Hooke’s law for infinitesimal deformations,λ andµ must equal the Lamé
constants and are taken to satisfyµ > 0, λ+ (2/3)µ > 0.

In rectangular Cartesian coordinates, a simple shearing deformation is given by

x1 = X1+ kX2, x2 = X2, x3 = X3, (2)

wherex gives the position vector in the deformed configuration of the material
particle that occupied placeX in the reference configuration, andk is a measure of
the shear strain. From (1), (2) and

σ = FSFT /J, T = FS, (3)

whereT is the first Piola–Kirchhoff stress tensor,F the deformation gradient, and
J = detF, we obtain

T12 = µk + [12λ+ µ]k3. (4)

Thus

d2T12

dk2
= 3(λ+ 2µ)k > 0 (5)

and the tangent modulus dT12/dk is an increasing function ofk.
For general deformations, equations (1), (3) and the Hamilton–Cayley theorem

[1] imply that

σ = −µ
J
II1+ 1

J
[(1

2λ+ µ)(I − 3)+ 2µ]B+ µJB−1, (6)

whereB = FFT , I = tr B andII = (l2 − tr B2)/2. Thus the relation betweenσ
andB corresponding to (1) is nonlinear.

We now study simple extension, given by

x1 = αX1, x2 = βX2, x3 = βX3, (7)

of a prismatic body;α andβ are constants in (7). We assume that the deformation
(7) is produced by surface tractions parallel to thex1-axis, applied only on the end
faces of the prismatic body. Equations (1), (7), the requirement that the mantle of
the prismatic body be traction free, and (3) give

T11 = µ 3λ+ 2µ

2(λ+ µ)α(α
2− 1). (8)

Thus

d2T11

dα2
= 3µ

3λ+ 2µ

(λ+ µ) α > 0 (9)
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and the tangent modulus is an increasing function ofα.
The neo-Hookean constitutive relation

σ = 1
2λ(tr B− 3)1+ µ(B− 1) (10)

givesT12= µk for simple shearing deformations (2) and

T11 =
(

3λ+ 2µ

2(λ+ µ)
)(

µ2

λ+ µ
)
(α2− 1)(1− λ(α2− 3)/2µ), (11)

for simple extension (7) which are reasonable. From (11) one can conclude that the
tangent modulus dT11/dα is positive atα = 1, equals zero forα2 = (µ + 2λ)/λ
and is negative forα2 > (µ+ 2λ)/λ. However, the corresponding relation

S= J [(λ tr E− µ)(1+ 2E)−1+ µ1], (12)

betweenS andE is more involved, and is nonlinear.
In conclusion, the linear relation betweenS andE doesnot mimic the nominal

stress vs. strain curve experimentally observed for a large class of isotropic elastic
materials.
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