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Abstract We employ the Airy stress function to derive analytical solutions for plane strain
static deformations of a functionally graded (FG) hollow circular cylinder with Young’s
modulus E and Poisson’s ratio v taken to be functions of the radius r . For E1 and v1 power
law functions of r , and for E1 an exponential but v1 an affine function of r , we derive explicit
expressions for stresses and displacements. Here E1 and v1 are effective Young’s modulus
and Poisson’s ratio appearing in the stress-strain relations. It is found that when exponents of
the power law variations of E1 and v1 are equal then stresses in the cylinder are independent
of v1; however, displacements depend upon v1. We have investigated deformations of a
FG hollow cylinder with the outer surface loaded by pressure that varies with the angular
position of a point, of a thin cylinder with pressure on the inner surface varying with the
angular position, and of a cut circular cylinder with equal and opposite tangential tractions
applied at the cut surfaces. When v1 varies logarithmically through-the-thickness of a hollow
cylinder, then the maximum radial stress, the maximum hoop stress and the maximum radial
displacements are noticeably affected by values of v1. Conversely, we find how E1 and
v1 ought to vary with r in order to achieve desired distributions of a linear combination
of the radial and the hoop stresses. It is found that for the hoop stress to be constant in
the cylinder, E1 and v1 must be affine functions of r . For the in-plane shear stress to be
uniform through the cylinder thickness, E1 and v1 must be functions of r2. Exact solutions
and optimal design parameters presented herein should serve as benchmarks for comparing
approximate solutions derived through numerical algorithms.
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1 Introduction

Functionally graded materials (FGMs) generally have moduli continuously varying in one
or more spatial directions and their use may optimize one or more functional characteristics
of a structure, e.g., by using FGMs one can reduce stress concentration around a hole [1] in
a plate and at interfaces between adjoining layers made of distinct materials [2]. Similarly
material properties can be tailored to optimize the fundamental frequency of a laminated
plate [3]. References [4–9] have discussed the mechanical performance of FG structures
such as cylinders, spheres and plates used in aerospace, marine, and civil engineering fields.

From mathematics point of view FG structures are inhomogeneous bodies, and solu-
tions for several problems involving inhomogeneous linear elastic materials can be found
in Lekhnitskii’s book [10]. One could potentially divide a FG plate into several thin per-
fectly bonded layers with different but constant material properties, e.g., see Timoshenko
and Goodier’s book [11] for composite cylinders. With an increase in the number of layers,
the solution of the layered structure approaches that of a FG body. Even though Batra [12]
used the finite element method to analyze axisymmetric finite deformations of a pressur-
ized hollow cylinder composed of a FG Mooney-Rivlin material, his evaluation of material
properties at integration points is equivalent to dividing the cylinder into several homoge-
neous thin cylinders each made of a homogeneous material. Pan and Roy [13] have used a
similar technique coupled with the method of separation of variables and the expansion of
unknowns in terms of the Fourier series in the circumferential direction to study plane strain
static deformations of a FG isotropic elastic cylinder.

Horgan and Chan [14] have analyzed deformations of a FG cylinder composed of a com-
pressible isotropic linear elastic material with Young’s modulus E a power law function of
the radius r and Poisson’s ratio v constant. Tarn [15] has studied thermomechanical defor-
mations of FG cylinders deformed in tension, torsion, shearing, and radial expansion due
to pressure loading and temperature changes. Jabbari et al. [16] and Zimmerman and Lutz
[17] have analyzed two-dimensional thermoelastic problems for hollow FG cylinders. Oral
and Anlas [18] have computed stresses in a FG anisotropic cylinder. Shao and Ma [19] have
studied three-dimensional thermo-elastic deformations of a FG cylindrical panel of finite
length and subjected to nonuniform mechanical and steady-state thermal loads. Tarn and
Chang [20] have analyzed the torsion of elastic circular bars of radially inhomogeneous,
cylindrically orthotropic materials with emphasis on the end effects. Batra [21] has studied
torsional deformations of a solid circular cylinder composed of an incompressible linear
elastic isotropic material with the shear modulus varying in the axial direction.

Besides assuming that the elastic moduli vary according to a power-law function of r ,
some investigators have presumed that they are exponential functions of r . Based on the
assumption that Poisson’s ratio v is constant and Young’s modulus E is an exponential
function of r , Tutuncu [22], Chen and Lin [23], and Theotokoglou and Stampouloglou [24]
have analyzed stresses and displacements in FG cylindrical pressure vessels.

The aforementioned works have presumed that v is constant but E varies. However,
experimental measurements by Marur and Tippur [25] indicate that v also varies with the
position in a FG material. Problems with both E and v varying with position have been
studied in [26, 27]; e.g., Mohammadi and Dryden [26] assumed that v varies in the same way
as E, and Li and Peng [27] analyzed axisymmetric deformations of a FG hollow cylinder
or disk with arbitrarily varying material properties by expressing the radial displacement in
terms of Legendre polynomials. Here we study both axisymmetric and non-axisymmetric
problems for a FG cylinder with E and v independent functions of r .

We also investigate the material tailoring problem and find the spatial variation of mater-
ial properties to achieve a desired stress distribution in a cylinder under prescribed boundary
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Fig. 1 Section of an infinitely
long hollow circular cylinder

conditions. For plane strain axisymmetric deformations of a FG cylinder composed of an or-
thotropic material, Leissa and Vagins [1] assumed that all material moduli are proportional
to each other and found their spatial variation to make either the hoop stress or the in-plane
shear stress uniform in the cylinder. Here we do not assume that E and v are proportional to
each other.

