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Abstract For a functionally graded (FG) circular cylinder loaded by uniform pressures on
the inner and the outer surfaces and Young’s modulus varying in the radial direction, we find
lower and upper bounds for Young’s modulus of the energetically equivalent homogeneous
cylinder. That is, the strain energies of the FG and the homogeneous cylinders are equal to
each other. For a typical power law variation of Young’s modulus in the FG cylinder, it is
shown that taking only two series terms, yields good values for bounds of the equivalent
modulus. We also study two inverse problems. First, an investigation is made to find the
radial variation of Young’s modulus in the FG cylinder, having a constant Poisson’s ratio,
that gives the maximum value of the equivalent modulus. Second, the complementary prob-
lem of finding the radial variation of Poisson’s ratio in the FG cylinder, having a constant
stiffness, that gives the maximum value of the equivalent modulus, is considered. It is found
that the spatial variation of the elastic properties, that maximizes the equivalent modulus,
depends strongly upon the external loading on the cylinder.

Keywords Functionally graded material · Optimal stiffness variation · Circular cylinder
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1 Introduction

A functionally graded material (FGM) is a non-homogeneous solid that is engineered so that
the spatial variation of its physical properties produces better performance than is possible
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from a monolithic solid. In the last several decades considerable research has been directed
towards understanding the behavior of these solids. Here the deformation within circular
cylinders is of interest and the analysis of homogeneous pressurized cylinders is given in
standard textbooks [1–4]. The analyses of FG circular cylinders in references [5–12] con-
sider thermoelastic deformation, and references [13–32] investigate the elastic field caused
by an applied surface traction. Most of this work, has dealt with finding the stress and strain
when the spatial variation of the elastic properties is specified. It is useful, for the purpose of
designing FGM components, to have a method of finding the elastic properties of an equiv-
alent homogeneous solid that has the same overall properties as the FGM. In the case of
composite solids with discrete phases, this problem has received considerable attention over
the last few decades, see, for example, [33–38].

In this contribution, the axisymmetric deformation of a FG circular cylinder is considered
where the elastic properties are allowed to vary only in the radial direction. If the spatial
variation of Young’s modulus and Poisson’s ratio are specified, then their volume average
can be found by integrating them over the volume. For given average values of these elastic
properties, how does their spatial variation influence the equivalent stiffness? Specifically,
for a given average value of Young’s modulus, what is the spatial distribution that leads to
the maximum possible value of the equivalent stiffness? Often, it is implicitly assumed that
the average Young’s modulus represents an upper bound on the equivalent stiffness, and as
shown herein this is not always true.

2 General Comments

We study the plane strain quasi-static deformation of a FG circular cylinder of length L,
having inner and outer radii, equal to a and b respectively. The cylinder is subjected to
an internal pressure P I and an external pressure P O where I and O are dimensionless
quantities representing the fractional pressures. We assume that the cylinder material can
be regarded as isotropic having Young’s modulus Ê(r) and Poisson’s ratio ν̂(r) where r

is the radial coordinate of a point in cylindrical coordinates with the origin at the cylinder
center. Since the loads, the cylinder geometry, and material properties are independent of
angular and axial position it is reasonable to assume that the deformations are axisymmetric.
Therefore, the tangential displacement is zero, and the radial displacement depends only
upon the radius, i.e., u = u(r). The conditions

εr = du

dr
,

εθ = u

r
,

(1)

relate the strain to the displacement. The length L is taken as being much bigger than the
outer radius, so that L � b, and, therefore, plane strain deformation is considered. It is
convenient to define the quantities

E ≡ Ê

1 − ν̂
2 ,

ν ≡ ν̂

1 − ν̂
.

(2)
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For the sake of brevity, we subsequently refer to E and ν as Young’s modulus and Poisson’s
ratio respectively, and for the plane strain condition considered here, Hooke’s law is written
as

du

dr
= σr − νσθ

E
,

u

r
= σθ − νσr

E
.

(3)

To solve the pressurized cylinder problem, it is well known that mechanical equilibrium is
maintained if the stress components are defined from a stress function Ψ so that

σr = −Ψ

r
, σθ = −dΨ

dr
. (4)

This stress function must satisfy the following two boundary conditions:

Ψ (a) = aP I, Ψ (b) = bP O. (5)

To find the function Ψ , an ordinary differential equation is formulated by forcing compati-
bility onto the two conditions for the displacement u given in (3).

