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Abstract. We study electromechanical deformations of a homogeneous transversely isotropic piezo-
electric prismatic circular bar loaded only at the end faces. The constitutive relations for the material
of the bar are taken to be quadratic in the displacement gradients and the electric field. It is found
that the two end faces of the bar when twisted with no electric charge applied to them will exhibit
a difference in the electric potential. Thus the piezoelectric cylinder could be used to measure the
torque or the angular twist.
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1. Introduction

Poynting [1] discovered in 1909 that a wire when twisted also stretches and the
stretch is proportional to the square of the angular twist. Since then there have been
several attempts made to quantify this effect. Truesdell and Noll [2] and Wang and
Truesdell [3] have reviewed the pertinent literature on the Poynting effect and also
on the Signorini’s method [4] of solving a nonlinear problem by reducing it to a
series of linear problems. Green and Adkins [5] have pointed out that the compat-
ibility conditions to be satisfied by the loads in the sequence of linear problems
are automatically satisfied if the centroid of one end face is rigidly clamped in
the sense that the displacements and infinitesimal rotations there vanish. Rivlin
[6] and Green and Shield [7] have studied the Poynting effect in nonlinear elastic
materials. Recently, dell'lsola et al. [8] used the Signorini expansion method to
find a second-order solution of the Saint-Venant problem [9] for a pretwisted bar.
Subsequently, they [10] extended it to a prebent bar and delineated generalized
Poynting effects. Using the general theory of piezoelasticity (see e.g. [11]) we
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76 R.C. BATRAETAL.

analyze here electromechanical deformations of a circular cylindrical piezoelectric
bar made of a transversely isotropic material. Second order constitutive relations
for a piezoelectric material have been derived by Yang and Batra [12]. It is found
that the second-order Poisson effect is not of the Saint-Venant type, and even when
the bar is deformed by applying pure torques and no electric charges at the end
faces, the potential difference between the end faces is proportional to the square
of the angular twist.

We note that Batra and Yang [13] have proved Toupin’s version [14] of the
Saint-Venant principle for a linear piezoelectric bar. lesan [15-18] has studied
the Saint-Venant problem for inhomogeneous and anisotropic linear elastic bodies,
elastic dielectrics, and microstretch elastic solids. Dell'Isola and Rosa [19, 20] and
Davi [21] have analyzed the Saint-Venant problem for linear piezoelectric bodies,
and dell'lsola and Batra [22] for linear elastic porous solids.

2. Formulation of the Problem

Equations governing quasistatic deformations of a homogeneous transversely iso-
tropic piezoelectric body2 are

DiV(T+TE) =0, inQ, (1.1)
T+THF = FT+T5HT, inQ, (1.2)
Div(D) =0, inL, (1.3)

whereT is the first Piola—Kirchhoff stress tensdr? the first Piola—Kirchhoff—
Maxwell stress tensoff) the referential electric displacement, and Div is the di-
vergence operator with respect to coordinates in the reference configuration. These
guantities are related to their counterparts in the present configuration as follows.

T=JoFY, TE=JofFY, D=JFbD. )

HereJ = detF, F is the deformation gradiens; the Cauchy stress tensaer”
the Cauchy—Maxwell stress tensor, dxdhe electric displacement in the present
configuration. Equations (1.1), (1.2) and (1.3) express, respectively, the balance
of linear momentum, the balance of moment of momentum, and the Maxwell
law for the electric displacement with the body charge density set equal to zero.
Constitutive relations foiT and T# will be chosen so that (1.2) is identically
satisfied.

For a piezoelectric material, we introduce, in the present configuration, electric
field E and electric polarizatioR through

D=P+E. 3)
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A SECOND-ORDER SOLUTION OF SAINT-VENANT'S PROBLEM 77

Following Abraham, Einstein and Laub (see [11] Equation 3.6.22,23) we choose
the following constitutive equation far”

of =SymP®E) +E®E — 1£%1, (4)

where Synia®@ b) = (a® b + b ® a)/2, 1 is the identity tensor, and the tensor
product® between two vectora andb is defined by

(@®b)c= (b-c)a (5)

for every vectorc. QuantitiesP andE are related to their counterpafsandW in
the reference configuration as

mn=JFP, W=FE. (6)
Let ¢y denote an electric potential field in the reference configuration so that
W = —Grady, (7

where Grad is the gradient operator in the reference configuration. The existence
of iy is guaranteed by the referential Maxwell equation ®@Virk 0.