2 Problem Formulation

Consider an infinitely long hollow circular cylinder with inner radius rin, and outer radius
rou, subjected to pressures pin(θ),pou(θ) and tangential tractions qin(θ), qou(θ) on its inner
and outer surfaces, as shown in Fig. 1. We assume that the cylinder is made of a linear elastic
isotropic material with E and v varying only in the radial direction, and study its plane
strain deformations. In the absence of body forces equations of equilibrium in cylindrical
coordinates (r, θ) are

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ σrr − σθθ

r
= 0,

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 2

r
σrθ = 0,

(1)

where σrr , σrθ and σθθ are stress components. The radial and the circumferential displace-
ments, ur and uθ , are related to the strains εrr , εθθ and εrθ by

εrr = ∂ur

∂r
, εθθ = ur

r
+ 1

r

∂uθ

∂θ
, εrθ = 1

r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r
. (2)

The compatibility equation in terms of strains is

∂2εθθ

∂r2
+ 1

r2

∂2εrr

∂θ2
+ 2

r

∂εθθ

∂r
− 1

r

∂εrr
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r
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∂r∂θ
+ 1

r2

∂εrθ

∂θ
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Constitutive equations are

εrr = 1

E1(r)
(σrr − v1(r)σθθ ), (4a)

εθθ = 1

E1(r)
(σθθ − v1(r)σrr ), (4b)
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εrθ = 2(1 + v1(r))

E1(r)
σrθ , (4c)

where

E1(r) = E(r)

1 − v2(r)
, v1(r) = v(r)

1 − v(r)
. (4d)

Henceforth we call E1 and v1 effective Young’s modulus and effective Poisson’s ratio re-
spectively. For 0 < v < 0.5, v1 varies from 0 to 1.

The pertinent boundary conditions on the inner and the outer surfaces of the cylinder are
taken to be

at r = rin, σrr (rin, θ) = −pin(θ), σrθ (rin, θ) = −qin(θ), (5a)

at r = rou, σrr (rou, θ) = −pou(θ), σrθ (rou, θ) = qou(θ); (5b)

or

at r = rin, ur(rin, θ) = 0, uθ (rin, θ) = 0, (5c)

at r = rou, σrr (rou, θ) = −pou(θ), σrθ (rou, θ) = qou(θ). (5d)

For a traction boundary-value problem, prescribed surface tractions (5a), (5b) must have
null resultant force and moment in order for the problem to have a solution. Equations (5c)
imply that the inner surface of the cylinder is rigidly clamped.

3 Solution of the Problem

We introduce the Airy stress function in the form

ϕ(r, θ) = ϕr(r)ϕθ (θ). (6)

Thus stresses satisfying (1) are expressed as

σrr = ϕθ(θ)

r

dϕr(r)

dr
+ ϕr(r)

r2

d2ϕθ (θ)

dθ2
, (7a)

σθθ = ϕθ(θ)
d2ϕr(r)

dr2
, (7b)

σrθ = ϕr(r)

r2

dϕθ (θ)

dθ
− 1

r

dϕθ (θ)

dθ

dϕr(r)

dr
. (7c)

Substitution for stresses from (7) into (4) and the result into (3) gives

d4ϕθ

dθ4
+ f1(ϕr)

d2ϕθ

dθ2
+ f2(ϕr)ϕθ = 0, (8)

where

f1(φr) = 4 + 2r2

φr

d2φr

dr2
− 2r

φr

dφr

dr
+ 1

E1(r)

dE1(r)

dr

[
3r − 2r2

φr

dφr

dr
+ 2r2 dv1(r)

dr

]
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+ v1(r)r
2
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, (9b)

and we have tacitly assumed that ϕr(r) �= 0, ϕθ (θ) �= 0,
df1(ϕr )

dr
�= 0 and E1(r) �= 0.

Differentiation of both sides of (8) with respect to r gives

1

ϕθ

d2ϕθ

dθ2
= −df2(ϕr)

dr

/
df1(ϕr)

dr
= −λ2, (10a)

where λ is a constant. Thus for λ �= 0 the expression for ϕθ is

ϕθ = C11 cos(λθ) + C12 sin(λθ), (10b)

and for λ = 0 (10a) has the solution

ϕθ = C21θ + C22, (10c)

where C11,C12,C21 and C22are constants to be determined from boundary conditions. The
constant λ is associated with the circumferential wave number. Substitution for ϕθ from
(10) into (8) gives the following fourth-order ordinary differential equation with variable
coefficients for the determination of function ϕr :

λ4 − λ2f1(ϕr) + f2(ϕr) = 0. (11)

Having found ϕr and ϕθ for different values of λ we get the following expression for the
stress function ϕ(r, θ) from (6):

ϕ(r, θ) =
∑

i

ϕr (λi, r)ϕθ (λi, θ). (12)

The corresponding stresses, strains, and displacements are derived from (7), (4) and (2). Pro-
vided that E(r) > 0 and −1 < v(r) < 0.5, a unique solution of the boundary-value problem
is obtained within a superimposed rigid body motion. For some boundary-value problems it
may suffice to consider only one value of λ in (10b), (10c), while for others one may need to
express the Airy stress function in terms of an infinite series. When all prescribed functions
on the boundary vary as sin(kθ) or cos(kθ), it suffices to consider only one value of λ = k in
(10b). Constants appearing in (12) are found by satisfying boundary conditions in the sense
of Fourier series.

3.1 Power-Law Variations of E1 and v1

We assume that the effective Young’s modulus E1 and the effective Poisson’s ratio v1 are
given by

E1(r) = E0(r/rou)
m, (13a)
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v1(r) = v0(r/rou)
n, (13b)

where E0 and v0 are values, respectively, of E1 and v1 at a point on the outer surface of the
cylinder, and m and n are real numbers. Substitution from (13) into (9) and the result into
(11) yields

d4ϕr

dr4
+ 2(1 − m)

r

d3ϕr

dr3
+ z3(r)

d2ϕr

dr2
+ z2(r)

dϕr

dr
+ z1(r)ϕr = 0, (14)

where

z1(r) = r−4(λ2(λ2 − 3m − 4) + v0λ
2(m + m2 − n − 2mn + n2)rnr−n

ou ),

z2(r) = r−3((m + 1)(2λ2 + 1) + v0(n + 2mn − n2 − m − m2)rnr−n
ou ),

z3(r) = r−2(m(m − 1) − 2λ2 − 1 − v0(m − n)rnr−n
ou ).