We scale the radial coordinate with respect to the inner radius,

ρ = r

a
, (6)

and the dimensionless outer radius is β = b/a > 1. A dimensionless displacement U =
U(ρ) is defined by

u = PaU

Eav
, (7)

where

Eav ≡ 2

β2 − 1

∫ β

1
E(ρ)ρ dρ, (8)

is the volume average of E. One of the aims of this contribution is to investigate (for a
given value of Eav) how the spatial variation of E influences the overall equivalent stiffness.
A non-dimensional function E= E(ρ) is defined so that the elastic stiffness is described by
the following relation

E = Eav E. (9)

It then follows from (8) that E satisfies the condition

∫ β

1
Eρ dρ = β2 − 1

2
, (10)

which represents a constraint on the function E. No restriction, other than 0 ≤ ν ≤ 1 is placed
upon ν = ν(ρ) at this stage.

Finally, a dimensionless stress function ψ is defined by the conditions

σr = −Pψ

ρ
, σθ = −Pψ ′, (11)
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where ψ ′ ≡ dψ/dρ. This stress function must satisfy the following two boundary condi-
tions:

ψ(1) = I, ψ(β) = βO. (12)

To ensure compatibility, this stress function must satisfy the differential equation

(
ρψ ′ − νψ

E

)′
−

(
ψ/ρ − νψ ′

E

)
= 0, (13)

which is derived by combining (3), (7), (9), and (11).

3 Equivalent Homogeneous Solid

Our goal is to find Young’s modulus, Eh, of an energetically equivalent homogeneous cylin-
der. So, consider a homogeneous equivalent solid having constant elastic stiffness Eh and
constant Poisson’s ratio. For this solid, E= 1, and the solution to (13) is

ψ0 =
(

β2 O − I
β2 − 1

)
ρ +

(
I − O
β2 − 1

)
β2

ρ
. (14)

The strain energy density is given by (σ 2
r − 2νσrσθ + σ 2

θ )/2E, and, after integrating over
the volume, the strain energy is found to be

Jh = 2P 2πa2LGh

Eh

, (15)

where the quantity Gh is written as

Gh = I 2{(ν + 1)β2 − (ν − 1)} − 4β2 I O − O2β2{(ν − 1)β2 − (ν + 1)}
2(β2 − 1)

. (16)

So the expression for the strain energy Jh of a homogeneous cylinder is known.

4 Lower Bound for Eh

The strain energy of the FG cylinder is written as

J = 2P 2πa2LG

Eav
, (17)

where

G =
∫ β

1
J
(
ψ,ψ ′) dρ, (18)

and the integrand J (ψ,ψ ′) is

J
(
ψ,ψ ′) = ρ

2E

(
ψ2

ρ2
− 2νψψ ′

ρ
+ ψ ′2

)
. (19)
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After integration by parts it follows that G can be written as

G = 1

2

[
ψ(ρψ ′ − νψ)

E

]β

1

− 1

2

∫ β

1
ψ

{(
ρψ ′ − νψ

E

)′
−

(
ψ/ρ − νψ ′

E

)}
dρ. (20)

The first term on the right hand side is evaluated at the boundaries, and the second term,
which is an integral over the volume, vanishes if the Euler condition (13) is satisfied. There-
fore, if the stress function is the exact solution, then the strain energy, J , equals one-half
the work done by the surface traction applied on the inner and outer surfaces of the cylinder.
Furthermore, it is known that the strain energy attains its absolute minimum Je if ψ satisfies
the Euler equation. Thus, setting Je = Jh leads to the exact expression for Eh.

Since it is not always possible to obtain the exact solution an approximate expression,
ψa , is used in (18) and Ja ≥ Jh, so that Ga/Eav ≥ Gh/Eh. This can be rewritten as

Eh

Eav
≥ Gh

Ga

, (21)

and represents a lower bound for Eh. To construct this lower bound, an approximate stress
function ψa needs to be found, and this approximate function must satisfy the boundary
conditions ψa(1) = I and ψa(β) = βO as given in (12). With this in mind the stress function
is approximated by the series

ψ ≈ ψ0 +
N∑

n=1

Bnψn, (22)

where ψ0 is the solution for homogeneous cylinder and the functions ψn which account for
the non-homogeneity are given by

ψn = ρn−1(ρ − 1)(β − ρ).