We consider a prismatic body occupying the dom@in= A x [0, £] in the
stress and polarization free reference configuration with its axis aligned along the
directione of its transverse isotropy. Thusis the cross-section arfdhe length of
the body. The mantle of the prismatic body is taken to be free of surface tractions
and electric charge, the centroid of the end fage= A x {0} is rigidly clamped
in the sense that displacements= x — X, infinitesimal rotationgH — H”)/2
and the electric potential there vanish, and surface tractions and electric charge
are prescribed on the end facdag and A, := 4 x {£} such that the body is in
equilibrium. Thus

(T+THN=0, D-N=0 ondA xI[0,¢], (8.1)
(T+THe=H, D-e=g onAy and A,. (8.2)

HereN is an outward unit normal on the manfiet x [0, £], f the prescribed surface
traction,q the specified electric chargd, = Gradu, x andX denote, respectively,

the position of a material point in the present and reference configurations. With
the origin at the centroid of the cross-sectigp, we set

X =r+ze u=we+v, W = —(y/e+ grady), 9)
where a prime denotes differentiation with respect to the axial coordindteus

w andv equal the axial and in-plane components of the displacemehg point.
Similarly ¢ and grad) equal the axial and in-plane component3Nf and grad
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78 R.C. BATRAETAL.

and div signify respectively the two-dimensional gradient and divergence operators
in the planeA. The integrability conditions for the problem are

<ffdA) =0, </qu) =0,

A A

(fXAfdA) +x|;:0/\ffdA=O,
A A

wherean b = (a® b — b ® a) for arbitrary vectora andb. Equations (10) imply
that the resultant force and the resultant charge on every cross-section is the same
and every portion of the bar is in equilibrium.

(10)

3. Signorini’'s Expansion

In Signorini’'s method, we assume that the displacemend the electric potential
¥ have a series expansion

u=nu+n?li+..., Y=nr+n¥—+..., (11)

wheren is a small, yet to be determined, parameter in the problem. Surface trac-
tions f and the surface chargge are similarly expanded as a power series;in

For a second-order piezoelectric material with null stresses and polarization in the
reference configuration,

T =1S+n*(S+HS), (12.1)
I = »II + n?Il. (12.2)

Here S is the second Piola—Kirchhoff stress tens®rand IT are homogeneous
linear forms inH andW, andS and 1 are homogeneous quadratic forms-rand

W, and linear forms it andW. Explicit expressions fos, S, IT andI1 are given

as equations (16)—(19) in Yang and Batra’s [12] paper and are reproduced in the
Appendix. We will adopt Yang and Batra’s notations for various material parame-
ters with the exception thatc andcs will be denoted by the Lamé constants
andu respectively. Substituting from (11) into the constitutive relations, the result
into the balance laws and boundary conditions, and equating like powarsrof

both sides of these equations, we arrive at the following equations for the first and
second-order problems.

DivT =0, inQ,

Div(II+W) =0, inQ,

TN=0, (II+W)-N=0, ond x[0,¢],
Te=f,(IT+W)-e=g, ons#gands,,

(13)
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A SECOND-ORDER SOLUTION OF SAINT-VENANT’'S PROBLEM 79
Div(T+TE) =0, ing,

Div(IT + W + JW — 2(SymH)W) =0, ing,

T+TEHN=0, (I +W+JW—2SymH)W)-N=0, ondA x [0, €],
T+TEe=f (I+W+JW —2(SymH)W) -e=§, onsAg and .

(14)

In an attempt to express the left-hand sides of Equations (14) émdw in the
same form as those of (13) farand+r, we decompose additivelly andIl as

T=T+T,, =11+ 1I,. (15)

T andTI are related tdi andy; in the same way a$ and I are tou and/, the
relation between the former set of variables is given below.