For m = n, in the expressions for z1, z2 and z3 terms involving υ0 are identically zero and
the response of the FG solid is the same as that of the solid with υ1 = 0 = υ . For this case,
(14) reduces to the Cauchy-Euler form and has the solution

ϕr =
4∑

i=1

D0i r
si , (15a)

where constants D01,D02,D03,D04 and Di1,Di2,Di3,Di4(i = 1,2, . . .) appearing below
are determined from boundary conditions (5), and si(i = 1,2,3,4) is the root of the follow-
ing equation:

s4 − 2(m + 2)s3 + (4 − 2λ2 + m2 + 5m)s2 + (m + 2)(2λ2 − m)s + λ2(λ2 − 4 − 3m) = 0.

For m = n = 0 and λ = 0, the solution of (14) is

ϕr = D11 ln r + D12r
2 + D13r

2 ln r + D14, (15b)

the cylinder material is homogeneous and its deformations are axisymmetric. The stress
function (15b) is the same as that given in [11]. For axisymmetric deformations (i.e., λ = 0)

of an inhomogeneous cylinder and different values of m and n, e.g., m = −2, n = 0; m �= 0,
m �= −2, n = 0; m = 1, n = 1; and m = −1, n = −1, solutions of (14), respectively, are

ϕr = D21r
−a1 + D22r

a1 + D23 ln r + D24, (15c)

ϕr = D31r
a2 + D32r

a3 + D33r
2+m + D34, (15d)

ϕr = D41r
a5 + D42r

a6 + D43r
3 + D44, (15e)

ϕr = D51r
a7 + D52r

a8 + D53r + D54, (15f)

where expressions for ai (i = 1,2, . . . ,8) are given in Appendix A.
For non-axisymmetric deformations of a homogeneous cylinder (i.e., m = 0, n = 0), an-

alytical solutions for λ = 1 and λ �= 1, respectively, are

ϕr = D61r
−1 + D62r + D63r ln r + D64r

3, (15g)

ϕr = D71r
−λ + D72r

2−λ + D73r
λ + D74r

2+λ. (15h)
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For non-axisymmetric deformations of an inhomogeneous cylinder (i.e., λ �= 0), and
m �= 0, n = 0;m = 1, n = 1; and m = −1, n = −1, the respective analytical solutions are

ϕr =
4∑

j=1

D8j r
bj , (15i)

ϕr =
4∑

j=1

D9j r
cj , (15j)

ϕr =
4∑

j=1

D10j r
dj , (15k)

where expressions for bi (i = 1,2,3,4), ci (i = 1,2,3,4), and di (i = 1,2,3,4) are given
in Appendix A. For m �= ±1, n �= ±1 and λ �= 0, and other values of these three variables,
(14) can be solved numerically.

The stress function is obtained by combining (10) and (15), and constants appearing in
these equations are determined from boundary conditions (5). Arbitrary loads on the inner
and the outer surfaces are expanded in Fourier series in θ , and boundary conditions are
satisfied in the sense of Fourier series.

3.1.1 Axisymmetric Deformations of a FG Cylinder

For a homogeneous cylinder (i.e., for m = 0, n = 0) loaded by uniform tractions (i.e., λ = 0)

on the inner and the outer surfaces expressions for stresses and displacements are given in
many references, and hence are omitted. The remaining results in this subsection are for FG
cylinders but for tractions with λ = 0.

For m = −2, n = 0, setting C21 = 0 in (10c) and substituting from it and (15c) into (7),
we get the following for stresses in the FG cylinder.

σrr = −D21a1r
−2−a1 + D22a1r

−2+a1 + D23r
−2, (16a)

σθθ = D21a1(a1 + 1)r−2−a1 + D22a1(a1 − 1)r−2+a1 − D23r
−2, (16b)

σrθ = 0. (16c)

Substitution for stresses from (16) and for E1 and v1 from (13) into (4) gives expressions
for strains which upon integration give

ur = 1 + v0

E0r2
ou

(D21(2 + a1)r
1−a1 − D22(−2 + a1)r

1+a1 + D23r) + f (θ), (17a)

uθ = −2D23(1 + v0)rθ

E0r2
ou

−
∫

f (θ)dθ + fr(r). (17b)

The unknown functions f (θ) and fr(r) in (17) are determined by setting the shear strain
equal to zero and requiring that the circumferential displacement is single-valued. For
boundary conditions pin(θ) = pin and pou(θ) = pou, we get the following expressions for
stresses and displacements.

σrr = T1r
a1−2 + T2r

−a1−2

r
2a1
in − r

2a1
ou

, σθθ = T1(a1 − 1)ra1−2 − (a1 + 1)T2r
−a1−2

r
2a1
in − r

2a1
ou

,

(18)
σrθ = 0,
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ur = T3r
1+a1 + T4r

1−a1

E0r2
ou(r

2a1
in − r

2a1
ou )

, uθ = 0, (19)

where expressions for Ti (i = 1,2,3,4) are given in Appendix B.
For m �= 0,m �= −2, n = 0, stresses and displacements are given below:

σrr = T5r
a2+a4−2 + T6r

a2−2

r
a4
in − r

a4
ou

, σθθ = T5(a4 + m)ra2+a4−2 − T6(a4 − m)ra2−2

2(r
a4
in − r

a4
ou)

,

(20)
σrθ = 0,

and

ur = T7r
a2+a4−m−1 + T8r

a2−m−1

2E0(r
a4
in − r

a4
ou)

, uθ = 0, (21)

where expressions for Ti (i = 5,6,7,8) are given in Appendix B.
For m = 1, n = 1, stresses and displacements have the following expressions:

σrr = T9r
−a7 + T10r

−a8

r
√

5
in − r

√
5

ou

, σθθ = a8T9r
−a7 + a7T10r

−a8

r
√

5
in − r

√
5

ou

, σrθ = 0, (22)

ur = T11r
1−a7 + T12r

−a7 + T13r
1−a8 + T14r

−a8

E0(r
√

5
in − r

√
5

ou )
, uθ = 0, (23)

where expressions for Ti (i = 9, . . . ,14) are given in Appendix B.
For m = −1, n = −1, we get the following for stresses and displacements:

σrr = T15r
−a5 + T16r

−a6

r
√

5
in − r

√
5

ou

, σθθ = −a7T15r
−a5 − a8T16r

−a6

r
√

5
in − r

√
5

ou

, σrθ = 0, (24)

ur = T17r
2−a5 + T18r

1−a5 + T19r
2−a6 + T20r

1−a6

E0rou(r
√

5
in − r

√
5

ou )
, uθ = 0, (25)

where expressions for Ti (i = 15, . . . ,20) are given in Appendix B.

