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Batra [1] used a linear relationship between the second Piola-Kirchhoff stress tensor
S and the Green-St. Venant strain tensorE to study finite simple shearing and
finite simple extension deformations of an elastic body. In each case he found
that the tangent modulus (i.e. the slope of the shear stress vs. the shear strain
curve or the slope of the axial stress vs. the axial stretch curve) is a monotonically
nondecreasing function of the pertinent measure of strain. This contradicts the re-
sponse observed for most materials. However, a linear relation between the Cauchy
stress tensorσ and the left Cauchy–Green tensorB was found to give a response
similar to that observed in experiments [2] for most materials. Here we study the
corresponding problem for an incompressible linear viscoelastic material. We use
two constitutive relations: in one the relationship betweenSand the history ofE is
linear and in the otherσ is linearly related to the history of the relative Green-St.
Venant strain tensorEt . It is shown that the instantaneous elastic response given by
the former constitutive relation is unrealistic in the sense described above but that
obtained with the latter one agrees with the expected one.

For an incompressible linear viscoelastic material, the aforestated two con-
stitutive relations are (e.g. see Christensen [3] for Equation (1a) and Fosdick and
Yu [4] for Equation (1b))

S= −pC−1+ g01+
∫ t

0
g1(t − τ)∂E(τ )

∂τ
dτ, (1a)

σ = −p1+ g0B+
∫ t

0
g1(t − τ)∂Et (τ )

∂τ
dτ, (1b)

where

C = FTF, B = FFT , E = 1
2(C− 1),

F = Gradx, Ft (τ ) = Gradt x(X, τ ). (2)
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Herex gives the present position of a material particle that occupied placeX in
the reference configuration,F is the deformation gradient,C(B) the right (left)
Cauchy–Green tensor, Grad is the gradient operator with respect toX, Gradt is the
gradient operator with respect tox(X, t), p the hydrostatic pressure undetermined
from the deformation,g0 > 0 the constant modulus andg1(t) the relaxation modu-
lus of the material. Note thatg1(·) is a smooth, positive, monotonically decreasing
function of timet ; i.e.

g1(·) > 0,
dg1(τ )

dτ
< 0. (3)

The relative right Cauchy–Green tensorCt and the relative Green-St. Venant tensor
Et are related to the relative deformation gradientFt (τ ) in the same way asC and
E are related toF. We recall the following relationships between the first Piola-
Kirchhoff (sometimes called the nominal or the engineering) stress tensorT andS,
andT andσ :

T = FS, TT = (det F)F−1σ . (4)

We note that Coleman and Noll [5] have provided a mathematical foundation
of the linear theory of viscoelasticity. Pipkin and Rogers [6] motivated the addition
of successive terms in the integral series representation of the stress in terms of the
history of strain till the difference between the test data and the prediction from
the theory became smaller than a preassigned value. They thus derived a nonlinear
theory of viscoelasticity. Equations (1a) and (1b) are special cases of the integral
constitutive relations given in References 5 and 6.

In terms of rectangular Cartesian coordinates, a simple shear deformation is
described by

x1 = X1+ κ(t)X2, x2 = X2, x3 = X3, (5)

whereκ may be called the shear strain. For the deformation (5) Equations (1a) and
(1b) when combined with (4) give

T12(t) = g0κ(t)+ 1

2

∫ t

0
g1(t − τ)∂κ(τ)

∂τ
dτ

+κ(t)
2

∫ t

0
g1(t − τ)∂κ

2(τ )

∂τ
dτ, (6a)

T12(t) = g0κ(t)+ 1

2

∫ t

0
g1(t − τ)∂κ(τ)

∂τ
dτ. (6b)

For a stress-relaxation test,

κ(t) = κ0h(t), (7)
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whereh(·) is a Heaviside unit step function, Equations (6a) and (6b) reduce to

T12(t) = g0κ0+ 1
2g1(t)(κ0+ κ3

0), (8a)

T12(t) = (g0+ 1
2g1(t))κ0. (8b)

For infinitesimal deformations,κ0� 1, and Equations (8a) and (8b) give the same
expression for the shear relaxation functionµ(·), viz.