T = 2 Sym grad/ + [(c3 + A)w' + A divV — ele}’]f
+Sym{[ (V' + gradii) — ez grady/] ® e}
+[2(c1 + A+ cg+ ca+ W' + (c3 + A) divy

— (e1+ e+ 2e) i le® €, (16.1)

I = 2,gradyi — es(V + gradip)
+[2(e1 + £2)U" — (e1 4 €2 + 2e3)1’ — epdivi]e. (16.2)

Herecy, c3, ¢4, €1, €2, €3, €1 ande, are material constantg, = (c4+2u)/2, andl is

the two-dimensional identity operator. Equations (16.1) and (16.2) are constitutive
relations for a linear transversely isotropic piezoelectric material. We presume that

the piezoelastic constamtsu, c1, ¢z, ¢4, €1, €2, €3, £1 ande, are such that the strain

energy density is positive definite so that the solution of a traction boundary value
problem for a linear piezoelectric body is unique to within a rigid body motion.

Substitution from (15) into (14) and the integrability conditions (10) yields
DT =b,, ing,
Div(T+ W) =¢,, in,

TN =, (I +W) - N = g, ON3A x [0, £,

/?edA:/'f’dA+RFS,
A A
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80 R.C. BATRAETAL.

foﬁe)dA=f X AFdA + Ry, (17)
A A

f(ﬁ+W)-edA:f&dA+RQs,

A A

/:f/edA:hs,/(X/\:fe)/dA+eA/ i_:edA:gs,

A A A

/(ﬁ +W) -edA =i,
A

where

b, = —Div(T,+T%), ¢, = —Div(Il; + JW — 2(SymH)W),
fus = —(T, + TON, gy = —(I, + JW — 2(SymH)W) - N,
Rp, = —f (T, + TE)edA, Ry, = —f XA (T, +TE)edA,

A A
Ros = _f (T, + JW — 2(SymH)W) - edA,

A
h, = — f (T + T5)edA, (18)

A
9 = _/ XA (T, +TEe+unTeldA

A

—e/\/(fs +T%edA — U/|r:0/\/ TedA,
A

iy = —/ (I, + JW — 2(SymH)W)' - edA.

A

We assume that the bar is initially twisted by an infinitesimal amauand
carries a small electric fielg-w)e. Its deformations are given by

U= —vawr + zT(xr) + zawe, ¥ = zo, (19.1)
where
A
a:g, x[ = exTI. (19.2)

V= —,
3 2(A + )

Note that the Saint-Venant warping function is zero for a circular cross-section. In
order for the deformations caused by the electric field and the twist to be of the

same order of magnitudew and Rt should be about the same. HeReis the
radius of the circular bar. Thus the small paramet&r (11) can be identified with
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A SECOND-ORDER SOLUTION OF SAINT-VENANT'S PROBLEM 81

eitheraw/R or t. Termsby, cs, @ms, fusy Resy Ry @Nd Ry, in (17) and (18) are
homogeneous quadratic formsdnandt and are given below.

by = x1t?r + x2t%ze,
¢ = X3r?z,
fus = (xat?r% 4 x50* + x67°2*)N + x77(r @ )N
+(xg7%zr - N+ xorw(xr) - N)e,

Gms = x10722r - N+ xuto(+r) - N,

Rrs = (x12t2Ja + (x137%22 + xua0d)A)e,
Rus = xistoJa(€r A €),

Ros = x167%J4 + (x177%2% + x180°) A. (20)

Expressions for1, x2 ... x1g in terms of the elastic constants used in the consti-
tutive relation are given in the AppendiA. equals the area of cross-section of the
bar, J,, is the polar moment of inertia, ared ande, are two orthonormal vectors
in A. . .

Substitution fofT andII from (16.1) and (16.2) into (17), and recalling (9), we
arrive at the following field equations for the determinatiorii@nd+/.