3.1.2 FG Cylinder Deformed by Tangential Tractions on the Outer Surface

For a FG cylinder subjected to tangential tractions qou(θ) = qou on the outer surface with the
inner surface rigidly clamped (i.e., ur = uθ = 0 on r = rin) deformations are axisymmetric.
However, we proceed without making this assumption, and use the Airy stress function
corresponding to λ = 0, and set C22 = 0 in (10c). For m = n = 0, substitution for the Airy
stress function from (15b) and (10c) into (7) gives the following expressions for stresses in
the cylinder.

σrr = (D11r
−2 + 2D12 + D13(1 + 2 ln r))θ, (26a)

σθθ = (−D11r
−2 + 2D12 + D13(3 + 2 ln r))θ, (26b)

σrθ = −D11(1 − ln r)r−2 − D12 − D13(1 + ln r) + D14r
−2. (26c)

From (26), (4) and (2) we get the following for displacements.



Exact Solutions and Material Tailoring for Functionally Graded Hollow 187

ur = −θ(D11(1 + v0) + r2(2D12(v0 − 1) + D13(v0 + 1)) + 2D13(v0 − 1)r2 ln r)

E0r

+ f (θ), (27a)

uθ = 2D13rθ
2

E0
−

∫
f (θ)dθ + fr(r). (27b)

Equating the shear strain obtained from the constitutive relation (4) to that derived from the
strain-displacement relation (2), we conclude that

fr(r) = −D11(1 + v0) ln r

E0r
− 4D12r ln r

E0
− D13r ln r(1 + v0 + 2 ln r)

E0

− D14(1 + v0)

E0r
+ D15r, (28a)

f (θ) = D16 sin(θ) + D17 cos(θ). (28b)

Constants D11,D12,D13,D14,D15,D16 and D17 are determined from boundary conditions
(5b), (5c) on the inner and the outer surfaces of the cylinder and requiring that displacements
be single-valued. Thus the following expressions for stresses and displacements are found.

σrr = 0, σθθ = 0, σrθ = qour
2
ou

r2
, (29)

ur = 0, (30a)

uθ = qour
2
ou(1 + v0)(r

2 − r2
in)

E0r
2
inr

. (30b)

Stresses given by (29) are universal in the sense that these equations hold for all materials
and both elastic and inelastic deformations even though only infinitesimal elastic deforma-
tions are analyzed herein.

For m �= 0, n �= 0 (29) and (30a) hold and we give below only expressions for uθ for
different values of m and n considered in Sect. 3.1.1.

For m = −2, n = 0, uθ = 2qou(1 + v0)r ln(r/rin)

E0
. (31)

For m �= 0,m �= −2, n = 0, uθ = 2qour
2+m
ou (1 + v0)(r

2+m − r2+m
in )

E0(2 + m)r2+m
in r1+m

. (32)

For m = 1, n = 1, uθ = qour
2
ou(r

3
in(−2rou − 3v0r) + (2rou + 3v0rin)r

3)

3E0r
3
inr

2
. (33)

For m = −1, n = −1, uθ = qourou(r − rin)(2rinr + (r + rin)rouv0)

E0r
2
inr

. (34)

For a FG cylinder subjected to tangential traction qou sin(λθ) or qou cos(λθ) on the outer
surface, we use the Airy stress functions (10b) and (15) to solve the problem. For example,
we study deformations of a FG cylinder with m = n = 1 and the load qou(θ) = qou cos(2θ)

applied on its outer surface. Recalling (7c) we take λ = 2 and C11 = 0 in (10b) and substitute
from (10b) and (15j) into (7) to get the following expressions for stresses in the cylinder.

σrr =
4∑

j=1

(cj − 4)D9j r
cj −2 sin(2θ), σθθ =

4∑
j=1

cj (cj − 1)D9j r
cj −2 sin(2θ), (35a)
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Fig. 2 Cross section of a FG
semicircular cylinder clamped at
the left edge

σrθ = −2
4∑

j=1

(cj − 1)D9j r
cj −2 cos(2θ). (35b)

Constants D9j (j = 1,2,3,4) are determined from boundary conditions (5) on the inner
and the outer surfaces of the cylinder. Knowing stresses, we can find strains and hence
displacements; their lengthy expressions are omitted.

3.1.3 FG Semicircular Cylinder Deformed by a Tangential Force at One End

For a FG semicircular cylinder clamped at the left edge and loaded by a force P at the right
edge, shown in Fig. 2, we use the Airy stress function given by (15) and (10b), and take
λ = 1 and C11 = 0 to solve the problem. Recall that the bending moment at a horizontal cut
plane is proportional to sin θ . For m = 1, n = 0, substitution from (10b) and (15i) into (7)
gives the following expressions for stresses

σrr = ((b1 − 1)D81r
b1−2 + (b2 − 1)D82r

b2−2 + D84) sin(θ), (36a)

σθθ = (b1(b1 − 1)D81r
b1−2 + b2(b2 − 1)D82r

b2−2 + 2D84) sin(θ), (36b)

σrθ = −((b1 − 1)D81r
b1−2 + (b2 − 1)D82r

b2−2 + D84) cos(θ), (36c)

where b1 = 1
2 (3 − √

21 − 4v0), b2 = 1
2 (3 + √

21 − 4v0).
From boundary conditions (5a), (5b) on the outer and the inner surfaces of semicircular

cylinder, we get

(b1 − 1)r
b1−2
in D81 + (b2 − 1)r

b2−2
in D82 + r2

inD84 = 0, (37a)

(b1 − 1)rb1−2
ou D81 + (b2 − 1)rb2−2

ou D82 + r2
ouD84 = 0. (37b)

The boundary condition
∫ rou

rin
σrθdr = P on the surface θ = 0 gives

(r
b1−1
in − rb1−1

ou )D81 + (r
b2−1
in − rb2−1

ou )D82 + (rin − rou)D84 = P, (37c)

where we have assumed that b1 and b2 are unequal to 1. From (37), we can determine
constants D81,D82 and D84. Then stresses and strains can be found. Displacements are
determined by integrating the strain-displacement relation (2) and boundary conditions ur =
uθ = 0 at θ = π .

