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Abstract We analytically analyze radial expansion/contraction of a hollow sphere com-
posed of a second-order elastic, isotropic, incompressible and inhomogeneous material to
delineate differences and similarities between solutions of the first- and the second-order
problems. The two elastic moduli are assumed to be either affine or power-law functions of
the radial coordinate R in the undeformed reference configuration. For the affine variation of
the shear modulus μ, the hoop stress for the linear elastic (or the first-order) problem at the
point R = (RouRin(Rou +Rin)/2)1/3 is independent of the slope of the μ vs. R line. Here Rin

and Rou equal, respectively, the inner and the outer radius of the sphere in the reference con-
figuration. For μ(R) ∝ Rn, for the linear problem, the hoop stress is constant in the sphere
for n = 1. However, no such results are found for the second-order (i.e., materially nonlinear)
problem. Whereas for the first-order problem the shear modulus influences only the radial
displacement and not the stresses, for the second-order problem the two elastic constants
affect both the radial displacement and the stresses. In a very thick homogeneous hollow
sphere subjected only to pressure on the outer surface, the hoop stress at a point on the inner
surface depends upon values of the two elastic moduli. Thus conclusions drawn from the
analysis of the first-order problem do not hold for the second-order problem. Closed form
solutions for the displacement and stresses for the first-order and the second-order problems
provided herein can be used to verify solutions of the problem obtained by using numerical
methods.
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1 Introduction

Functionally graded materials (FGMs) are inhomogeneous and are usually comprised of
two constituents whose volume fractions vary smoothly either in one or in two or in all
three directions. Most works presented in the literature consider material properties varying
smoothly only in one direction. Also, with very few exceptions, problems studied have been
for linear elastic isotropic materials with material properties assumed to vary according
to either a power law or an exponential relation. There is enormous literature on linear
problems for FGMs and it is almost impossible to review it here. The reader is referred to
the review paper of Byrd and Birman [1] for a summary of some of the literature.

Nonlinear problems for FGMs studied in [2–10] are for rubberlike materials that are as-
sumed to be isotropic, incompressible and hyperelastic. Ono [11], Ikeda [12, 13] and Ikeda
et al. [14] have developed rubbers with continuous spatial variation of the chemical and
mechanical properties. The constitutive relation for an incompressible material involves hy-
drostatic pressure that cannot be determined from the deformation gradient but is found as
a part of the solution of the problem. The presence of the hydrostatic pressure generally fa-
cilitates finding an analytical solution of a problem. Rivlin [15], amongst others, has shown
that the analysis of problems for 2nd-order elastic materials can reveal effects of material
nonlinearities that are representative of the behavior of general nonlinear elastic materials.
We note that linear kinematic relations are used in deriving the constitutive relation for a
2nd-order elastic material, hence effects of geometric nonlinearities are not considered.

Here we study the radial expansion/contraction of a FG sphere made of an incompressible
2nd-order elastic isotropic material with the two material parameters smoothly varying in
the radial direction. It extends our work on FG cylinders [4] to FG spheres; however, the
analysis presented here for the first-order (linear elastic) inhomogeneous problem with the
shear modulus varying with the radius according to power law is more extensive than that
given heretofore. The approach followed here is similar to that employed in [4, 16] for
analyzing problems for 2nd-order elastic materials.

We note that problems for linear elastic FG spheres with the moduli varying according to
power law have been analytically studied by Tutuncu and Ozturk [17] who assumed that the
quadratic characteristic equation has two real and distinct roots. They plotted through-the-
thickness variation of stresses for a FG sphere normalized by the corresponding ones for a
sphere made of a homogeneous material. Stresses in a FG sphere made of an isotropic linear
thermoelastic material have also been studied in [18–22].

2 Problem Formulation

We study radial deformations of a sphere made of a FG isotropic and incompressible 2nd-
order elastic material subjected to uniform pressures pin and pou on its inner and outer
surfaces. We use spherical coordinates (r, θ,φ) with the origin at the sphere center to de-
scribe deformations of a point with r = R in the undeformed reference configuration. We
assume that material properties are continuous functions of R, a material point undergoes
radial displacement, u(R) = r − R, denote du/dR by u′(R), and set

I (1) = u′ + 2u/R, I (2) = (u′)2 + 2(u/R)2. (2.1)
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For a 2nd-order incompressible material, u must satisfy

2I (1) + I (1)2 − I (2) = 0. (2.2)

For radial expansion/contraction of a sphere, the constitutive relation for a 2nd-order
elastic isotropic and incompressible material is

σrr = −p + 2μu′ + (μ + α)(u′)2,

σθθ = σφφ = −p + 2μ
u

R
+ (μ + α)

(
u

R

)2

,

σrθ = σθφ = σφr = 0.

(2.3)

Here σ is the Cauchy stress tensor, p the hydrostatic pressure not determined from the defor-
mation field, μ the shear modulus, and α the 2nd-order elastic constant of the material. Both
μ and α have units of stress, and are presumed to be functions of R. Physical components
of the first Piola-Kirchhoff stress tensor T are given by

TRR = −p
(
1 − u′ + (u′)2

) + 2μ

(
u′ − 1

2
(u′)2

)
+ α(u′)2,

T�� = T�� = −p

(
1 − u

R
+

(
u

R

)2)
+ 2μ

(
u

R
− 1

2

(
u

R

)2)
+ α

(
u

R

)2

.