An approximation Ga for integral in (18) is then found in the form

Ga = γ0 +
N∑

k=1

γkBk +
N∑

i=1

N∑
j=1

γijBiBj , (23)

where γ0 is written as

γ0 =
∫ β

1

{
ρ(1 − ν)

(
β2 O − I
β2 − 1

)2

+ (1 + ν)

(
I − O
β2 − 1

)2
β4

ρ3

}
dρ

E
,

and the other coefficients, γk and γij , can be calculated. The coefficients Bj are found by
solving the set of linear equations obtained from the conditions ∂G/∂Bm = 0.

5 Upper Bound for Eh

An upper bound can be constructed by using the method proposed by Arthurs [39]. First,
the quantity

−U ≡ ∂J

∂ψ ′ = ρψ ′ − νψ

E
(24)
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is defined, and, by comparison with (3) and (11), it is clear that U is the dimensionless
displacement defined in (7). Solving for ψ ′ yields the result

ψ ′ = −EU

ρ
+ νψ

ρ
. (25)

The Legendre transform of J is written as H = −Uψ ′ −J (ψ,ψ ′), and, using (19) and (25),
it follows that

H = EU 2

2ρ
− νψU

ρ
− 1 − ν2

2Eρ
ψ2, (26)

where H = H(U,ψ) is known in terms of U and ψ . Following the standard treatment
U ′ = ∂H/∂ψ leads to

U ′ = −1 − ν2

Eρ
ψ − ν

U

ρ
. (27)

The function ψ can then be found as

ψ = − Eρ

1 − ν2

{
U ′ + ν

(
U

ρ

)}
. (28)

The quantity J = −Uψ ′ − H is used in (18). The term −Uψ ′ is integrated by parts, and
after eliminating ψ the strain energy is found in terms of displacement

J = 2P 2πa2LF

Eav
,

where the functional F is

F = IU(1) − βOU(β) −
∫ β

1
I
(
U,U ′) dρ. (29)

The quantity I (U,U ′) is given by

I
(
U,U ′) = Eρ

2(1 − ν2)

{
U ′2 + 2νU ′

(
U

ρ

)
+

(
U

ρ

)2}
. (30)

The expression for F corresponds to the work done by external forces minus the strain en-
ergy. When F reaches its extremum, the work is twice the strain energy and this is essentially
Clapeyron’s theorem [2]. The case where ν = 1 can be analyzed by substituting U = B/ρ

in (30) and performing a limiting process where ν → 1.
The Euler equation corresponding to the integrand given in (30) represents the condition

for mechanical equilibrium and if U satisfies the Euler equation then J attains its maximum
possible value Je . If an approximate expression Ua for the displacement is used, then Ja ≤
Je = Jh. From this it follows that

Eh

Eav
≤ Gh

Fa

,

and this represents an upper bound for the stiffness, Eh.
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5.1 Approximate Solution

From consideration of the theory in variational calculus, it can be shown that (unlike the
functional G in terms of ψ ) all the requirements for F to reach a maximum are self-
contained in the functional F , and, for this reason, no conditions are placed on an approxi-
mate form for the displacement. For the sake of simplicity the displacement is written as

U = Aρ + B

ρ
. (31)

With this form, there is no interaction energy between the components Aρ and B/ρ so that
the expression for I is written as

I
(
U,U ′) = Eρ

(1 − ν2)

{
A2(1 + ν) + B2(1 − ν)

ρ4

}
. (32)

The approximate expression, Fa , found using (29) reduces to

Fa =
{
A

(
I − β2 O

) − A2
∫ β

1

Eρdρ

1 − ν

}

+
{
B(I − O) − B2

∫ β

1

E

1 + ν

dρ

ρ3

}
. (33)

The coefficients A and B are then adjusted to maximize Fa and this gives

A = I − β2 O
2

[∫ β

1

Eρ

1 − ν
dρ

]−1

,

B = I − O
2

[∫ β

1

E

1 + ν

dρ

ρ3

]−1

.