3.2 Axisymmetric Deformations for E1 and v1 Given by Different Functions of r

We assume that

E1(r) = E0 exp(mr/rou), v1(r) = v0(1 + nr/rou). (38)
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Substituting for E1(r) and v1(r) from (38) into (4d) and solving the resulting equations,
one can deduce the corresponding expressions for E(r) and v(r). Introducing a function ψ

auxiliary to the Airy stress function ϕ, the hoop and the radial stresses are expressed as

σrr = ψ(r)

r
, σθθ = dψ(r)

dr
. (39)

The compatibility equation for the axisymmetric problem in terms of strains is

d

dr
(rεθθ ) − εrr = 0. (40)

Substitution for stresses from (39) into (4) and the result into (40) yields

d2ψ(r)

dr2
+

(
1

r
− 1

E1(r)

dE1(r)

dr

)
dψ(r)

dr
+

(
v1(r)

rE1(r)

dE1(r)

dr
− 1

r

dv1(r)

dr
− 1

r2

)
ψ(r) = 0.

(41)

Substituting for E1(r) and v1(r) from (38) into (41) and solving the resulting ordinary dif-
ferential equation we get following expressions for the stress function ψ for different values
of m and n.

ψ(r) = exp(g1)(C1U(g2,3, g3) + C2L
2
−g2

(g3)), when m �= 0, n �= 0; (42a)

ψ(r) = C3I2(2
√

nv0r/rou) + C4K2(2
√

nv0r/rou), when m = 0, n �= 0; (42b)

ψ(r) = r(C5U(1 − v0,3,mr/rou) + C6L
2
v0−1(mr/rou)), when m �= 0, n = 0. (42c)

Constants C1,C2,C3,C4,C5 and C6 in (42) are determined by boundary conditions (5), and

U(a,b, z) = 1/�(a)

∫ ∞

0
e−zt ta−1(1 + t)b−a−1dt,

is the confluent hypergeometric function, �(a) the Euler gamma function, La
n(x) the gener-

alized Laguerre polynomial, In(z) and Kn(z) the modified Bessel functions of the first and
the second kind, respectively, and

g1 = mr − r
√

m(m − 4nv0) + 2rou ln r

2rou

,

g2 = −m(1 + 2v0) − 2nv0 − 3
√

m(m − 4nv0)

2
√

m(m − 4nv0)
,

g3 = r
√

m(m − 4nv0)

rou

.

Substitution from (42) into (39) gives stresses; strains and displacements can then be com-
puted. Constants appearing in these equations are determined from the boundary conditions.

For E1 = constant (i.e., m = 0 in (38)) but v1 given by

v1(r) = vin + (vou − vin)
ln(r/rin)

ln(rou/rin)
, (43)

we get the following expression for the stress function ψ

ψ(r) = C7r
s1 + C8r

−s1 , (44)
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where vin and vou are values of v1 on the inner and the outer surfaces of the cylinder, re-

spectively, s1 =
√

1 + vou−vin

ln(rou/rin)
. Constants C7 and C8 in (44) are determined by boundary

conditions (5). Thus stresses, strains and displacements can be computed. Equation (43) for
the effective Poisson’s ratio is the same as (35) of [26].

4 Material Tailoring for Axisymmetric Deformations of the Cylinder

We now find the variation in the radial direction of Young’s modulus and Poisson’s ratio that
will give the following distribution of the radial and the hoop stresses:

kσrr + σθθ = C0r
β, (45)

where k and β are known constants, and constant C0 is related to pressures applied on the
inner and the outer surfaces as well as the inner and the outer radii of the hollow cylinder.

Substitution for stresses from (39) into (45), and integration of the resulting equation
gives

ψ(r) = C0r
β+1

β + k + 1
+ D0r

−k, when k + β �= −1. (46)

We determine constants C0 and D0 from boundary conditions (5a), (5b) and thus obtain the
following expressions for the stress function for different values of k and β .

ψ(r) = r−k(pour
k+1
ou (rk+β+1 − r

k+β+1
in ) − pinr

k+1
in (rk+β+1 − rk+β+1

ou ))

r
k+β+1
in − r

k+β+1
ou

,

when k + β �= −1; (47a)

ψ(r) = r((pou − pin) ln r − pou ln rin + pin ln rou)

ln(rin/rou)
, when k = −1 and β = 0; (47b)

ψ(r) = (pinrin − pourou) ln r + pourou ln rin − pinrin ln rou

ln(rou/rin)
,

when k = 0 and β = −1; (47c)

ψ(r) = (pinr
2
in − pour

2
ou) ln r + pour

2
ou ln rin − pinr

2
in ln rou

r ln(rou/rin)
,

when k = 1 and β = −2. (47d)

4.1 Uniform Hoop Stress

For the hoop stress to be constant in the cylinder, we set k = 0 and β = 0 in (47a) and
substitute for ψ in (41) to get

r(pinrin − pourou)

E1(r)

dE1(r)

dr
+ r(pourou − pinrin) + rinrou(pin − pou)

E1(r)

dE1(r)

dr
v1(r)

+ (r(pinrin − pourou) + rinrou(pou − pin))
dv1(r)

dr
+ pourourin − pinrinrou

r
= 0. (48)
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We thus have one ordinary differential equation for two unknown functions. We assume
the spatial variation of one of these functions, and solve (48) for the other function. For
v1(r) = v0, where v0 is a constant, (48) has the solution

E1(r) = E0 exp

(
ln(r/rou) + h1 − h2(r)

v0

)
, (49)

where E0 is a constant, and

h1 = ln(pinrinrou + pourou(rou(v0 − 1) − rinv0)),

h2(r) = ln(pourou(r(v0 − 1) − rinv0) + pinrin(r(1 − v0) + rouv0)).