(2.4)

The equilibrium equation and boundary conditions governing static radial deformations
of a sphere are

T ′
RR + 2(TRR − T��)

R
= 0, Rin < R < Rou,

TRR = −pin

r

Rin

on R = Rin, TRR = −pou

r

Rou

on R = Rou.
(2.5)

Thus TRR at R = Rin and at R = Rou depends, respectively, upon the radial displacements
of a point on the inner and the outer surfaces of the sphere.

We non-dimensionalize stresses σ and T, the pressure p, and material parameters μ

and α by μou = μ(Rou), and u, r and R by Rou. Henceforth we employ non-dimensional
variables and use for them the same symbols as those used for dimensional variables.

Let ε = max(pin,pou) � 1. With the assumption that pin > pou, ε = pin. Assuming that
u,p,TRR and T�� are analytic functions of ε, we expand them in terms of Taylor series in ε.
Recalling that for ε = 0, u = p = 0, we get

u = εu(1) + ε2u(2), p = εp(1) + ε2p(2),

TRR = εT
(1)
RR + ε2T

(2)
RR, T�� = εT

(1)
�� + ε2T

(2)
��,

(2.6)

up to 2nd-order terms in ε. Substitution from (2.6) into (2.2), (2.4) and (2.5) and equating
terms of order ε and ε2 on both sides of resulting equations, we arrive at the following set
of equations:

u(1)′ + 2u(1)

R
= 0, 2

[
u(2)′ + 2u(2)

R

]
−

[(
u(1)′)2 + 2

(
u(1)

R

)2]
= 0, (2.7)
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T
(1)′
RR + 2(T

(1)
RR − T

(1)
��)

R
= 0, T

(2)′
RR + 2(T

(2)
RR − T

(2)
��)

R
= 0, (2.8)

T
(1)
RR = −p

(1)
in on R = Rin, T

(1)
RR = −p(1)

ou on R = Rou,

T
(2)
RR = −p

(2)
in on R = Rin, T

(2)
RR = −p(2)

ou on R = Rou,
(2.9)

where

p
(1)
in = 1, p

(2)
in = pin

u(1)(Rin)

Rin

,

p(1)
ou = pou

pin

, p(2)
ou = pou

pin

u(1)(Rou)

Rou

.

(2.10)

Equations (2.7)1, (2.8)1 and (2.9)1,2 govern deformations of the 1st-order problem or
equivalently the problem in the linear elasticity theory, and (2.7)2, (2.8)2 and (2.9)3,4 are
used to solve the 2nd-order problem. Relations in (2.10) imply that pressures to be applied
on the inner and the outer surfaces for the 2nd-order problem depend upon the solution of
the 1st-order problem. Thus the 2nd-order problem can only be analyzed after the 1st-order
problem has been solved.

3 Sphere made of Homogeneous Material

For a sphere made of a homogeneous material μ and α equal constants b1 and b2 respec-
tively. Proceeding in a way similar to that in [19, 22], we get the following for the solution
of the problem.

u(1)(R) = (−pou + pin)R
3
ouR

3
in

4pinb1(R3
ou − R3

in)

1

R2
,

p(1)(R) = pouR
3
ou − pinR

3
in

pin(R3
ou − R3

in)
,

T
(1)
RR = pin(R

3 − R3
ou)R

3
in − pou(R

3 − R3
in)R

3
ou

R3pin(R3
ou − R3

in)
,

T
(1)
�� = T

(1)
�� = pin(2R3 + R3

ou)R
3
in − pou(2R3 + R3

in)R
3
ou

2R3pin(R3
ou − R3

in)
; (3.1)

u(2)(R) = (pou − pin)
2R3

ouR
3
in

p2
in(R

3
ou − R3

in)
2

[
− R3

ouR
3
in

16R5b2
1

+ (11b1 + b2)(R
3
ou + R3

in)

64R2b3
1

]
,

p(2)(R) = (pou − pin)
2R3

ouR
3
in

p2
in(R

3
ou − R3

in)
2

[
−11b1 + b2

16b2
1

+ 3R3
ouR

3
in

16b1R6

(
1 + b2

b1

)]
,

T
(2)
RR = −p(2)(R) + 10A2

1b1

R6
− 4b1

R3
A3, T

(2)
�� = T

(2)
�� = −p(2)(R) − 2A2

1b1

R6
+ 2b1

R3
A3,

A1 = − (pou − pin)R
3
ouR

3
in

4b1pin(R3
ou − R3

in)
, A3 = (11b1 + b2)(pou − pin)

2R3
in(1 + R3

in/R
3
ou)

64b3
1p

2
in(1 − R3

in/R
3
ou)

2
. (3.2)
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The complete solution of the 2nd-order problem is obtained by substituting into (2.6) ex-
pressions for the 1st-order and the 2nd-order quantities. With our non-dimensionalization
b1 = 1, but we still use b1 to indicate which quantities depend upon it. It follows from (2.6)
that for the 1st-order problem, i.e., for a linear elastic sphere, values of the radial displace-
ment u and stresses TRR and T�� equal ε = pin times their values listed in (3.1), and agree
with those given in [19]. When pin = pou = p, i.e., the pressures on the inner and the outer
surfaces are equal, we get TRR = T�� = T�� = −p. Thus the state of stress at every point
of the sphere is a hydrostatic pressure.

Whereas the 1st-order elastic constant b1 affects only the 1st-order displacement, the 2nd-
order elastic constant b2 affects both the 2nd-order displacement and the 2nd-order stresses.
Note that in the 1st-order theory the hydrostatic pressure is a constant but in the 2nd-order
theory the hydrostatic pressure varies with the radius R.

