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Batra [1] used a linear relationship between the second Piola-Kirchhoff stress tensor
S and the Green-St. Venant strain tengoto study finite simple shearing and
finite simple extension deformations of an elastic body. In each case he found
that the tangent modulus (i.e. the slope of the shear stress vs. the shear strain
curve or the slope of the axial stress vs. the axial stretch curve) is a monotonically
nondecreasing function of the pertinent measure of strain. This contradicts the re-
sponse observed for most materials. However, a linear relation between the Cauchy
stress tensas and the left Cauchy—Green tend®mwas found to give a response
similar to that observed in experiments [2] for most materials. Here we study the
corresponding problem for an incompressible linear viscoelastic material. We use
two constitutive relations: in one the relationship betw8emd the history oE is
linear and in the othes is linearly related to the history of the relative Green-St.
Venant strain tensdg, . It is shown that the instantaneous elastic response given by
the former constitutive relation is unrealistic in the sense described above but that
obtained with the latter one agrees with the expected one.

For an incompressible linear viscoelastic material, the aforestated two con-
stitutive relations are (e.g. see Christensen [3] for Equation (1a) and Fosdick and
Yu [4] for Equation (1Db))

t
E
S= —pc_l + gol+ / g1(t — 'E)a ) dr, (1a)
0 0T
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o=—pl+gB +/ g1(t — 'E)a 1(7) dz, (1b)
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where

C=FF, B=FF', E=3C-1,

F=Gradx, F,(z)=Grad x(X, 7). (2)
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Herex gives the present position of a material particle that occupied plaie
the reference configuratiot, is the deformation gradien€C(B) the right (left)
Cauchy—Green tensor, Grad is the gradient operator with resp&¢ciGoad is the
gradient operator with respectxdX, r), p the hydrostatic pressure undetermined
from the deformationgg > 0 the constant modulus argel(z) the relaxation modu-
lus of the material. Note that; (-) is a smooth, positive, monotonically decreasing
function of timer; i.e.

dgi(t)
dr

The relative right Cauchy—Green ten€fyrand the relative Green-St. Venant tensor
E; are related to the relative deformation gradiEnir) in the same way a€ and

E are related td-. We recall the following relationships between the first Piola-
Kirchhoff (sometimes called the nominal or the engineering) stress ténsodS,
andT ando:

g1(:) > 0, < 0. (3)

T=FS, T’ =(detF)Flo. (4)

We note that Coleman and Noll [5] have provided a mathematical foundation
of the linear theory of viscoelasticity. Pipkin and Rogers [6] motivated the addition
of successive terms in the integral series representation of the stress in terms of the
history of strain till the difference between the test data and the prediction from
the theory became smaller than a preassigned value. They thus derived a nonlinear
theory of viscoelasticity. Equations (1a) and (1b) are special cases of the integral
constitutive relations given in References 5 and 6.

In terms of rectangular Cartesian coordinates, a simple shear deformation is
described by

x1= X1+ «(t)Xo, X2 = X, x3 = X3, %)

wherex may be called the shear strain. For the deformation (5) Equations (1a) and
(1b) when combined with (4) give

1 (! )
Tio(t) = go/c(t)+—/ g1(t — 1) () dr
0

2 0T
‘ 2
PEORy G (6)
2 Jo
1! 0
Ti2(t) = gox (1) + 5/0 g1t — 1) I;(tt) dr. (6b)

For a stress-relaxation test,

k() = koh (1), (7)
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whereh(-) is a Heaviside unit step function, Equations (6a) and (6b) reduce to

Tia(t) = goko + 381(1) (ko + &§), (8a)

Tia(t) = (g0 + 381(1))ko. (8b)

For infinitesimal deformationg, « 1, and Equations (8a) and (8b) give the same
expression for the shear relaxation functjog), viz.

21u(-) = 280 + g1(-). 9)

Both constitutive relations (1a) and (1b) imply that in simple shearing deforma-
tions (5) with« given by (7), the isochrone df;, will decrease in time, however,
the rate of decay is the same for infinitesimal deformations @g.«< 1) but
different for finite deformations. It follows from Equations (8a) and (8b) that the
curvature d2T1,/dk3, of the isochrone is positive for the constitutive relation (1a)
but equals zero for (1b). The experimentally observed response for most materials
[2] indicates that/?T1,/dk < O suggesting thereby that the constitutive relation
(1b) describes the material response that qualitatively agrees with the observed
one. The material behavior predicted by the constitutive relation (1a) qualitatively
disagrees with that observed experimentally.

We now study simple extension of a prismatic bar. Recalling that an incom-
pressible material can undergo only isochoric deformations, we have

1 1
—Xo, = X3,
Ja(t) 2 = Ja(t) 3

whereq is the stretch in the(,-direction. The pressurg is determined by requir-
ing that surface tractions vanish on the mantle of the prismatic body. The nominal
stressTy; obtained from constitutive relations (1a) and (1b) is given by

1 ! Jar2

x1 =o)Xy, Xp = (10)

9 -1
20[20)/ g1t — )= (t) dr, (11a)
1 8a2(f)
Ta(t) = go (a(t)_a2(1)> o 3(1)/ g1t — 1)
1! da (1)
—5/0 g1t — 1) = dr. (11b)

For the stress-relaxation teatr) = (ag — 1)k(¢) + 1, Equations (11a) and (11b)
simplify to

1 1 1
Ta(t) = go (010 - ?) +381(t) <ag —aot — — _3> ’ (12a)

0 &y g
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1
Tu(t) = (goxo + 381(1)) (1 - ﬁ) : (12b)
0

For infinitesimal deformations; = 1+ ¢, ¢ « 1, and Equations (12a) and (12b)
give the same value

2E(-) = 3(2g0 + 81()). (13)

of the longitudinal relaxation function. However, for finite deformations, the values
of the slope, @11(¢)/dag, of the isochrone are quite different. Furthermore,

d?Ti1(1) 620 1 2
= —— 4 3g1(¢ +—=-—=1, 14a
dOlcz] Oté gl( ) (aO 0[61 C(g) ( )
d’T 6
112(l) _ (@080 i 81(1)) -0 (14b)
dog oy

for the constitutive relations (1a) and (1b) respectively. Thus, the slope of the lon-
gitudinal isochrone is a decreasing functiorwgffor the constitutive relation (1b).
However, for the constitutive relation (1a) it will be an increasing functioagf
whenever

_1
o (1l 1 1
B (Zag4z-=) | 15
. > (2“0"‘ 2 o (15)

which is likely to be satisfied for large values .

In summary, we have shown that the linear constitutive relations (1a) and (1b)
for incompressible viscoelastic materials give identical response for infinitesimal
simple shearing and infinitesimal simple extension deformations. However, for
finite deformations, they predict different response. In stress-relaxation tests, the
slope of the stress isochrone (i.e. the slope of the pertinent nominal stress vs. a
measure of deformation curves for fixads an increasing function of the deform-
ation measure for the constitutive relation (1a) but a non-increasing function of
the deformation measure for the constitutive relation (1b). The latter behavior is in
accord with experimental observations for most materials.

The aforestated analysis can be carried out for unconstrained linear viscoelastic
materials and similar conclusions drawn.
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