F(V) + (c3+ A + p)gradit’ — (e; + ez)gradyy’ + AV = by,  in oA,
AR+ (c3+ A+ @)AVV + 2(c1 + & + c3+ ca + )"
— (e1+ €2+ 2e3) " = by, IN A,
AR‘Z — (e2 + e3)divV + 2(eq + &2 — 1/2)y”
—(e1+ex+2e3)W" =c;, N, )
GO)N + [(c3 + V)i’ — 2P/ IN = 04, ONIA,
gradi - N + iV - N = fre, ONOA,
gradIZ N —e3V-N=g,;, O0ndA,
where
F(V) = uAgv+ (A 4+ w)grad diw,
G(V) = 2 Sym gradv + Addivwl,
. e . (22)
W= QW —ezy, Yy = —es + (262 — D,
by = b5 + bye® Fng = finst + finse®

Ay is the Laplacian operator, arfd= div G is the Navier operator in the plane.
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82 R.C. BATRAETAL.

A Saint-Venant/Almansi Solution
We seek a solution of (21) of the form

Zz—'w'(r), Zz—'v 0. =Y. (23)
i=0 i=0 i=0

Substituting from (23) into (21), recalling (20), and equating like powers Af!

on both sides, we obtain partial differential equations, boundary conditions and
integrability conditions to determinég, w4, ..., Vg, V1, .. lﬁo, wl, ....Fori >

3, these boundary value problems have nuII solutions Denotlng constants by a
superscript zero, far= 3, the solution is

Va=V3+63(+r),  wz=wl  Yz= 3. (24)
The integrability conditions for the torque, axial force and the charge require that
63 =0, w3 =0, Y = 0. (25)
Using (24) and (25), equations for the determinatiofi,ofii, andv, are
F@) =0,  Agiiz=0,  Agy=0
GUN = —2(A + w)r2N,  gradi, - N = —avg- N, (26)
grady, - N = esVd - N
and their solution is
Vo = VO + 09(xr) — 7, Wy = w3 — V3T, Yo = 3. (27)

The integrability conditions for the torque, axial force and the electric charge re-
quire that

69 =0, wd =0, Y = 0. (28)
Field equations foti,, w0, andv/, are

F(U1) = (ca4+ MV, Aginy =0,  Agiy; =0,

GU)N = (c3+ 1) (V3 - )N, gradiy - N = —iv9 - N, (29)

gradf; - N = eV - N,

and have the solution

Up = V9 +00(xr) + Sym(r ® (+1)) (xV3),

2()»+ W) (30)
Wy = _Vz r, Wl Wl
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A SECOND-ORDER SOLUTION OF SAINT-VENANT'S PROBLEM 83

Equations for finding field§o, o and/o can now be written as

F(Vg) = (c3 + MVS + (i + x1)T2r, Agibg = £V - 1, Ao = &VI - T,
G(Vo)N = [(c3+ M) (V3 -1) + (292 — (c5 + Lw))

+ (Xat?r? + x50?)IN + x772(r @ N, (31)
(gradivo) - N = —av) - N + &[Sym(r ® (xr))(xvI)] - N,
(gradiro) - N = eav? - N + +&[Sym(r @ (x1)(*v)] - N,

where expressions f@g, &, &3, £, and othek's introduced below in terms of other
material parameters are given in the Appendix. The solution of (31) is

. (c3+A)
Vo = V3 +6%(xr) + mSyMr ® (%)) (%V9)
(xs0? + £0R?T? + e2yf? — (c3 + M)w?) 5 2

+ 20+ 1) r + &trer, (32)
Wy = wg—Vg-r-ﬁ-SGCD-i-%'?\I—’,
Yo = ¥ + &P + &V,

where functionsd andW¥ are given by

® = gl(462 — B RZ + &1r2IVg -,

gl(4s2 1 1r°V3 (33)

W = 1[(4ks — 3E3)R? + E3r? VY - 1.

The clamping conditions = 0, H — H” = 0, ¢ = 0 at the centroid of4g
require that

vW=0 wi=0 6)=0 yi=0 V=0 (34)

The second-order solution is characterized by seven conséant$, 69, w? and

wf representing second-order flexure, bending, torsion, elongation and electric

potential respectively. However, these effects are coupled in the sense that if a

piezoelectric circular bar is twisted by applying equal and opposite torques at the

end faces, then there is also second-order torsion, elongation and electric field.
Let us consider deformations of the bar under the following resultant loads.