In the limit of β ≡ Rou/Rin � 1, (2.6)4, (3.1) and (3.2) give

lim
β→∞T�� = lim

β→∞(εT
(1)
�� + ε2T

(2)
��),

= −pou − (pou − pin)
R3

in

2R3

[
1 − (3b1 + b2)pou − (11b1 + b2)pin

16b2
1

]

− (3b1 + b2)

8b2
1

(pou − pin)
2 R6

in

R6
. (3.3)

Thus in a very thick hollow sphere, the circumferential stress T ∞
��(Rin) at the inner surface

is given by

T ∞
��(Rin) = −pou − (pou − pin)

2

[
1 − (3b1 + b2)pou − (11b1 + b2)pin

16b2
1

]

− (3b1 + b2)

8b2
1

(pou − pin)
2. (3.4)

For pin = 0 and pou > 0, we get

T ∞
��(Rin) = −3

2
pou − 3(3b1 + b2)

32b2
1

p2
ou,

and the stress concentration factor at the inner surface of a very thick sphere, defined as
T ∞

��(Rin)/pou, increases from 1.5 by the consideration of 2nd-order effects provided that
(3b1 + b2) > 0. However, for pou < 0, the consideration of the 2nd-order deformations de-
creases the stress concentration factor at the inner surface.

For a thin sphere we set Rou = Rin + t where t is the sphere thickness, and compute
results in the limit of t/Rin = 0. For pou = 0, the circumferential stress T 0

�� is given by

T 0
�� = lim

t/Rin→0
T�� = pinRin

2t

[
1 + 11b1 + b2

16b2
1

pin + pinRin

6tb1

]
. (3.5)

Recall that in the linear theory, pinRin

2t
equals the hoop stress in a thin sphere. The first term

on the right hand side of (3.5) is the hoop stress according to the linear theory and the second
and the third terms represent contributions from the consideration of the 2nd-order effects.
Whereas the third term is always positive the sign of the second term depends upon that of
(11b1 + b2).
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For pou = 0, (3.1)3 and (3.1)4 simplify to

T
(1)
RR = pin

(R3 − R3
ou)R

3
in

R3(R3
ou − R3

in)
, T

(1)
�� = (2R3 + R3

ou)R
3
in

2R3(R3
ou − R3

in)
pin. (3.6)

Thus in a sphere made of a linear elastic homogeneous and isotropic material the radial
stress is compressive and the hoop stress is tensile. For Rin/Rou < (1/4)1/3 	 0.63,

T
(1)
�� >

∣∣∣T (1)
RR

∣∣∣ when R > 0.63Rou and T
(1)
�� =

∣∣∣T (1)
RR

∣∣∣ at R 	 0.63Rou;
for 0.63 ≤ Rin/Rou < 1, T

(1)
�� >

∣∣∣T (1)
RR

∣∣∣ throughout the sphere.
(3.7)

Further discussion on the signs of T
(1)
RR and T

(1)
�� is given in Appendix A.

4 Sphere Material Functionally Graded

4.1 Affine Variation of the Two Moduli

We assume that μ and α vary affinely in the radial direction, i.e.,

μ(R) = b1(1 + nR), α(R) = b2(1 + mR), (4.1)

where b1, b2, n and m are constants. Omitting details the solution of the problem is

u(1)(R) = Ā1

R2
, T

(1)
RR = −

[
Ā2 + 2Ā1b1

(
n

R2
+ 2(1 + nR)

R3

)]
,

T
(1)
�� = T

(1)
φφ = −

[
Ā2 + 2Ā1b1

(
n

R2
− (1 + nR)

R3

)]
,

Ā1 = (pou − pin)R
3
ouR

3
in

2b1D
, Ā2 = pinR

3
in(2 + 3nRou) − pouR

3
ou(2 + 3nRin)

D
,

D = pin

[
R3

in(2 + 3nRou) − R3
ou(2 + 3nRin)

]; (4.2)

u(2)(R) = (pou − pin)
2R3

ouR
3
in

4b2
1p

2
inR

2

[
−R3

ouR
3
in

C4R3
+ 11b1C2 + b2C3

10b1C5

]
,

T
(2)
RR (R) = B1R

−2 + B2R
−3 + B3R

−5 + B4R
−6 + B5,

T (2)

��
(R) = −B2

2
R−3 − 3

2
B3R

−5 − 2B4R
−6 + B5,

(4.3)

and expressions for constants are given in Appendix B. As before, the complete solution
of the 2nd-order problem is obtained by substituting into (2.6) expressions for the 1st-order
and the 2nd-order quantities.
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For a linear elastic hollow FG sphere subjected to internal pressure only, we get the
following for the radial and the circumferential stresses.

T
(1)
RR = pin

R3

(R − Rou)[3nRRou(R + Rou) + 2(R2 + RRou + R2
ou)]

(Rou − Rin)[2(R2
ou + RouRin + R2

in) + 3nRouRin(Rou + Rin)] ,

T
(1)
�� = −pin

R3

[R3(2 + 3nRou) + R3
ou]R3

in

[R3
in(2 + 3nRou) − R3

ou(2 + 3nRin)] .
(4.4)

For n ≥ 0, (4.4)1 implies that TRR < 0 and dTRR/dR > 0. Thus the radial stress is compres-
sive for all values of R and is a monotonically increasing function of R or, said differently,
the magnitude of TRR monotonically decreases from pin at R = Rin to zero at R = Rou. For
two distinct values of n, i.e., n1 �= n2