For v1 given by (13b) with n different from 0, the solution of (48) is

E1(r) = E1in exp

[∫ r

rin

f (x)dx

]
, (50)

where E1in equals the value of E1 at a point on the inner surface of the cylinder, and

f (x) = f1(x)

f2(x)
,

f1(x) = (pin − pou)rinrou(r
n
ou + nv0x

n) − n(pinrin − pourou)v0x
n+1,

f2(x) = x2(pinrin − pourou)(r
n
ou − v0x

n) + (pin − pou)rinrouv0x
n+1,

and f2(r) is assumed not to vanish anywhere in the cylinder. It is difficult to evaluate in
closed-form the integral in (50); however, one can evaluate it numerically.

For the function E1(r) given by (13a), (48) gives

v1(r) = (v0 − S1 − S2)r
m

rm
ou

+ S3(r) + S4(r), when m �= 0 and m �= 1; (51a)

v1(r) = v0 − ln(r/rou) + lnS5(r), when m = 0; (51b)

v1(r) = 1 + (v0 − 1)r

rou

, when m = 1; (51c)

where

S1 = m(pourou − pinrin) 2F1(1 − m,1,2 − m,y1)

(m − 1)(pin − pou)rin

, S2 = 2F1(−m,1,1 − m,y1)

m
,

S3(r) = mr(pourou − pinrin) 2F1(1 − m,1,2 − m,y2(r))

(m − 1)(pin − pou)rinrou

,

S4(r) = 2F1(−m,1,1 − m,y2(r))

m
,

S5(r) = pinrin(r − rou)

pourou(rin − rou)
+ rin − r

rin − rou

, y1 = pinrin − pourou

(pin − pou)rin

,

y2(r) = (pinrin − pourou)r

(pin − pou)rinrou

,
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and the hypergeometric function 2F1(a, b, c, z) has the series expansion

2F1(a, b, c, z) =
∞∑

k=0

((a)k(b)k/(c)k)z
k/k!.

We thus have two combinations of E1(r) and v1(r) that give constant hoop stress in the
cylinder. The corresponding radial and hoop stresses are given by

σrr = pourou(r − rin) + pinrin(rou − r)

r(rin − rou)
, (52a)

σθθ = pinrin − pourou

rou − rin

. (52b)

The hoop stress identically vanishes if pinrin = pourou, and it is tensile for pinrin > pourou

and compressive otherwise. The expression (52b) of the hoop stress is the same as (29) in
[28] where the cylinder material is assumed to be incompressible.

4.2 Uniform In-Plane Shear Stress

For the in-plane shear stress to be uniform in the cylinder, i.e., k = −1 and β = 0 in (47),
we first consider the case of v1(r) = v0. Substitution for the stress function from (47b) into
(41), and integrating the resulting equation, we get

E1(r) = E0((pou − pin)(1 − (v0 − 1) ln r) + (v0 − 1)(pou ln rin − pin ln rou))
2

1−v0

(53)

× (pou − pin + pou(v0 − 1)(ln rin − ln rou))
2

v0−1 .

For pou = 0, this result agrees with (27) of Leissa and Vagins [1]. Note that through-
the-thickness variation of E1 depends upon the cylinder geometry and uniform pressures
applied on its inner and outer surfaces.

For E1(r) given by (13a), we get

v1(r) = 1 +
(

r

rou

)m(
(v0 − 1) + (m − 2)

(
rin

rou

) mpou
pin−pou

(Ei(y3) − Ei(y4(r)))

)
,

when m �= 0; (54a)

v1(r) = v0 − 2 ln(pou(ln rin − ln rou)) + 2 ln((pin − pou) ln r + pou ln rin − pin ln rou),

when m = 0; (54b)

where Ei(z) = − ∫ ∞
−z

e−t

t
dt is the exponential integration function, and

y3 = mpou(ln rou − ln rin)

pin − pou

, y4(r) = −m ln r + m(pou ln rin − pin ln rou)

pou − pin

.

For m = 2, (54a) gives

v1(r) = 1 + (v0 − 1)r2

r2
ou

. (54c)
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That is v1(r) is independent of pressures applied on the inner and the outer surfaces of the
cylinder. For this case, stresses are given by

σrr = (pou − pin) ln r − pou ln rin + pin ln rou

ln rin − ln rou

, (55a)

σθθ = (pou − pin)(1 + ln r) − pou ln rin + pin ln rou

ln rin − ln rou

. (55b)

Fig. 3 Through-the-thickness variation of (a) the hoop stress, (b) the radial stress in a cylinder for n = 0 and
different values of m

Fig. 4 Through-the-thickness variation of (a) the hoop stress, (b) the radial stress, and (c) the radial dis-
placement in a cylinder for m = 0 and different values of n
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Spatial variations of E and ν corresponding to E1 and ν1 found above are deduced
from (4d).