Rr =0, Ry=Te N6, RQ=Q
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84 R.C. BATRAETAL.

HereT is the torque and the total charge. The surface tractidret the end faces
Ao and A, have zero resultant force, and their resultant moment equalsout
the axise of the bar. The solution of the second-order problem is

V= —vare + z(+N7 + [£120° + (13R% + &) I + Lo7(+1)10 — 122172,
w = zaw + &10[(2s5(A + p) + &0) R?7? + xs0°]z,
¥ =z + E11[(285(A + 1) + ) R?T? + x50z,

w=Q/EuA, T =T/,

Thus the angle of twist/length equats+ (x15/t)Tw implying thereby that an
electric field alters the angle of twist/length and this change is proportional to the
charge/area. Also there is a second-order Poisson effect with one part proportional
to » and another one proportional t8; the part varying as® depends upon the
piezoelectric constants.

One part of the axial straim’ is proportional tor? and w? as expected and
is a generalization of the Poynting effect to transversely isotropic piezoelectric
materials. Whernr = 0, the termysé&iow? represents the correction to the axial
strain caused by the nonlinear response of the piezoelectric cylinder to the applied
electric field.

Equation (35) indicates that the difference of the electric potential at the two
end faces of the piezoelectric cylinder depends upon the square of the angular twist.
Even when there is no charge applied at the end faces, twisting of the piezoelectric
cylinder will induce a measurable difference in the electric potential between the
end faces. Hence a piezoelectric cylinder can be used to measure the angular twist.

(39)

4. Conclusions

We have studied the electromechanical deformations of a second-order, transversely
isotropic homogeneous circular cylindrical bar with mechanical loads and/or elec-
tric charges applied to its end faces only. The constitutive relations are taken to be
guadratic in the displacement gradients and the electric field. The centroid of one
end cross-section is rigidly clamped in the sense that displacements, infinitesimal
rotations and the electric potential vanish there.

It is found that there is a second-order Poisson’s effect not of the Saint-Venant
type; this is proportional te® wherer is the distance of a point from the centroidal
axis. Also, when the end faces are subjected to a pure torque and no electric charge,
there may be a potential difference, proportional to the square of the angular twist,
present between the end faces.
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Appendix
Using the notations

E=H+H)T/2,  E=H"H/2

I, =e- (Ee), I, =e- (Ee), L, =trH, I, = trE,

Is=W e [, = e- (E%), [, = (trE)2,

I3 =W W, [, =e- (EW) +W - (Ee), =W -e

we find that the constitutive relations for a second-order transversely isotropic
material with the axis of transverse isotropy along the unit vextye as follows:

S = 2c1ly + c3lp + e1lz)e® e+ (2c30; + c3ly + e13)1
+c4 Syme® Ee) + 2¢sE + e3 Syme® W),
S = [2c1]1 4 c3lo + 3rq 12 + 203011 + Agi2 + 25Ty
+A7l1o + 2v1f1f3 + vzlg + V71:[3 + 1)91:[4 + v14f2f3]e® e
+[2c205 + calt + 30202 + hal? + 2hal11p + Ael1 + Agllp
+ 2v3la03 + valZ + vglls + violly + viali 1311
+2¢4 Syme® Ee) + 2(Asl1 + Aglo + vsl3) Syme @ Ee)
+2¢5E + 2(A711 + Agly 4 v6l3)E
+2(voly + violy + U11j3)5ym(e® W)
+3hg(E)? + v1oW ® W + 2v13Syme® EW + W @ Ee),
= —(281f3 +eil + eziz)e — 282W — 2€3Ee,
0 = —[ely + eals + 3palz + polls + viI2 4 2vp030; + val3 + 26113
+ 2u4l305 + vsTly 4 vellp + via[ls + viali L)
—2[M2f3 + vl + vgfz]VV — 263Ee — 282W
—2(vgf1 + Vlojz + vllfg) Ee— 2v12EW — 2v13EZe.