T
(1)
RR(R,n1) − T

(1)
RR(R,n2) = 6pin(n1 − n2)(R − Rou)(R − Rin)(R + Rin + Rou)R

3
inR

3
ou

R3(Rou − Rin)E
,

(4.5)

T
(1)
��(R,n1) − T

(1)
��(R,n2) = pin

R3

3(n2 − n1)(−2R3 + R2
ouRin + RouR

2
in)

(Rou − Rin)E
,

where

E = pin[2R2
in + Rou(2 + 3n2Rin)(Rou + Rin)][2R2

in + Rou(2 + 3n1Rin)(Rou + Rin)]. (4.6)

Thus T
(1)
RR(R,n1)−T

(1)
RR(R,n2) > 0 provided that n1 < n2, and T

(1)
RR is independent of n only

for R = Rin and R = Rou, i.e., at the inner and the outer surfaces which follows from the
boundary conditions. However,

T
(1)
��(R̄, n1) = T

(1)
��(R̄, n2) for R̄ =

(
RouRin(Rou + Rin)

2

)1/3

. (4.7)

That is, the hoop stress at the point R = R̄ is independent of the value assigned to n. One can
check that Rin < R̄ < Rou. For n1 < n2, T

(1)
��(R,n1) − T

(1)
��(R,n2) > (<)0 for R < (>)R̄.

For n ≥ 0, it follows from (4.4)2 that T
(1)
�� > 0. Since dT

(1)
��/dR < 0, the first-order hoop

stress is a monotonically decreasing function of R. For n < 0 we set k = −n, and get the fol-
lowing: for 1/Rou < k < k̄,T

(1)
�� is tensile for Rin < R < R̃, compressive for R̃ < R < Rou,

and vanishes at R = R̃. When k̄ < k < C/3Rou,T
(1)
�� is tensile for R̃ < R < Rou, and com-

pressive for Rin < R < R̃. Here R̃ = Rou/(3kRou −2)1/3, and C = (Rou/Rin)
3 +2. For other

values of k,T
(1)
�� is tensile. By analyzing the sign of dT

(1)
��/dR, we find that the first-order

hoop stress is a monotonically increasing function of R when k > k̄ but is a monotonically
decreasing function of R for k < k̄ with k̄ = 2(R2

ou + RouRin + R2
in)/3RouRin(Rin + Rou).

One can show that 1/Rou < k̄ < 1/Rin.
For Rou/Rin = 5 and four different positive values of n we have plotted in Fig. 1 the

variation with R/Rin of T
(1)
�� and T

(1)
RR . For Rou/Rin = 5, R̄ = 2.47Rin. With an increase in

the value of n from 0 to 2.5, the maximum value of the hoop stress at the inner surface
decreases from 0.5pin to 0.14pin. For R < R̄ the hoop stress depends noticeably upon the
value of n but for R > R̄ values of the hoop stress are insensitive to the value assigned to n.
Thus the maximum hoop stress at the inner surface can be decreased by suitably grading
the value of the shear modulus in the radial direction. At R = R̄ computed values of the
hoop stress T

(1)
�� are independent of the value of n as derived analytically above. It is clear

that by suitably assigning a negative value to n one can have tensile T
(1)
RR and compressive

T
(1)
�� at an interior point of the sphere. Values of T

(1)
RR strongly depend upon the value of
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Fig. 1 (Color online) For
Rou/Rin = 5 and different values
of n, the variation of the hoop
stress and the radial stress
through the thickness of the
hollow sphere; (a) black, n = 0;
red, n = 0.5; blue, n = 1.5;
green, n = 2.5; (b) black,
n = −0.1; blue n = −1; green
n = −2; (c) black, n = −0.1;
blue, n = −0.5; red, n = −0.8;
green, n = −1

n throughout the sphere thickness but those of T
(1)
�� vary rapidly with n only in the region

1 ≤ R/Rin ≤ 2.5.

4.2 Power Law Variation of the two Moduli

We assume that μ(R) and α(R) are given by μ(R) = b1R
n,α(R) = b2R

m where m and n

are constants, and b1 = μ(Rin)/R
n
in, b2 = α(Rin)/R

m
in. Expressions for displacements and

stresses for n = 3 are different from those for n �= 3. Accordingly, we give below the solu-
tion for several integer values of n and m, and list in Appendix B expressions for various
constants appearing in the solutions.
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4.2.1 Solution of the 1st-order problem

The solution of the 1st-order problem for n �= 3 is

u(1)(R) = (n − 3)(pou − pin)R
3
ouR

3
in

12R2b1pin(R3
ouR

n
in − Rn

ouR
3
in)

,

T
(1)
RR = −pou

pin

+ (pou − pin)(−RnR3
ou + R3Rn

ou)R
3
in

R3pin(Rn
ouR

3
in − R3

ouR
n
in)

, (4.8)

T
(1)
�� = T

(1)
�� = −pou

pin

+ (pou − pin)((1 − n)RnR3
ou + 2R3Rn

ou)R
3
in

2R3pin(Rn
ouR

3
in − R3

ouR
n
in)

,

and that for n = 3 and pou = 0 is

u(1)(R) = 1

R2

1

12b1 ln(Rou/Rin)
, T

(1)
RR(R) = ln(R/Rou)

ln(Rou/Rin)
,

T
(1)
��(R) = (1 + 2 ln(R/Rou))

2 ln(Rou/Rin)
.

(4.9)

We note that the solution for n = 3 is not given in [19].