5 Numerical Examples

5.1 Axisymmetric Problem

Example 1 We analyze deformations of a cylinder with rin = 0.2 cm, rou = 1.0 cm,
pin = 1.0 MPa, pou = 0.0, and in (38) E0 = 2 × 105 MPa,v0 = 0.3, n = 0. For different
values of m we have plotted in Fig. 3 the through-the-thickness variation of stresses. For the
same parameters, stresses and radial displacement are plotted in Figs. 4 and 5 for m = 0,0.5
and different values of n. For n = −0.9, ν1 varies affinely from 0.246 at a point on the inner
surface to 0.03 at a point on the outer surface. When n = 2.3, values of ν1 on the inner and
the outer surfaces equal 0.438 and 0.99 respectively. Through-the-thickness variations of the
hoop stress plotted in Fig. 3 suggest that the hoop stress is nearly independent of the value
of m at the point r = ∼0.45 = ∼√

rinrou. At a fixed value of r , the two stresses continuously
depend upon m. Stresses plotted in Figs. 4 and 5 are virtually independent of the value of
n; thus the assumption of constant effective Poisson’s ratio does not introduce any notice-
able error in stresses. However, the effect of the variation of Poisson’s ratio on the radial
displacement is larger than that on stresses. The difference in the radial displacements of a
point on the inner surface for n = 2.3 and n = 0 in Figs. 4(c) and 5(c) is about 16%. We note

Fig. 5 Through-the-thickness variation of (a) the hoop stress, (b) the radial stress, and (c) the radial dis-
placement in a cylinder for m = 0.5 and different values of n
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Fig. 6 Through-the-thickness variation of (a) the hoop stress, (b) the radial stress, and (c) the radial dis-
placement in a cylinder for m = 0 in (13) and different values of v0 and v1 given in (43)

that for the problem studied in [26] the maximum hoop stress and the radial displacement in
a pipe changed by ∼2% and ∼15%, respectively, when Young’s modulus was held constant
but Poisson’s ratio was varied through the cylinder thickness according to (43) by a factor
of 2.

Example 2 We investigate the effect of Poisson’s ratio v1 on stresses and displacements
in the cylinder with v1 given by (43) and constant Young’s modulus E1 = 2 × 105 MPa.
We take rin = 1.0 cm, rou = 3.669 cm, pin = 1.0 MPa, pou = 0.0, and compute results for
vin = 0.01, vou = 0.49, and vin = 0.49, vou = 0.01 in (43). Through-the-thickness variations
of stresses and the radial displacement for (vin, vou) = (0.01,0.01), (0.01,0.49) and (0.49,
0.01) are depicted in Fig. 6. It is observed from Fig. 6(a) that the hoop stress is nearly
independent of the variation of v1 at the point r = ∼1.70 = ∼√

rinrou. The maximum differ-
ences, ∼13% in the hoop stress, and ∼10% in the radial stress occur at points in the cylinder
interior. The maximum radial displacement of a point on the inner surface for the three vari-
ations of v1 is ∼30%. Thus the variation of Poisson’s ratio with the radius noticeably affects
the radial displacement of a point, and the maximum stresses induced in the cylinder.

5.2 Non-axisymmetric Deformations

Example 3 For the cylinder geometry considered in Example 1, E1 and v1 given by (13) with
m = 1, n = 1,E0 = 2×105 MPa, v0 = 0.3,pin = 0, and pou = 1.0 MPa, 1.0×cos(2θ) MPa,
1.0 × cos(4θ) MPa, we have plotted in Fig. 7 through-the-thickness variations of the radial
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Fig. 7 Through-the-thickness variation of (a) the hoop stress, (b) the radial stress, (c) the shear stress in a
cylinder for m = 1 and n = 1

and the hoop stresses. Results for these three pressure variations are obtained by considering
only one term in (10b) and (10c) with λ = 0,2 and 4 for pou = 1.0, cos(2θ) and cos(4θ)

MPa, respectively. It is evident that the stress distribution for the non-axisymmetric pressure
distribution is quite different from that for the axisymmetric problem even though the peak
value of the applied pressure is the same. The maximum magnitudes of the hoop stress,
the radial stress and the shear stress strongly depend upon the wave number of the pressure
distribution on the outer surface of the cylinder. The maximum shear stress for λ = 2 is more
than twice of that for λ = 4 and they occur at different points in the cylinder. Note that the
radial stress at a point in the cylinder interior is tensile when λ = 2 but is compressive for
λ = 0 and 4.

Example 4 For rin/rou = 0.95, pin = 1.0 × cos(λθ) MPa, pou = 0, E0 = 2 × 105 MPa,
v0 = 0.3, λ = 12,20 and the exponents m = −2,0,2 and n = 0 in (13), we have plotted in
Fig. 8 through-the-thickness variations of the hoop stress and the shear stress to delineate
effects of the non-axisymmetric pressure distribution on stresses in a thin FG cylinder. We
note from Fig. 8 that the maximum hoop stress and the maximum shear stress strongly
depend upon the circumferential wave number of the applied pressure but are unaffected by
the gradation of the material properties. With an increase in the circumferential wave number
from 12 to 20, the maximum hoop stress decreases from 16 to 6 MPa and the maximum shear
stress from 2.3 to 1.4 MPa. The variation of the hoop stress from negative values on the inner
surface to positive values on the outer surface of the same magnitude suggests that bending
rather than stretching deformations are dominant in each one of the angular segments of
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Fig. 8 For λ = 12 (top) and λ = 20 (bottom), rin/rou = 0.95, through-the-thickness distributions of the
hoop and the shear stresses in the cylinder

length 2π/λ. For a uniformly loaded simply supported beam, the maximum axial stress is
proportional to the square of the beam length. Thus for pure bending of the segment of thin
cylinder between two cusps of the applied pressure, the maximum hoop stress for λ = 20
should be 36% of that for λ = 12 which is not too different from the 37.5% obtained here.
A similar result was obtained in [29] for a FG cylinder composed of an incompressible linear
elastic material.

Example 5 We study deformations of a semicircular cylinder clamped at the left edge and
loaded by a tangential force P on the right edge as shown in Fig. 2. For rin/rou = 0.6,
rou = 1 cm, P = 1 N/cm, E1 and v1 given by (13) with E0 = 2 × 105 MPa, v0 = 0.3, n = 0
and different values of m, through-the-thickness variations of the stresses are exhibited in
Fig. 9. Results plotted in Fig. 9 reveal that the hoop stress and the shear stress depend
continuously upon the material gradation index m. For m = 1, the hoop stress varies affinely
with the radius.