(34)

Using these values for A and B , the maximum value of Fa is found as

Fa =
(

I − β2 O
2

)2[∫ β

1

Eρ

1 − ν
dρ

]−1

+
(

I − O
2

)2[∫ β

1

E

1 + ν

dρ

ρ3

]−1

. (35)

As expected, in the case where the cylinder is subjected to hydrostatic stress, i.e., I = O,
the strain energy vanishes for an incompressible solid for which ν = 1.

6 Comparison Between Lower and Upper Bounds

The lower and upper bounds are compared against the exact solution which is readily ac-
cessible if Poisson’s ratio is constant and the spatial variation of E is described by a power
law

Ek(ρ) = K

ρ2k
. (36)

The subscript “k” indicates power law behavior. For the power law behavior of E given in
(36), the stress function can be readily found by solving the Euler equation (13) and the
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solution that satisfies the boundary conditions in (12) is

ψk =
(

Oβ − Iβn

βp − βn

)
ρp +

(
Iβp − Oβ

βp − βn

)
ρn, (37)

where the positive and negative characteristic roots are

p = −k + q,

n = −k − q,

and q = √
1 + 2kν + k2. The integral G defined in (18) can be calculated and is labeled

G = Gk . It is convenient to define a parameter m ≡ lnβ and Gk is then written as

Gk = I 2f − 2O Ig + O2h

2K
. (38)

The functions f , g, and h, which depend upon the material properties and the geometry, are
written as

f = qcthmq + ν + k,

g = exp
[
m(1 + k)

]
q cschmq,

h = exp
[
2m(1 + k)

]
(q cthmq − ν − k),

(39)

where cthx ≡ coshx/ sinhx, cschx ≡ 1/ sinhx. The constraint on Ek(ρ), given in (10), is
satisfied if

K =
(

m(1 − k)

exp[2m(1 − k)] − 1

)(
exp[2m] − 1

m

)
, k 
= 1. (40)

If k = 1, the expression for K is indeterminate, and l’Hôpital’s rule can be used to find
K = (exp[2m] − 1)/2m. For a homogeneous solid k = 0, K = 1, q = p = 1, n = −1, and

G0 = I 2(cthm + ν) − 2O I exp[m] cschm + O2 exp[2m](cthm − ν)

2
. (41)

By comparison with (16) it can be confirmed that G0 = Gh. The equivalent stiffness is then
given by

Eh

Eav
= G0

Gk

. (42)

The lower and upper bounds, developed in Sects. 4 and 5 respectively, can be compared with
this exact result for the stiffness ratio. It is also of interest to compare these results against
the classical Voigt and Reuss bounds. According to Avseth et al. [38], the Voigt upper bound,
EV , and the Reuss lower bound ER , (both of which were established early in the twentieth
century) represent the simplest expressions for bounds. The bounds are EV ≥ Eh ≥ ER

where in this case EV and ER are found using the following expressions:

EV

Eav
= 2

β2 − 1

∫ β

1
Eρ dρ ≡ 1,

Eav

ER

= 2

β2 − 1

∫ β

1

ρ

E
dρ.

(43)
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In the Voigt bound the strain is assumed to be constant, while in the Reuss bound the stress
is assumed to be constant.

6.1 Numerical Results

To obtain some numerical results, typical, but arbitrary values are used: β = 2 (m = ln 2);
Poisson’s ratio ν̂ = 1/3 (ν = 1/2); and in (36) the quantity k = ±3/2. The Reuss modulus,
ER , is an even function of k so the classical bounds are the same for k = ±3/2. Using (43)
the Voigt and Reuss bounds are found as

1 ≥ Eh

Eav
≥ 45

62
. (44)

Unlike the classical bounds, the bounds developed in Sects. 4 and 5, depend on the ratio of
I to O. With this in mind it is convenient to define a parameter t such that