4.2.2 Solution of the 2nd-order problem

For the 2nd-order problem the solution for n �= 3,6;m �= 6 is given below.

u(2)(R) = (n − 3)2(pou − pin)
2R3

ouR
3
in

144b2
1p

2
in(R

n
ouR

3
in − R3

ouR
n
in)

2

×
{[

(n − 3)[(n − 6)b2(−Rm
ouR

6
in + R6

ouR
m
in) + 11(m − 6)b1(−Rn

ouR
6
in + R6

ouR
n
in)]

2(m − 6)(n − 6)b1(Rn
ouR

3
in − R3

ouR
n
in)

]
R−2

− R3
ouR

3
inR

−5

}
,

T
(2)
RR(R) = H1R

−3 + H2R
−6+m + H3R

−6+n + H4R
−3+n + H5,

T
(2)
��(R) = −H1

2
R−3 + H2(m − 4)

2
R−6+m + H3(n − 4)

2
R−6+n + H4(n − 1)

2
R−3+n + H5.

(4.10)
Expressions for constants Hi ’s are given in Appendix B.
The solution for m = n = 3 and pou = 0 is:

u(2)(R) = − 1

144R5(b1 ln(Rou/Rin))2
+ (11b1 + b2)(−R−3

ou + R−3
in )

864R2(b1 ln(Rou/Rin))3
,

T
(2)
RR = H

{
(11b1 + b2)R

3
[
ln(R/Rou)R

3
ou − ln(R/Rin)R

3
in

]
+ R3

ouR
3
in ln(Rou/Rin)

[
(11 + 12 ln(R/Rou))b1 + b2

]}
, (4.11)

T
(2)
�� = H

2

{
(11b1 + b2)R

3
[
(1 + 2 ln(R/Rou))R

3
ou − (1 + 2 ln(R/Rin))R

3
in

]

+ R3
ouR

3
in ln(Rou/Rin)[(1 − 12 ln(R/Rou))b1 − b2]

}
,
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where

H = 1

72b2
1R

3(RinRou ln(Rou/Rin))3
. (4.12)

The complete solution of the problem for m = n = 6,pou = 0 is given below.

u(R) = pin

4b1R2(R3
ou − R3

in)
+ 3 ln(Rou/Rin)(11b1 + b2)p

2
in

32R2b3
1(R

3
ou − R3

in)
3

− p2
in

16b2
1R

5(R3
ou − R3

in)
2
,

TRR = pin(R
3 − R3

ou)

R3
ou − R3

in

+ G
[
3b2R

3
{
R3 ln(Rou/Rin) − R3

ou ln(R/Rin) − R3
in ln(R/Rou)

}

+ b1
{−4R6

ou + R3
ou

(
R3

(
4 − 33 ln(R/Rin)

) + 4R3
in

)
+ R3

(
33R3 ln(Rou/Rin) + (−4 − 33 ln(Rou/R)

)
R3

in

}]
,

(4.13)

T�� = pin(5R3 − 2R3
ou)

2(R3
ou − R3

in)
+ G

2

[
3b2R

3
{
5R3 ln(Rou/Rin)

− R3
ou + R3

in − 2R3
ou ln(R/Rin) − 2R3

in ln(Rou/R)
}

+ b1

{
4R6

ou − R3
ou

(
R3

(
25 + 66 ln(R/Rin)

) + 4R3
in

)
+ R3

(
165R3 ln(Rou/Rin) + R3

in

(
25 − 66 ln(Rou/R)

))}]
,

where

G = p2
in

8R3b2
1(R

3
ou − R3

in)
. (4.14)

For n = 3,m = 6, we give below the solution of the problem.

u(1)(R) = B̄1

R2
, T

(1)
RR(R) = −B̄2 + 4B̄1b1(3 lnR − 1),

T
(1)
��(R) = −B̄2 + 2B̄1b1(6 lnR + 1),

(4.15)

u(2)(R) = − B̄2
1

R5
+ B̄3

R2
,

T
(2)
RR = (pou − pin)

B̄4

{
11R3(pou − pin)

[
ln(R/Rou)R

3
ou − ln(R/Rin)R

3
in

]

+ R3
ouR

3
in ln(Rou/Rin)

[(
11 + 12 ln(R/Rin)

)
pou + (−11 − 12 ln(R/Rou)

)
pin

]}
,

(4.16)

T
(2)
�� = (pou − pin)

2B4

{
11R3(pou − pin)

[(
1 + 2 ln(R/Rou)

)
R3

ou − (
1 + 2 ln(R/Rin)

)
R3

in

]

− R3
ouR

3
in ln(Rou/Rin)

[(−1 + 12 ln(R/Rin)
)
pou + (

1 − 12 ln(R/Rou)
)
pin

]}
.

Expressions for constants B̄i ’s are listed in Appendix B.
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Fig. 2 (Color online) For
Rou/Rin = 5 and different values
of n the variation of the hoop
stress through the thickness of
the hollow sphere. Black n = 0;
red n = −5; blue n = 2.5

In [19] it was proved that the hoop stress in a FG sphere is uniform if n = 1. Accordingly
we list below the solution for m = n = 1, and pou = 0.

u(1)(R) = 1

6b1R2

R2
ouR

2
in

R2
ou − R2

in

, T (1)

RR
(R) = (R2 − R2

ou)R
2
in

R2(R2
ou − R2

in)
, T (1)

��
(R) = R2

in

R2
ou − R2

in

,

u(2)(R) = −R−2

6b1

(
D1 + D2R

2
ou

2
R−3

)
, T

(2)
RR = D1R

−2 + D2R
−3 + D3R

−5 + D4,

(4.17)

T
(2)
�� = −D2

2
R−3 − 3

2
D3R

−5 + D4.