5.3 Material Tailoring

For the cylinder with rin/rou = 0.6, we have plotted in Fig. 10a through-the-thickness vari-
ations of E1(r) and v1(r) in order for the hoop stress to be constant. These results evince
that both E1(r) and v1(r) must be affine functions of r in order to have constant hoop stress
in the cylinder. Using (4d), the corresponding through-the-thickness variations of E(r) and
v(r) are plotted in Fig. 10b, and are also nearly affine functions of r .
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Fig. 9 For rin/rou = 0.6, through-the-thickness distributions of (a) the hoop stress on the radial line
θ = π/2, and (b) the shear stress on the radial line θ = 0 in a semicircular cylinder

Fig. 10 For constant hoop stress, through-the-thickness variations of (a) the effective Young’s modulus and
the effective Poisson’s ratio, and (b) Young’s modulus and Poisson’s ratio

6 Remarks

Equations (4a)–(4c) with E1 and υ1 replaced, respectively, by E and υ are valid for plane
stress deformations of FG linear elastic materials. Thus the analysis presented above applies
to thin FG disks with boundary conditions (5) for which a plane stress state of deformation
is a reasonable approximation. For a cylinder of length comparable to its outer diameter, one
needs to solve three-dimensional problems.

Nonaxisymmetric deformations of FG cylinders made of incompressible linear elastic
materials are analyzed in [29–31], and nonlinear axisymmetric deformations of FG cylinders
are studied in [32–34].

7 Conclusions

We have analytically studied plane strain static deformations of a functionally graded hollow
cylinder under both axisymmetric and non-axisymmetric loads applied to its inner and outer
surfaces. The problem is solved by expressing the Airy stress function as the product of
two functions—one of radius r and the other of the angular position θ . Exact solutions are
given when the effective Young’s modulus E1 and the effective Poisson’s ratio υ1 are either
power law functions of r , or when E1 is an exponential and υ1 an affine function of r .
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Results for example problems including uniform and non-uniform pressure distributions on
the inner and the outer surfaces are provided. It is found that the effect of the variation of
Poisson’s ratio on the radial displacement is considerably more (∼30%) than that (∼13%)
on stresses. Stresses induced in the cylinder by non-uniform pressures applied on the outer
surface noticeably differ both in magnitude and in sign from those induced by a uniform
pressure of magnitude equal to the peak non-uniform pressure. For a thin cylinder loaded
by the pressure proportional to cos(20θ) on the inner surface, the cylinder length between
two adjacent cusps of the cosine wave deforms due to bending rather than stretching of the
material and the hoop stresses on the inner and the outer surfaces are equal and opposite of
each other.

We have also analyzed the material tailoring problem in which through-the-thickness
variations of Young’s modulus and Poisson’s ratio are found so that a linear combination
of the radial and the hoop stresses has the desired through-the-thickness variation in the
cylinder. For the hoop stress to be constant in the cylinder, it is found that E1 and υ1 must be
affine functions of r . In order to achieve uniform in-plane shear stress through the cylinder
thickness, E1 and υ1 must be functions of r2.

Exact solutions presented here can serve as benchmarks for establishing the accuracy
of the approximate solutions obtained numerically. The material tailoring results provide
challenges to material scientists and engineers regarding how to design such composites.
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Appendix A

Expressions for constants ai (i = 1,2, . . . ,8), bi (i = 1,2,3,4), ci(i = 1,2,3,4) and di

(i = 1,2,3,4) appearing in (15) are given below.

a1 = √
2(1 + v0), a2 = 1 + 1

2
(m − a4), a3 = 1 + 1

2
(m + a4),

a4 =
√

4 + m2 − 4mv0,

a5 = 3 − √
5

2
, a6 = 3 + √

5

2
, a7 = 1 − √

5

2
, a8 = 1 + √

5

2
,

b1 = 1

2
(2 + m − B5), b2 = 1

2
(2 + m + B5), b3 = 1

2
(2 + m − B6),

b4 = 1

2
(2 + m + B6),

c1 = 1

2
(3 − C5), c2 = 1

2
(3 + C5), c3 = 1

2
(3 − C6), c4 = 1

2
(3 + C6),

d1 = 1

2
(1 − D5), d2 = 1

2
(1 + D5), d3 = 1

2
(1 − D6), d4 = 1

2
(1 + D6),

where

B5 =
√

4 + 2m(1 − v0) + m2 + 4λ2 − 2B7,
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B6 =
√

4 + 2m(1 − v0) + m2 + 4λ2 + 2B7,

B7 =
√

m2(1 + v0)2 + 4λ2(m + 2)(2 − mv0),

C5 =
√

7 + 4λ2 − 2C7, C6 =
√

7 + 4λ2 + 2C7, C7 =
√

1 + 24λ2,

D5 =
√

3 + 4λ2 − 2D7, D6 =
√

3 + 4λ2 + 2D7, D7 =
√

1 + 8λ2.

Appendix B

Expressions of constants Ti (i = 1,2, . . . ,20) appearing in (18)–(25) are given below.

T1 = pour
2+a1
ou − pinr

2+a1
in , T2 = pinr

2+a1
in r2a1

ou − pour
2a1
in r2+a1

ou ,

T3 = −T1((a1 − 1)v0 − 1)/(a1 + 1), T4 = −T2((a1 + 1)v0 + 1)/(a1 − 1),

T5 = pour
2−a2
ou − pinr

2−a2
in , T6 = pinr

2−a2
in ra4

ou − pour
a4
in r2−a2

ou ,

T7 = −rm
ouT5((a4 + m)v0 − 2)/(a2 + a4 − m − 1),

T8 = −rm
ouT6((m − a4)v0 − 2)/(a2 − m − 1),

T9 = pour
a8
ou − pinr

a8
in , T10 = pinr

a8
in r

√
5

ou − pour
a8
our

√
5

in , T11 = a8v0T9/(a7 − 1),

T12 = −rouT9/a7, T13 = a7v0T10/(a8 − 1), T14 = −rouT10/a8,

T15 = pour
a6
ou − pinr

a6
in , T16 = pinr

a6
in r

√
5

ou − pour
a6
our

√
5

in , T17 = T15/(2 − a5),

T18 = a7rouv0T15/(1 − a5), T19 = T16/(2 − a6), T20 = a8rouv0T16/(1 − a6).
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