I = cos t,

O = sin t,
(45)

where 0 ≤ t ≤ 2π . The dependence of the stiffness ratio Eh/Eav upon the ratio I/O can
be found. For all possible ratios of I/O, the exact result given in (42) is compared with
the lower and upper bounds. These bounds are found using only the leading term: the lower
bound, given in (23), is found by setting Ga = γ0 ; and, the upper bound is constructed
using Fa given in (35). Figure 1(a) shows a graph of E versus ρ when k = 3/2, and Fig. 1(b)
shows the dependence of Eh/Eav upon the parameter t . Similarly, Fig. 2(a) shows a graph
of E versus ρ when k = −3/2, and Fig. 2(b) shows the dependence of Eh/Eav upon the
parameter t . By taking 2 or 3 series terms, both the upper and lower bounds can be made
to be virtually identical to the exact solution; this of course requires considerably more
computational effort. The classical bounds, given in (44), are based upon either constant
stress or strain and for a homogeneous solid this occurs only when I = O. Along this line
the bounds presented here agree with the classical bounds. For other loading, i.e., I 
= O,
the classical bounds are not generally valid as can be seen in both Figs. 1(b) and 2(b).

7 Tailoring the Stiffness when ν Is Constant

In practice the properties of FGMs vary gradually and if an admissible stress field is speci-
fied, then the function ψ can be found. The stiffness E required to produce this stress can be
calculated from (13), and, if Poisson’s ratio is constant, (13) can be rewritten as

E′[ζ + (1 − ν)ψρ
] − Eζ ′ = 0, (46)

where ζ = ρ3(ψ/ρ)′. The solution to this differential equation is

E= λ exp

[∫
ζ ′dρ

ζ + (1 − ν)ρψ

]
, (47)

where λ is a constant of integration. Except for the special case when ν = 1, the integral in
(47) is intractable and it must be solved numerically.

For design purposes it is attractive to find a distribution for E that is commensurate with
a large value of the equivalent stiffness, and finding the function E that causes a specified
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Fig. 1 (a) Variation with ρ of
the dimensionless stiffness
E= 3/ρ3 corresponding to
k = 3/2; (b) Polar graph showing
the behavior of Eh/Eav (the
length from the origin to a point
on the curve) versus the
parameter t given in (45). The
upper and lower bounds are
shown by the dashed lines, while
the exact solution is indicated by
the solid line. Internal and
external pressures correspond to
t = 0◦ and 90◦ respectively, and
hydrostatic loading is represented
by t = 45◦ . The dashed gray
circles, having radii equal to 1
and 45/62, represent the classical
bounds given in (44). Along the
line representing hydrostatic
loading, t = 45◦ , the classical
bounds agree with the bounds
given here

stress field does not necessarily fulfill this aim. The strain energy J depends on the integral
for G, which is given in (18), and can be written as

G = 1

2

∫ β

1
ρ

{
σ 2

E
+ ε2(E− 1)

}
dρ, (48)
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Fig. 2 (a) Variation with ρ of
E= 15ρ3/62 corresponding to
k = −3/2; (b) Polar graph
showing the behavior of Eh/Eav
(the length from the origin to a
point on the curve) versus the
load parameter t given in (45).
The upper and lower bounds are
shown by the dashed lines, while
the exact solution is indicated by
the solid line. Internal and
external pressures correspond to
t = 0◦ and 90◦ respectively, and
hydrostatic loading is represented
by t = 45◦ . The dashed gray
circles, having radii equal to 1
and 45/62, represent the classical
bounds given in (44). Along the
line representing hydrostatic
loading, t = 45◦ , the classical
bounds agree with the bounds
given here

where the term multiplied by the constant ε2 represents the constraint upon E. The dimen-
sionless “stress” term σ is defined as

σ ≡
√

ψ2

ρ2
− 2νψψ ′

ρ
+ ψ ′2. (49)

If ψ is known then σ can be calculated and it can be shown that setting

E= σ

ε
, (50)
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minimizes the integral for G. Intuitively, it seems plausible that E should be large in regions
where the stress σ is large if the overall stiffness is to be maximized. So the aim is to find ψ

that minimizes G for a given E, and also to find E that minimizes G for a given ψ . When E
is readjusted then the stress function no longer satisfies the Euler equation, and an iterative
process is required.