Expressions for constants Di ’s are given in Appendix B.
For a linear elastic sphere it follows from (4.8)3 that when n = 1,

T
(1)
�� = T

(1)
�� = −pou

pin

+ (pou − pin)

(1 − R2
ou/R

2
in)pin

; (4.18)

thus T�� and T�� are constants throughout the sphere; (4.17)3 is a special case of (4.18)
for pou = 0. In a very thick sphere, Rou/Rin � 1, T�� 	 −pou. That is, in a very thick
sphere with the shear modulus proportional to the radius R, the hoop stress nearly equals
the negative of the pressure applied on the outer surface of the sphere. For a very thin sphere
with pou = 0,Rou = Rin + t, t/Rin � 1, and we recover the classical result that T�� =
T�� = (pinRin)/2t . Thus the linear gradation of material properties in the radial direction
has no effect on the surface tension in a very thin sphere made of a linear elastic FG material.
It follows from (4.17)2 that for n = 1, T

(1)
RR varies with R.

Equation (4.18) implies that for pouR
2
ou = pinR

2
in, T

(1)
�� = 0 throughout the sphere.

For a hollow sphere with pou = 0 and Rin/Rou = 1/5, we have plotted in Fig. 2, for dif-
ferent values of n,T

(1)
�� vs. R/Rin. For n = 0 and −5 (which are less than 1) the hoop stress

is tensile everywhere. For n = 2.5 (which is greater than 1) the hoop stress is compressive
for 1 < R/Rin < R̃/Rin(= 2.81), tensile for R̃ < R < Rou, and vanishes at R = R̃.

It is evident from (4.17)6 that even though the first-order hoop stress is constant through
the sphere thickness, the 2nd-order hoop stress varies with R.
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5 Numerical Results

5.1 Sphere Made of Homogeneous Material

In order to highlight differences between results for the 1st-order and the 2nd-order prob-
lems, we consider a hollow sphere with Rou/Rin = 5,pou = 0 and made of a homogeneous
2nd-order elastic material with μ = 205.2 kPa, α = −77.4 kPa; these values of μ and α are
for the rubber tested in [23]. We have plotted in Fig. 3 TRR/pin and T��/pin as functions
of R/Rin. Furthermore in order to illuminate the 2nd-order effects we have plotted in Fig. 4

| T
(2)
RR

T
(1)
RR

| and | T
(2)
��

T
(1)
��

| vs. R/Rin.

It should be clear from (2.9) that T
(2)
RR and hence TRR depend upon the radial displacement

of the inner surface. That is why TRR for the 2nd-order problem does not equal pin on the
inner surface of the sphere.

Fig. 3 (Color online) For Rou/Rin = 5, variation through the sphere thickness of the radial and the hoop
stress magnitude for the linear (black curve) and the 2nd-order elastic materials (red curve)

Fig. 4 For Rou/Rin = 5, plots

of |T (2)
RR

/T
(1)
RR

| and |T (2)
��/T

(1)
��|

vs. R/Rin
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Fig. 5 (Color online) For
Rou/Rin = 5 through the
thickness variation of the radial
stress for spheres made of
1st-order (black curve) and
2nd-order (red curve) elastic
materials, (a) n = −1,
(b) n = −0.5

It is clear from results exhibited in Fig. 4 that the consideration of 2nd-order effects
noticeably influences stress distribution in the sphere. We should add that results depend
upon the relative values of the two elastic moduli μ and α.

5.2 Functionally Graded Material

5.2.1 Affine Variation of the Two Moduli

In order to study the effect of material inhomogeneity on the structural response, we have
analyzed, for different values of n, the through the thickness variations of the radial and
the hoop stresses. Results exhibited in Fig. 5 for a sphere with Rou/Rin = 5 reveal that for
n = −0.5, and n = −1, the radial stress for a 2nd-order elastic material differs noticeably
from that for a linear (1st-order) elastic material.

In Fig. 6 we have displayed through the thickness variation of the hoop stress correspond-
ing to n = −0.5 and n = −1 for Rou/Rin = 5. For n = −0.5 the two curves intersect each
other at R ∼= 2.83 while for n = −1 they intersect each other at two points: R ∼= 1.22 and
R ∼= 2.11.

Power Law Variation of the Two Moduli For the case of a power law variation of material
moduli the stress fields for spheres made of linear elastic materials have the same shape as
those for 2nd-order elastic materials and differ only quantitatively. For this reason we omit
their graphs.
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Fig. 6 (Color online) Through the thickness variation of the hoop stress for spheres made of 1st-order (black
curve) and 2nd-order elastic materials (red curve)

6 Conclusions

We have studied radial expansion/contraction of a hollow sphere with the inner and the outer
surfaces subjected to pressures, and the sphere material modeled as isotropic, incompress-
ible and second-order elastic with the two material moduli smoothly varying in the radial
direction either according to a power-law relation or an affine relation. Whereas for a linear
variation of the shear modulus the hoop stress is uniform through the sphere thickness for
a linear elastic material, it is not so for a second-order elastic material. Thus results for the
2nd-order problem cannot be deduced from those for the first-order problem. For the affine
variation of the shear modulus, there exists a point in the sphere where the hoop stress is
independent of the slope of the shear modulus vs. the radius curve. By suitably varying the
material moduli in the radial direction, one can control the sign of the radial and the hoop
stresses.