2µ(·) = 2g0 + g1(·). (9)

Both constitutive relations (1a) and (1b) imply that in simple shearing deforma-
tions (5) withκ given by (7), the isochrone ofT12 will decrease in time, however,
the rate of decay is the same for infinitesimal deformations (i.e.,κ0 � 1) but
different for finite deformations. It follows from Equations (8a) and (8b) that the
curvature,d2T12/dκ

2
0, of the isochrone is positive for the constitutive relation (1a)

but equals zero for (1b). The experimentally observed response for most materials
[2] indicates thatd2T12/dκ

2
0 6 0 suggesting thereby that the constitutive relation

(1b) describes the material response that qualitatively agrees with the observed
one. The material behavior predicted by the constitutive relation (1a) qualitatively
disagrees with that observed experimentally.

We now study simple extension of a prismatic bar. Recalling that an incom-
pressible material can undergo only isochoric deformations, we have

x1 = α(t)X1, x2 = 1√
α(t)

X2, x3 = 1√
α(t)

X3, (10)

whereα is the stretch in theX1-direction. The pressurep is determined by requir-
ing that surface tractions vanish on the mantle of the prismatic body. The nominal
stressT11 obtained from constitutive relations (1a) and (1b) is given by

T11(t) = g0

(
α(t)− 1

α2(t)

)
+ α(t)

2

∫ t

0
g1(t − τ)∂α

2(τ )

∂τ
dτ

− 1

2α2(t)

∫ t

0
g1(t − τ)∂α

−1(τ )

∂τ
dτ, (11a)

T11(t) = g0

(
α(t)− 1

α2(t)

)
+ 1

2α3(t)

∫ t

0
g1(t − τ)∂α

2(τ )

∂τ
dτ

−1

2

∫ t

0
g1(t − τ)∂α

−1(τ )

∂τ
dτ. (11b)

For the stress-relaxation test,α(t) = (α0 − 1)h(t)+ 1, Equations (11a) and (11b)
simplify to

T11(t) = g0

(
α0− 1

α2
0

)
+ 1

2g1(t)

(
α3

0 − α0+ 1

α2
0

− 1

α3
0

)
, (12a)
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T11(t) = (g0α0+ 1
2g1(t))

(
1− 1

α3
0

)
. (12b)

For infinitesimal deformationsα0 = 1+ ε, ε � 1, and Equations (12a) and (12b)
give the same value

2E(·) = 3(2g0 + g1(·)), (13)

of the longitudinal relaxation function. However, for finite deformations, the values
of the slope, dT11(t)/dα0, of the isochrone are quite different. Furthermore,

d2T11(t)

dα2
0

= −6g0

α4
0

+ 3g1(t)

(
α0+ 1

α4
0

− 2

α5
0

)
, (14a)

d2T11(t)

dα2
0

= −6(α0g0+ g1(t))

α5
0

< 0, (14b)

for the constitutive relations (1a) and (1b) respectively. Thus, the slope of the lon-
gitudinal isochrone is a decreasing function ofα0 for the constitutive relation (1b).
However, for the constitutive relation (1a) it will be an increasing function ofα0

whenever

g1

g0
>

(
1

2
α5

0 +
1

2
− 1

α0

)−1

, (15)

which is likely to be satisfied for large values ofα0.
In summary, we have shown that the linear constitutive relations (1a) and (1b)

for incompressible viscoelastic materials give identical response for infinitesimal
simple shearing and infinitesimal simple extension deformations. However, for
finite deformations, they predict different response. In stress-relaxation tests, the
slope of the stress isochrone (i.e. the slope of the pertinent nominal stress vs. a
measure of deformation curves for fixedt) is an increasing function of the deform-
ation measure for the constitutive relation (1a) but a non-increasing function of
the deformation measure for the constitutive relation (1b). The latter behavior is in
accord with experimental observations for most materials.

The aforestated analysis can be carried out for unconstrained linear viscoelastic
materials and similar conclusions drawn.
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