Alternatively, an approximation for the optimum overall stiffness can be found if the
dimensionless stiffness is based on the power law, E= Ek , given in (36). The expression for
G = Gk is given in (38), and finding the value for k that minimizes Gk is roughly equivalent
to specifying E∝ σ . As shown subsequently, the value for k that minimizes Gk depends on
the external loading. To begin, it is useful to consider the series expansion around k = 0 and
the first two terms are

Gk = G0 + (O − I)2

2

{
(1 + ν) exp[m](1 − m cthm)

sinhm

}
k + O

(
k2

)
, (51)

where m = lnβ . It is clear from this result that if the internal and external pressures are
equal, i.e., I = O, the coefficient of k vanishes and G attains a minimum when k = 0. This
corresponds to the stress function, ψk = Iρ, and σ is constant so that condition in (50) is
satisfied if E = 1. Therefore, for constant stress, the maximum equivalent stiffness occurs
when the modulus is constant. This can be illustrated in a simple way by considering a two-
phase series model where the stress is constant. The volume fraction of phase 1 is φ, while
E1 and E2 are the moduli of phases 1 and 2 respectively. The strain energy density is

σ 2

2Eh

= 1

2

{
σ 2φ

E1
+ σ 2(1 − φ)

E2
+ ε2

[
φE1 + (1 − φ)E2 − Eav

]}
,

where the term multiplied by the Lagrange multiplier ε2 represents the constraint upon the
average stiffness. Setting the partial derivatives with respect to E1 and E2 equal to zero leads
to the result that E1 = E2 and E is uniform.

For an internally pressurized cylinder, O = 0, Gk = I 2f/2K , and there is no possibility
that the stress is constant. Near k = 0 it follows from (51) that dGk/dk < 0. By consider-
ing the behavior of Gk for large values of k, it is found that this derivative monotonically
increases and approaches zero as k becomes large. The optimum stiffness is achieved when
E is concentrated near the inner surface. The effective stiffness is

Eh

Eav
∼ (β2 + 1) + ν(β2 − 1)

2
, (52)

and this represents the limit as k becomes very large.
For an externally pressurized cylinder, I = 0 and Gk = O2h/2K . Intuitively, it is ex-

pected that when β � 1, then the stiffness will adjust itself so that k → 0 and the stress state
over most of the volume corresponds to uniform stress. On the other hand, when β is com-
parable with unity, the values of k become large and Gk ∝ exp[2mk]/k2. This is minimized
when

k = 1

m
.

The effective stiffness is then approximately given by

Eh

Eav
≈ G0

GL

, (53)



Optimum Young’s Modulus of a Homogeneous Cylinder Energetically 107

Fig. 3 The solid and dashed
lines show the behavior of the
optimal value of Eh/Eav and k

respectively, as the parameter t in
(45) is varied. The values β = 2
and ν = 1/2 are used. For
hydrostatic loading Eh = Eav
and k = 0, and for an internally
pressurized cylinder
Eh/Eav = 3.25 as given in (52)
as k → ∞. When the cylinder is
externally loaded, the symbols ◦
show the effective stiffness that is
found by setting k = 1/ ln(2)

where GL is equal to Gk evaluated when k = 1/m.
To illustrate these considerations, consider a cylinder again having the typical values

β = 2 and ν = 1/2. The ratio I/O is changed and Fig. 3 shows a polar plot that describes the
behavior of Eh/Eav and k as the parameter t is varied. When t = 0 the ratio Eh/Eav = 3.25
as given in (52), when t = 45◦ the effective stiffness Eh = Eav corresponds to k = 0, and
when t = 90◦, setting k = 1/ ln(2) ≈ 1.44 gives a reasonable estimate as shown by the ◦
symbols.

8 Effect of Spatially Varying Poisson’s Ratio

In the preceding analysis Poisson’s ratio has been held fixed and E has been allowed
to vary. The case where both E and ν are allowed to vary has been previously treated
[14, 15]; here the special case is considered where the stiffness is held constant, i.e.,
E = 1, and Poisson’s ratio is allowed to vary. If E is held constant, then (13) is written
as ρ2ψ ′′ + ρψ ′ − ψ(1 + ρν ′) = 0. If ν is then assigned the form ν = co + c1 lnρ, then this
differential equation reduces to a Cauchy type and the solution is readily obtained. Suppose
that νa and νb represent values of Poisson’s ratio at the inner and outer surfaces respectively.
These boundary values are satisfied by setting ν = νa + c lnρ where c = (νb −νa)/ lnβ . The
stress function that satisfies the boundary conditions in (12) is given by

ψ =
(

Oβ − I/βs

βs − 1/βs

)
ρs +

(
Iβs − Oβ

βs − 1/βs

)
1

ρs
, (54)

where s = √
1 + c. The integral G in (18) is then calculated

G(νa, νb) = 1

2

[
I 2(scth sm + νa) − 2O I exp[m]scsch sm + O2 exp[2m](scth sm − νb)

]
.