The challenging inverse problem of finding the spatial distribution of material moduli
(i.e., material tailoring) to achieve a desired through-the-thickness distribution of either the
circumferential stress or the in-plane shear stress is addressed in [3, 24–27]. The radial
expansion as well as inversion of a functionally graded cylinder made of a Mooney-Rivlin
material has been analyzed in [28].
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Appendix A: Discussion of signs of T
(1)
RR and T

(1)
��

Signs of Stresses for the Affine Variation of the Moduli when n < 0 We now analyze
stresses when n < 0, and set k = −n so that k > 0. Let

f (R, k) = (R − Rou)P (R, k),

P (R, k) = (2 − 3kRou)R(R + Rou) + 2R2
ou.

(A.1)

We note that f (R, k) determines the sign of the numerator for T
(1)
RR in (4.4)1. The expression

of P (R,k) implies that f (R, k) ≤ 0 for k ≤ 2/(3Rou) and f (R, k) = 0 for R = Rou. We first
consider the case of k > 2/(3Rou). Using the Descartes rule of signs the quadratic equation
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P (R,k) = 0 has one positive root R+ and one negative root R−. Since R cannot be negative,
we discard the negative root, and study further the case of the positive root:

R+ = Rou[√3A(kRou + 2) − A]
2A

, A = 3kRou − 2 > 0. (A.2)

The only case of interest here is Rin ≤ R+ ≤ Rou. For R+ ≥ Rin, one can show that
2/(3Rou) < k ≤ k̄ with

k̄ = 2
(
R2

ou + RouRin + R2
in

)
3RouRin (Rin + Rou)

, (A.3)

and 1/Rou < k̄ < 1/Rin. One can similarly prove that for R+ ≤ Rou, k ≥ 1/Rou. Thus
for 1/Rou ≤ k ≤ k̄, we get

f (R, k) ≥ 0 when R+ ≤ R ≤ Rou,

f (R, k) < 0 when Rin < R < R+.
(A.4)

For k < k̄, the denominator in the expression (4.4)1 for T
(1)
RR is positive.

By combining the afore-stated discussion of the signs of the numerator and the denom-
inator in the expression (4.4)1 for T

(1)
RR we conclude that for 1/Rou ≤ k < k̄, T

(1)
RR is tensile

for R+ < R < Rou, compressive for Rin < R < R+, and equals zero for R = R+. For other
values of k,T

(1)
RR is compressive.

Differentiation of both sides of (4.4)1 with respect to R gives

dT
(1)
RR

dR
= 6(1 − kR)pinR

3
inR

3
ou

R4
[
R3

ou(2 − 3kRin) − R3
in(2 − 3kRou)

] . (A.5)

Since the denominator is positive for k < k̄, we conclude that

dT
(1)
RR

dR
> 0 for k >

1

Rou

, (A.6)

and T
(1)
RR increases for R < 1/k, decreases for R > 1/k and is the maximum at R = 1/k.

For Rou/Rin = 5 and different negative values of n we have plotted in Fig. 1(b), (c) the
variation with R/Rin of T

(1)
RR .

Signs of Stresses for the Power Law Variation of the Moduli We investigate the sign of
T

(1)
RR and T

(1)
�� for n �= 1,3,6 when the sphere is loaded on the inner surface only (pou = 0).

We first note that the function

f (R) = Rn−3, Rin ≤ R ≤ Rou, (A.7)

is always positive. It is a monotonically increasing (decreasing) function of R for n > (<)3.
Values of R for which f (R) is maximum and minimum, and the sign of the term (Rn−3

ou −
Rn−3

in ) are summarized in Table 1.
Thus T

(1)
RR < 0 throughout the thickness of the hollow sphere and T

(1)
RR(Rou) = 0 as re-

quired by the boundary condition at R = Rou. Furthermore, since

dT
(1)
RR

dR
= (n − 3)pin

(Rn−3
ou − Rn−3

in )
Rn−4, (A.8)



194 G.L. Iaccarino, R.C. Batra

Table 1 Values of R where f (R) is either maximum or minimum, and the sign of Rn−3
ou − Rn−3

in

R for f (R) maximum R for f (R) minimum Sign of Rn−3
ou − Rn−3

in

n > 3 Rou Rin positive

n < 3 Rin Rou negative

Fig. 7 (Color online) For
Rou/Rin = 5 and different values
of n, variation of the radial stress
through the thickness of the
hollow sphere. Fuchsia line:
n = −2.5; red line: n = −1.5;
black line: n = 0; blue line:
n = 1.5; green line: n = 2.5;
dashed black line: n = 5; dashed
red line: n = 6

|T (1)
RR | is a monotonically decreasing function of R through the sphere thickness. For

Rou/Rin = 5 we have plotted in Fig. 7 |T (1)
RR | vs. R for different values of n. It is clear

that for a given value of R, |T (1)
RR | increases with an increase in n.

When n > 3 and pou = 0, we derive from (4.8) the following result

T
(1)
�� ≥ 0 if and only if ((n − 1)Rn−3 − 2Rn−3

ou ) ≥ 0. (A.9)

Thus T
(1)
�� ≥ 0 if and only if R ≥ R̃ where

R̃ = β(n)Rou, β(n) =
(

2

n − 1

) 1
n−3

. (A.10)

We note that R̃ < Rou, and Rin < R̃ if and only if Rin/Rou < β(n). For Rin/Rou < β(n),

T
(1)
�� ≥ 0 when R̃ ≤ R < Rou,

T
(1)
�� ≤ 0 when Rin < R ≤ R̃.

(A.11)

If Rin/Rou > β(n), then T
(1)
�� > 0 for Rin ≤ R ≤ Rou.