Hereci, ¢, ..., e1, €2, ..., A1, Aoy oo, V1, Vo, o .., €1, €2,y . oy and;LL n2, ... are
material parameters. Expressions for other material parameters used in the text are
given below.

X1=—cs+ 3ca—h— 3he — Ag+ 3ho + L,

X2 = —2c3 —c4— 20 — 2,
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x3 = 2(e2 + e3),

1 1 1 1 1 1
Xa= —3C3— 5C4— 5\ — 3A6 — 5Ag — 713)\9 — M,

—m(€22(3)»3 + 432 + Az + 204 + Ao + Ag)u?
3

X5 =
+20 10 (Ah3 + 4hg + dhe — 207 + 2hg + 1)
+2%(4h3 + 4hg — dh7 + 6Ag + 3ho + 5u))
+2czex(A + ) (e2(A + )

—2(0(2v10 + v1a + 2v3) + A(2v10+ V14 — v6)))
+2¢3(A 4+ )2(—1 4+ 2v4 + 2vg)),

X6 =—A+ ),

X7 = 3ca+ 33+ i,

X8 = —3(ca+2u),
X9 = —————(caea(A + 211) + e2(2hAs5 + 4Ad7
des(A + )

+3AAg + 2 + 2hsp + 2hgit
+4x7 1 + Ahgi + Bhopt + 4u?)
+2c3(A + ) (e3 — 2v13 — vs5 — 20°6)),

X10 = €3,

= ——(ca(A + 24+ v11+2v
X11 20 1) (c3(A + ) ( 11 12)
+eo(esh — g — Aviz — 21v13 — Avg — [LVg)),
X12=—C1—C3—C4 — 3A — 3hs — 7h6 — A7 — 3hg — 33ho — L,

X13= —(c3+A),

5 (—e2” (12402 + 30° + 12020

X4= ——F 5
Aeg? (M + )

+40%05 4+ 12.%h5 + 40%h6 + 140207
+612hg + 120249 + 24caip + 20021
+24)0 010 + 1OAA3 + BAAgi + 24050
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+16 A + 2407 + 16 Agu

+24ou + 12cap? + 30002 + 1201 1% + 12012

+ 120302 + 12402 + 120512 + 120>

+127% + 120° + 120gu? + 1243

+12c1(h + %) + 2¢3°(h + w)?

X (=14 4eq + 4ep — dvqq — 2v10 — 2vp — 2v4 — 2v7 — 2vg)
+egea(—ea(50° + 16 + 121%)

+A4(A + 1) (2hv1 + 21v1 + 2hv11 + 4pvyp + 4Avss
+4pv13 + Avig + 2uv14 + 2uv3 + 2hvs + 2pvs

+2hvg + 21ve + 4hvg + 4rg))),

X15 (—ez(6cah + 2005 + 4AA;

" Acs(h+ )
+3ihg + 8capt + BAp + 251 + 2A61
+4h71 + dhgit + Brop + 81 + 8c1(A + 1)
+2¢3(3e3h — 2e210 + 3eap + 2e1(A + 1)
+20v13 + 2113+ Avs + s + 26 + 21v)),

1 1 1 1 1
X16 = 5€1+ 562+ e3+ 5V13+ V5 + 5V6,

X17 = e,

X18 (12c3%(h + )% (11 + 12)

430+ w)?
—dczer (A + ) (A2 4+ 3v1 + 2v12 + 2v3 + 2v7)
+u1 (14 3v11 + 2v12 + 2v2 + 24 + 2v7 + 2vg))
+622(362k2 + des)h® + des it + 8Bezi it
+2ep1® + desi?® + 2e1 (1 + w)?
+4)\%v + 8iuvi + 4,u2v1
+4pv10 4+ 4uPvig + 81%v13 + 16k puvrs + 8ulvis
+Ahpv1a + AuPvia + duPug
+4A2v5 + 8Auvs + 4uvs + 612v + 8Auvg
+4112v6 + 412V + 8Auvg + 4uvg)),
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