(55)
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Fig. 4 Polar graph showing the
behavior of Eh/Eav (the length
from the origin to a point on the
curve) versus the load parameter
t given in (45). Values β = 2 and
νav = 1/2 are used and the two
lines show the behavior of
Eh/Eav when E= 1 and
ω = ±0.817 as indicated

This expression is valid for both real and imaginary values of s, and if s = 1 then the ex-
pression reduces to G0, given in (41), which represents a homogeneous solid.

Proceeding in the same vein as previously described, for a given average value νav we
want to investigate how the spatial dependence of ν affects the overall equivalent stiffness.
The average value, νav, is written as

νav = νa + (νb − νa)f, (56)

where

f = β2

β2 − 1
− 1

2 lnβ
.

The effective modulus Eh/Eav = G(νav, νav)/G(νa, νb) is written as

Eh

Eav
= I 2(cthm + νav) − 2O I exp[m] cschm + O2 exp[2m](cthm − νav)

I 2(scth sm + νa) − 2O I exp[m]s csch sm + O2 exp[2m](scth sm − νb)
. (57)

Across the wall thickness the change in Poisson’s ratio is ω = νb −νa = (νav −νa)/f and this
result follows from (56). For comparison with previous results we set νav = 1/2 and β = 2
so that f ≈ 0.612. If νa = 0 it follows that ω = 1/2f ≈ 0.817 and νb = ω. If νa = 1 then
ω = −1/2f ≈ −0.817 and νb = νa + ω ≈ 0.183. Fig. 4 shows the behavior of Eh/Eav and
it appears that Eh is larger when νb > νa corresponding to ω > 0. The maximum difference
of about 25 % between the two cases occurs when t = 0, corresponding to internal pressure.

9 Remarks

The homogenization of material moduli of a heterogeneous solid plays a significant role in
structural analysis. The analysis of boundary-value problems for an energetically equivalent



Optimum Young’s Modulus of a Homogeneous Cylinder Energetically 109

homogeneous cylinder will enable engineers to quickly decide which cylinders will have the
least overall strain energy of deformation which sometimes is taken as the design criterion.
One can then analyze in detail the problem for the corresponding inhomogeneous cylinder
and ascertain stress singularities at points adjacent to the inclusions/matrix interfaces.

10 Conclusions

We have studied the axisymmetric plane strain deformations of a FG circular cylinder with
uniform pressures applied on the inner and the outer surfaces. The goal has been to find
the stiffness, Eh, of an energetically equivalent homogeneous cylinder. This paper has three
main contributions:

1. For a power law variation of E it is found that the upper and lower bounds of Eh calcu-
lated by using two series terms, are reasonably close to the analytical values of Eh. In
general, the Voigt and Reuss bounds are not valid.

2. The spatial variation of the stiffness that maximizes the equivalent modulus Eh has been
estimated when Poisson’s ratio is constant. It has been found that the radial distribu-
tion of E, that leads to the maximum value of Eh, depends upon the ratio of internal to
external pressure. For pressure applied at the inner surface, Eh is largest when the stiff-
ness is increased near the inner surface. For equal pressures applied on the inner and the
outer surfaces of a cylinder Eh has the maximum value for a homogeneous cylinder. For
pressure applied at the outer surface, the value Eh is largest when k ≈ 1/ lnβ .

3. The effect of spatial variation of Poisson’s ratio that increases the equivalent modulus
Eh has been considered when the stiffness is constant. The equivalent stiffness, Eh is
increased when Poisson’s ratio is large near the outer surface.

It is hoped that these observations will be useful in the design of FG cylinders to optimize
their elastic properties.
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