When 1 < n < 3 and pou = 0, we again conclude from (4.8)3 that

T
(1)
�� ≥ 0 ⇔ (

(n − 1)Rn−3 − 2Rn−3
ou

) ≤ 0, (A.12)

which implies the following. If Rin/Rou < β(n), then T
(1)
�� ≥ 0 for R̃ ≤ R < Rou, and T

(1)
�� ≤

0 for Rin < R ≤ R̃. For Rin/Rou ≥ β(n),T
(1)
�� > 0 throughout the sphere thickness.

For n < 1 and pou = 0, (4.8)3 implies that T
(1)
�� > 0 for Rin ≤ R ≤ Rou. Differentiation of

(4.8)3 gives

dT
(1)
��

dR
= pin

2

(n − 1)(n − 3)

(Rn−3
ou − Rn−3

in )
Rn−4 (A.13)

which is always negative for n < 1. Thus T
(1)
�� is a monotonically decreasing function of R.
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Appendix B

Expressions for constants in (4.3):

B1 = −3n(pou − pin)
2R3

ouR
3
in(11b1C2 + b2C3)

20p2
inC5b

2
1

,

B2 = (pou − pin)R
3
ouR

3
in[b1C6 − b2(pou − pin)C3]
10p2

inC5b
2
1

,

B3 = 3(nb1 + mb2)(pou − pin)
2R6

ouR
6
in

10p2
inC4b

2
1

,

B4 = (3b1 + b2)(pou − pin)
2R6

ouR
6
in

4p2
inC4b

2
1

, B5 = (pou − pin)
2R3

ouR
3
inC7

20p2
inC5b

2
1

.

Expressions for constants in (4.3):

C1 = R5
ou + R4

ouRin + R3
ouR

2
in + R2

ouR
3
in + RouR

4
in, C2 = 5R5

in + C1 (5 + 6nRin) ,

C3 = 5R5
in + C1 (5 + 6mRin) , C4 = [

R3
in (2 + 3nRou) − R3

ou (2 + 3nRin)
]2

,

C5 = (Rou − Rin)
2
[
2R2

in + Rou (Rin + Rou) (2 + 3nRin)
]3

,

C6 = {
55R5

ou + 11R3
ouRin (5 + 6nRou) (Rou + Rin) + 3R2

ouR
3
in (5 + 2nRou)

− 3 (Rou + Rin)R4
in [−5 + 6nRou (3 + 5nRou)]

}
pin

+ {−55R5
in − 3R3

ouR
2
in (5 + 2nRin) − 11RouR

3
in (5 + 6nRin) (Rou + Rin)

+ 3 (Rou + Rin)R4
ou [−5 + 6nRin (3 + 5nRin)]

}
pou,

C7 = 5 (11b1 + b2) (2 + 3nRou)R2
ou + [b2 (5 + 6mRou) + 11b1 (5 + 6nRou)]

× [
(2 + 3nRou) (Rou + Rin) + 3nR2

in

]
Rin.

Expressions for constants in (4.10):

H1 = − (n − 3)(pou − pin)R
3
ouR

3
in(−pinR

n
ouR

3
in + pouR

3
ouR

n
in)

6b1p
2
in(R

n
ouR

3
in − R3

ouR
n
in)

2
,

H2 = − (n − 3)2b2(pou − pin)
2R6

ouR
6
in

24b2
1p

2
in(m − 6)(Rn

ouR
3
in − R3

ouR
n
in)

2
,

H3 = − (n − 3)(7n − 9)(pou − pin)
2R6

ouR
6
in

24(n − 6)b1p
2
in(R

n
ouR

3
in − R3

ouR
n
in)

2
,

H4 = (n − 3)2(pou − pin)
2R3

ouR
3
in

24b2
1p

2
in(m − 6)(n − 6)(−Rn

ouR
3
in + R3

ouR
n
in)

3
,

× [(n − 6)b2(−Rm
ouR

6
in + R6

ouR
m
in) + 11(m − 6)b1(−Rn

ouR
6
in + R6

ouR
n
in)]

H5 = − (n − 3)2(pou − pin)
2R3

ouR
3
in

24b2
1p

2
in(m − 6)(n − 6)(−Rn

ouR
3
in + R3

ouR
n
in)

3

× [11(m − 6)b1R
n
ouR

n
in(R

3
ou − R3

in) + (n − 6)b2(R
3+n
ou Rm

in − Rm
ouR

3+n
in )].
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Expressions for constants in (4.15) and (4.16):

B̄1 = (pou − pin)

12b1pin ln(Rin/Rou)
, B̄3 = (pou − pin)

2

864b3
1p

2
in

(3b2 ln(Rou/Rin) + 11b1(R
−3
in − R−3

ou )),

B̄2 = (pou − pin) + 3(pin lnRou − pou lnRin)

3pin ln(Rou/Rin)
, B̄4 = 72R3R3

ouR
3
inb1p

2
in(ln(Rou/Rin))

3.

Expressions for constants in (4.17):

D1 = − (11b1 + b2)RouRin(R
4
ou + R3

ouRin + R2
ouR

2
in + RouR

3
in + R4

in)

30b2
1(Rou − Rin)2(Rou + Rin)3

,

D2 = R2
ouR

4
in

3b1(R2
ou − R2

in)
2
, D3 = (b1 + b2)R

4
ouR

4
in

30b2
1(R

2
ou − R2

in)
2
,

D4 = − (11b1 + b2)RouRin(R
2
ou + RouRin + R2

in)

30b2
1(Rou − Rin)2(Rou + Rin)3

.
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